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Abstract

Due to the Hadamard Conjecture, Williamson matrices (WM) and
Williamson type matrices (WTM) of order 4n have been primarily in-
vestigated for odd n. Several constructions for this case have been intro-
duced, leading to finite and infinite families of WMs and WTMs. The aim
of this paper is to present new families of WMs and WTMs with blocks of
even order. Let q and r be prime powers congruent to 1 modulo 4. There
are WMs of order 4a(q + 1) for every a ∈ {1, 11, 17, 23, 29, 33, 39, 43}. If
gcd(q+1, r+1) = 2, then there is a WM of order 2(q+1)(r+ 1). There
are WMs of order 2b(q + 1) and WTMs with circulant blocks of order
2c(q + 1) for every b ∈ {2, . . . , 7} and c ∈ {5, 6}. We prove these results
and more by exploiting a recently established correspondence between
perfect quaternionic sequences and relative difference sets.

1 Introduction

A Hadamard matrix (HM) of order n is an n × n matrix H with entries in {−1, 1}
such that HHᵀ = nIn where In is the n × n identity matrix. HMs have found nu-
merous applications in areas such as cryptography, coding theory, and signal theory;
we refer to the books of Horadam [13] and Seberry [29] for details and references.
Mathematically, the driving force behind HMs is the famous Hadamard Conjecture,
which claims that there exist HMs of order 4n for every n.

A Williamson type (Hadamard) matrix (WTM) is a Hadamard matrix of
the form

H =

⎛
⎝

A B C D
−B A −D C
−C D A −B
−D −C B A

⎞
⎠ (1)
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where the blocks A,B,C,D are n× n matrices such that

AAᵀ +BBᵀ + CCᵀ +DDᵀ = 4nIn (2)

and
XY ᵀ = Y Xᵀ for all X, Y ∈ {A,B,C,D}. (3)

Note that {A,B,C,D}, with properties (2) and (3), is a short amicable set, as consid-
ered in [11]. Moreover, if the blocks are symmetric circulant, thenH is aWilliamson
(Hadamard) matrix (WM), see the construction in [40, (8)]. Recall that an n×n
matrix M = (mr,c) is circulant if mr,c = m0,(c−r) mod n for all r, c = 0, . . . , n − 1. As
a special class of HMs, WMs and WTMs have applications in various areas, such as
wireless communication (code division multiple access, see [31]) and coding theory
(Hadamard full propelinear codes, see [23]). Because of the Hadamard Conjecture,
WTMs have been primarily investigated for odd n: Given a WM or WTM of order
4n with n odd, one can use a tensor product construction [13, Lemma 2.1] or a
recursive construction presented by Spence [34] to produce HMs of order 2tn for all
t > 2. However, the tensor construction does not yield WTMs, and the recursive
construction produces WTMs with non-circulant blocks. In fact, Horadam asks in
[13, Research Problem 2]: What proportion of (orders of) WTMs are WMs? Se-
berry [26] was one of the first who studied WTMs of order 8n; these matrices are of
particular interest when no WTM of order 4n is known.

Schmidt [24] introduced WMs with group-invariant blocks, and presented a cor-
respondence between such WMs and relative difference sets in certain non-abelian
groups, including quaternion groups. In [4] we have established a correspondence
between certain quaternionic perfect sequences and certain relative difference sets.
Together, this yields a correspondence between certain quaternionic perfect sequences
and certain WMs and WTMs; we make this correspondence explicit in Section 2. We
subsequently apply it to produce new families of WMs and WTMs; our results are
reported in Section 3.

1.1 Notation

Let R be the real numbers and let H be the real quaternions with R-basis {1, i, j, k}
satisfying i2 = j2 = k2 = ijk = −1. We consider the multiplicative groups Q8 =
{±1,±i,±j,±k} and Q24 = Q8∪ qQ8∪ q2Q8, where q = (1+i+j+k)/2, and write
h �→ h∗ for the R-linear complex conjugation on H; note that q∗Q8 = q2Q8. For a
positive integer n, the cyclic group of order n is denoted by Cn. We now recall some
crucial definitions.

An (m,n, k, λ)-relative difference set (RDS) in a group G of order mn, relative
to a normal subgroup N of order n, is a k-subset R ⊆ G with the property that the
list of elements ab−1 with distinct a, b ∈ R contains each element of G \N exactly λ
times and does not contain any element of N . It is common to identify R ⊆ G with
an element R =

∑
r∈R r in the group ring R[G]; writing R(−1) =

∑
r∈R r−1, it follows

that R ⊆ G is an (m,n, k, λ)-RDS if and only if RR(−1) = k + λ(G−N) in R[G].
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Let G be a group of size n. An n× n matrix A is G-invariant (or G-developed)
if the rows and columns of A = (ag,h) can be indexed with elements g, h ∈ G
such that agk,hk = ag,h for all g, h, k ∈ G. Note that A is circulant if and only if
A is Cn-invariant. Here we denote a WM and WTM with G-invariant blocks by
GGG-WM and GGG-WTM, respectively. A quaternion type HM is a HM of the
form (1) whose blocks satisfy (2) and WXᵀ − XW ᵀ + Y Zᵀ − ZY ᵀ = 0 for all
{W,X, Y, Z} = {A,B,C,D}. In the following we say that a WTM is circulant or
symmetric if this property holds for its blocks.

2 From perfect quaternionic sequences to Williamson type
matrices

Let S = (s0, . . . , sn−1) be a (periodic) sequence over a quaternion alphabet A ⊆ H,
that is, we use the convention that sz = sz mod n for all z ∈ Z. For t ∈ Z, the right
periodic t-autocorrelation value of S is

ACR
S (t) =

∑n−1

r=0
srs

∗
r+t,

and S is perfect if ACR(S) = (ACR
S (0), . . . ,AC

R
S (n − 1)) = (∗, 0, . . . , 0). The

non-commutativity of H also admits the concept of left periodic autocorrelations,
however, perfection does not depend on this choice, see [18, Lemma 1]. We refer
to [4, 6, 18, 19] for more details on perfect quaternionic sequences. Note that fi-
nite (multiplicative) subgroups of H are classified (see [35]), and there are only few
types of such subgroups; this is the reason why one often restricts alphabets to Q8,
Q8∪qQ8, or Q24 = Q8∪qQ8∪q2Q8; recall that Q8 and Q24 are multiplicative groups
and q = (1 + i + j+ k)/2.

Our computational investigation of perfect quaternionic sequences has exhibited
three types of symmetries. We say a sequence S = (s0, . . . , sn−1) has symmetry I
if sr = sn−r for all r = 1, . . . , n − 1; a sequence with this symmetry is also known
as palindromic [19, Example 2]. The sequence S has symmetry II if n is even
and sr+n

2
= (−1)rsr for all r = 0, . . . , n/2 − 1. Lastly, S has symmetry III if n

is divisible by 4 and s2r+e+n
2
= (−1)rs2r+e for all r = 0, . . . , n/4 − 1 and e = 0, 1.

Examples of sequences with symmetry I, II, and III are S1, S2, S3, respectively, in
Table 2.

In the next section we construct infinite families of WMs based on perfect se-
quences with these symmetries. There we use the composition of sequences S =
(s0, . . . , sl−1) and U = (u0, . . . , um−1), defined as S × U = (s0u0, . . . , slm−1ulm−1). If
l and m are co-prime and S and U are perfect, then S×U is perfect as well, see [19].
Moreover, certain symmetries are preserved under composition.

Lemma 2.1 Let S and U be sequences of co-prime lengths l and m, respectively,
with odd l. If U has symmetry σ ∈ {II, III}, then so has S × U . If S and U both
have symmetry I, then so has S × U .
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Proof: Write S = (s0, . . . , sl−1) and U = (u0, . . . , um−1). First suppose σ = II; the
case σ = III is analogous. Note that m is even, and since lm/2 ≡ 0 mod l and
(l − 1)m/2 ≡ 0 mod m, it follows from

sr+lm/2ur+lm/2 = srur+(l−1)m/2+m/2 = srur+m/2 = sr(−1)rur = (−1)rsrur

that S × U has symmetry σ. If both S and U have symmetry I, then slm−rulm−r =
sl−rum−r = srur shows that S × U has symmetry I. �

We proved the following result in [4].

Theorem 2.2 ([4]) There is a one to one correspondence between perfect sequences
of length n over Q8 ∪ qQ8 and (4n, 2, 4n, 2n)-RDS in Cn ×Q8 relative to Z(Q8).

Schmidt [24, Theorem 2.1] established the following correspondence.

Theorem 2.3 ([24]) Let G be an abelian group of order n. A G-WM of order 4n
exists if and only if there is a (4n, 2, 4n, 2n)-RDS in G×Q8 relative to Z(Q8).

Theorems 2.2 and 2.3 provide a correspondence between Cn-WMs of order 4n
and perfect sequences of length n over Q8 ∪ qQ8. We now make this correspondence
explicit; it follows from a straightforward, but tedious analysis of the proofs of these
theorems that our construction below is correct.

First, consider a perfect sequence S = (s0, . . . , sn−1) over Q8∪qQ8. Using Table 1,
the entries of S define the entries of the matrix

R(S) =

⎛
⎜⎜⎝
a0 a1 . . . an−1

b0 b1 . . . bn−1

c0 c1 . . . cn−1

d0 d1 . . . dn−1

⎞
⎟⎟⎠ .

For example, if sr = i, then (ar, br, cr, dr) = (1,−1,−1, 1). The matrix WM(S)
corresponding to S has circulant blocks whose first rows are the rows a, b, c, d of
R(S); by construction, WM(S) is a Cn-WM of order 4n. Conversely, for a Cn-WM
M of order 4n let R(M) be the 4 × n matrix consisting of the first rows of the
circulant blocks of M . Via Table 1, the r-th column of R(M) determines a symbol
sr, and this yields a perfect sequence PS(M) = (s0, . . . , sn−1) over Q8 ∪ qQ8.

We give an example. Starting with the perfect sequence S = (1, i,−1, i),
we obtain a matrix R(S) with rows a = (−1, 1, 1, 1), b = (−1,−1, 1,−1), c =
(−1,−1, 1,−1), and d = (−1, 1, 1, 1), and eventually a WM(S) of order 16. Con-
versely, if a = d = (−1, 1) and b = c = (−1,−1) are the first rows of the circulant
blocks of a WM M of order 8, then we obtain PS(M) = (1, i).

In conclusion, we present the following correspondence.

Theorem 2.4 Let S be a perfect sequence of length n over Q8 ∪ qQ8 and let M
be a Cn-WM of order 4n. Then WM(S) is a Cn-WM of order 4n and PS(M) is a
perfect sequence of length n over Q8 ∪ qQ8; in particular, WM(PS(M)) = M and
PS(WM(S)) = S.
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sr 1 −1 i −i j −j k −k q −q qi −qi qj −qj qk −qk
ar −1 1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1

br −1 1 −1 1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1

cr −1 1 −1 1 −1 1 1 −1 −1 1 −1 1 1 −1 1 −1

dr −1 1 1 −1 −1 1 −1 1 −1 1 1 −1 −1 1 1 −1

Table 1: The correspondence between circulant Williamson matrices and perfect
sequences

3 New orders of Williamson type matrices

As motivated in the previous sections, it is of interest to investigate the possible
orders of (circulant and symmetric) WTMs. The aim of this section is to provide
new examples of such WMs and WTMs; our first proposition describes a new infinite
family of WMs.

Proposition 3.1 For every prime power q ≡ 1 mod 4 there exists a WM of order
4(q + 1).

Proof: It is shown in [6, Theorem 6] that there exists a perfect sequence (of symmetry
type I) of length q + 1 over Q8; now Theorem 2.4 implies the claim. �

Conversely, we can also use Theorem 2.4 to construct a new infinite family of
perfect sequences. Turyn [36] showed that for every prime power q ≡ 1 mod 4 there
is a WM of order 2(q + 1). The blocks A,B,C,D of such a Turyn type WM are
circulant, symmetric, A and B differ only on the main diagonal, and C = D. If (ar),
(br), (cr), (dr) are the first rows of A,B,C,D, respectively, then these conditions
force that exactly three of a0, b0, c0, d0 are equal and, if r 	= 0, then exactly two or all
of ar, br, cr, dr are equal. Moreover, the symmetry of the blocks shows that ar = an−r,
br = bn−r, cr = cn−r, and dr = dn−r for all r = 0, . . . , (n− 1)/2, where n = (q+1)/2.
Now Theorem 2.4 yields:

Proposition 3.2 For every prime power q ≡ 1 mod 4 there exists a perfect sequence
(s0, . . . , s(q+1)/2) over Q8∪qQ8 with symmetry I, such that s0 ∈ qQ8 and sr ∈ Q8 for
r 	= 0.

For example, abbreviating ±1 as ±, the first rows of the blocks of a Turyn type
WM M of order 4 · 31 are

a, b = (±−−−+++−+−++++−++−++++−+−+++−−−)

c = d = (+−++−−−−−+−++−−++−−++−+−−−−−++−).

Via Table 1, this yields the perfect sequence PS(M) = S4 in Table 2.
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n
am

e

le
n
gt
h

sy
m
m
.

sequence

S1 18 I (111, k,−1,−i,−1, j, 1,−i, 1,iii, 1,−i, 1, j,−1,−i,−1, k)

S2 16 II (111, i, j,−k, 1,−k,−j, i,111,−i, j, k, 1, k,−j,−i)

S3 16 III (iii,−j−j−j, 1, 1, i, j, k,−k,iii,−j−j−j,−1,−1, i, j,−k, k)

S4 31 I (qk, 1,−j,−j, j, j, j, 1, j,−j, j,−1,−1, j, 1,−1,−1, 1, j,−1,−1, j,−j, j, 1, j, j, j,−j,−j, 1)

S5 2 I (1, i)

S6 4 I (1, i,−1, i)

S7 8 I (1, 1, i,−1, 1,−1, i, 1)

S8 16 I (1,−1, 1,−i,−1, i, 1, 1, 1, 1, 1, i,−1,−i, 1,−1)

S9 32 I (1, i,−1,−j,−j,−1, 1, k, 1,−k, 1, 1,−j, j,−1,−i, 1,−i,−1, j,−j, 1, 1,−k, 1, k, 1,−1,−j,−j,−1, i)

S10 64 I (1, 1,−j,−i, 1, j,−1,−k,−1,−i, 1,−1, 1, k, j, j, 1,−j, j,−k, 1, 1, 1, i,−1, k,−1,−j, 1, i,−j,−1,

1,−1,−j, i, 1,−j,−1, k,−1, i, 1, 1, 1,−k, j,−j, 1, j, j, k, 1,−1, 1,−i,−1,−k,−1, j, 1,−i,−j, 1)

S11 32 II (1, i, i, j, 1, k, 1,−k,−1,−j, i,−i,−1,−1, 1,−1, 1,−i, i,−j, 1,−k, 1, k,−1, j, i, i,−1, 1, 1, 1)

S12 16 III (1,−k, j,−j, 1, k, i, i, 1,−k,−j, j, 1, k,−i,−i)

S13 11 I (qi, 1, j,−i,−j,−k,−k,−j,−i, j, 1)

S14 17 I (q, 1, j,−i, j,−k,−j,−1, 1, 1,−1,−j,−k, j,−i, j, 1)

S15 23 I (qk, 1,−j, i, i,−i, k,−j,−1,−i,−k, 1, 1,−k,−i,−1,−j, k,−i, i, i,−j, 1)

S16 29 I (q, j, k,−1,−k,−1, k, 1,−1,−k, 1,−k, k, i, i, i, i, k,−k, 1,−k,−1, 1, k,−1,−k,−1, k, j)

S17 33 I (qk,−j,−k, k,−1, j,−i, 1,−i,−1,−k, i, j,−1, k, j, i, i, j, k,−1, j, i,−k,−1,−i, 1,

−i, j,−1, k,−k,−j)

S18 39 I (q, j, j,−i,−j, i,−k, k,−k,−j,−i,−i,−k,−1,−k,−j, k, i,−i,−j,−j,−i, i, k,−j,

−k,−1,−k,−i,−i,−j,−k, k,−k, i,−j,−i, j, j)

S19 43 I (qi, i, 1,−j,−k,−1, i, i,−1,−i, j,−i, 1,−1, 1,−k, j, j,−j,−k,−i,−j,−j,−i,−k,

−j, j, j,−k, 1,−1, 1,−i, j,−i,−1, i, i,−1,−k,−j, 1, i)

Table 2: Certain quaternionic perfect sequences used in some proofs

Motivated by finding perfect sequences of large lengths over Q24, Kuznetsov [19,
Example 2] performed a computational search on palindromic perfect sequences of
the form

(1, j, x0, x1, . . . , xt, xt, . . . , x1, x0, j, 1, q)

with x0, . . . , xt ∈ Q8; he found such sequences for lengths 5, 7, 9, 11, 13, 17, 19, 23.
Proposition 3.2 shows that there exists an infinite family of perfect sequences over
Q8 ∪ qQ8 of the form proposed by Kuznetsov; we call these quaternionic Turyn
sequences: they have odd length, symmetry I, and exactly one entry from qQ8 ⊆
Q24.

Proposition 3.3 Let q ≡ 1 mod 4 be a prime power, a ∈ {1, . . . , 6}, and b ∈ {4, 5}.
a) There are perfect sequences over Q8∪qQ8 with symmetry I and length 2a(q+1)/2,

symmetry II and length 2b(q + 1)/2, and symmetry III and length 16(q + 1)/2,
respectively.
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b) There are WMs of order 2a+1(q+1), and WTMs of order 2b+1(q+1) and 32(q+1)
with circulant blocks having first rows with symmetry II and III, respectively.

Proof: In Table 2, perfect sequences of lengths 2, 4, 8, 16, 32, 64 with symmetry I are
S5, . . . , S10, perfect sequences of lengths 16 and 32 with symmetry II are S2 and S11,
and S12 is a perfect sequence of length 16 with symmetry III. Using composition of
sequences of co-prime lengths, see [19], we can combine quaternionic Turyn sequences
and S2, S5, . . . , S12 to perfect sequences of even length with the desired symmetries,
see Lemma 2.1. This proves a); part b) follows with Theorem 2.4. �

In the following, we consider the parameter set

T = {(q + 1)/2 | q ≡ 1 mod 4 prime power}
of Turyn type WMs (see [36]); recall that each such WM has order 4n with n ∈ T .

Lemma 3.4 For every r > 1 there are infinitely many a1, . . . , ar ∈ T which are
pairwise co-prime.

Proof: Let q ≡ 1 mod 4 be a prime power and define ai = (q(2
i)+1)/2 for i = 1, . . . , r;

note that each ai ∈ T . We claim that gcd(ai, aj) = 1 for each 1 ≤ i < j ≤ r. To this

end, observe that q(2
i) = 2ai − 1 and q(2

j) = (2ai − 1)2
j−i

= 2aiu+1 for some integer
u. Now aj = (2aiu + 2)/2 = aiu+ 1, hence gcd(ai, aj) = 1, which proves the claim.

�

This observation shows that we have the following infinite series of WMs, WTMs,
and perfect sequences.

Proposition 3.5 For m ≥ 1 let u1, . . . , um ∈ T be pairwise co-prime; let s, r ≥ 0
with s+ r ≥ 1.

a) There is a perfect sequence of length 2u1u2 over Q8 ∪ qQ8 and a WM of order
8u1u2.

b) There is a perfect sequence over Q24 of length 2tu1 . . . um for each t ∈ {0, . . . , 6}.
c) If q1, . . . , qr+s are prime powers, each congruent to 1 modulo 4, then there exists

a WTM of order 4 · 2sq1 . . . qr(q1 + 1) . . . (qr + 1)(qr+1 + 1) . . . (qr+s + 1).

Proof:

a) The infinite family of Turyn type WMs provides a perfect sequence of length u1

over Q∪qQ8. The infinite family of perfect sequences over Q8 reported in [6] provides
a sequence of length 2u2, cf. Proposition 3.1. By assumption, 1 = gcd(u1, u2) =
gcd(u1, 2u2); note that each element of T is odd. The composition of series of co-
prime lengths (see the discussion around Lemma 2.1) yields a perfect symmetry type
I sequences of length 2u1u2 over Q8 ∪ qQ8; Theorem 2.4 produces a WM of order
8u1u2.
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b) For each r, there is a Turyn type WM of order 4ur, and hence a perfect sequence
over Q8 ∪ qQ8 of length ur. We now use composition of sequences of co-prime
lengths to get a perfect sequence of length u1 . . . um over Q8 ∪ qQ8 ∪ q∗Q8 ⊆ Q24.
Composing this sequence with the perfect sequences of lengths 2, 4, 8, 16, 32, 64 listed
above proves the claim.

c) Proposition 3.1 yields WMs of order 4(qr+1 + 1), . . . , 4(qr+s + 1), respectively.
It is shown in [25] (see also [29, Corollary 4.12]) that there exist WTMs of order
2q1(q1 + 1), . . . , 2qr(qr + 1), respectively. It is shown in [32, Corollary 25] that WMs
and WTMs of order 4u and 4v can be used to construct a WTM of order 8uv;
applying this construction to our WTMs and the WTMs from [25] proves the claim.

�

Proposition 3.6 Let s ∈ {1, 11, 17, 23, 29, 33, 39, 43}. For each integer m ≥ 1, there
exist infinitely many pairwise co-prime u1, . . . , um ∈ T such that the following holds.

a) There is a perfect sequence of length 2su1 over Q8 ∪ qQ8 with symmetry I, and a
WM of order 8su1.

b) For each v ∈ {0, 1} there is a perfect sequence of length 2vsu1 . . . um over Q24

with symmetry I.

Proof: Lemma 3.4 shows that for every m ≥ 1 there are infinitely many
u1, . . . , um ∈ T which are pairwise co-prime; by the same argument we can also
assume that each gcd(ui, s) = 1. The infinite family of perfect sequences over Q8

reported in [6] (cf. Proposition 3.1) provides a sequence of length 2u1. The se-
quences S13, . . . , S19 in Table 2 have length 11, 17, 23, 29, 33, 39, 43, respectively. Now
Lemma 2.1 and Theorem 2.4 yield a perfect sequence of length 2su1 over Q8 ∪ qQ8

with symmetry I and a WM of order 8su1. Proposition 3.5b) yields a perfect sequence
of length u1 . . . um over Q24; it has symmetry I, see Lemma 2.1 and the the proof
of Proposition 3.1. We can also get a sequence of length 2u1 . . . um by composing
the above sequence of length 2u1 with a sequence of length u2 . . . um obtained from
Proposition 3.5. Another composition with S13, . . . , S19 yields a sequence of length
2vsu1 . . . um over Q24 with symmetry I. �

The results of this section produce several infinite sets of orders for WMs and
WTMs. Most of these orders are of the form 4n where n is divisible by some power of
2, whereas focus in the literature has mainly been on odd n, see the brief overview in
Appendix 3. (A notable exception is Seberry’s work, e.g. [26], where she considered
WTMs of order 8n.) As the list in Appendix A shows, results on new orders of
WTMs are scattered throughout the literature, and complete classifications only
exist for orders less than 100. It is therefore difficult to identify which are the
unknown orders of WMs and WTMs. However, since we focus on even n, most of
the orders we provide are new and lead to new WTMs. We note that our results are
not capable of showing that there exist WMs of order 8n with n ∈ {35, 47, 53, 59};
these odd n are of interest since it is known that there exist no WMs of order 4n.
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Appendix A

We summarise some results on WMs and WTMs, focusing on work that introduced
new orders of WTMs. Unless specified otherwise, these matrices have order 4n where
the parameter n is given below. For further reading on WMs and WTMs we refer to
[13, 29].

1944: Williamson [40] introduced WMs and constructed examples for all n � 21
and n = 25, 37, 43.

1965: Baumert et al. [3] found a WM for n = 23.

1965: Baumert and Hall [2] performed an exhaustive search for WMs with odd n ∈
{3, . . . , 23}; they introduced quaternion type HMs and described a construction that
generates, from a single WM, infinitely many quaternion type HMs with symmetric
but non-circulant blocks.

1972: Turyn [36] showed that for every prime power q ≡ 1 mod 4 there is a WM
with n = (q + 1)/2; this infinite family is known as Turyn type WMs.

1973: Whiteman [38] provided an alternative construction for Turyn type WMs.

1973: Seberry [25] proved that for every prime power q ≡ 1 mod 4 there is a WTM
with n = q(q + 1)/2 and non-circulant and non-symmetric blocks.

1974: Seberry [26] described two constructions for WMs with even order blocks;
she found new WMs for n = 2m with m ∈ {39, 203, 303, 333, 689, 915, 1603}. She
also described constructions for WTMs with n = 2m where 4m is the order of a
WTM, n = 2s(4s + 1) where 4s + 1 is a prime power and s ∈ {1, 3, 5, . . . , 25}, and
n = (q + 1)(q + 2) where q ≡ 1 mod 4 is a prime power such that 4(q + 1) the order
of a symmetric HM.

1975: Seberry [27] constructed a list of WTMs for n = 93, and n = s(4s − 1) and
n = s(4s+ 3) with s ∈ {1, 3, 5, . . . , 25}.
1967: Whiteman [39] presented a construction for WTMs of same order as Seberry’s
infinite family [25].

1977: Spence [34] used a recursive construction to show that for each prime power
q ≡ 1 mod 4 and each r � 0 there is a WTM with n = 2qr(q + 1) with symmetric
but non-circulant blocks.

1979: Yamada [43] introduced Williamson type j matrices and reported their ex-
istence for n = 29, 37, 41; they investigated Turyn type matrices of type j in their
1982 paper [44].

1981: Agayan and Sarukhanyan [1] described recursive formulas for the construction
of WTMs; they reported WTMs for n = 2m for certain m in the range 35, . . . , 3913.

1984: Turyn [37] showed the existence of WTMs with n = 9m and m ∈ N.

1985: Yamamoto and Yamada [22] introduced circulant quaternion Hadamard ma-
trices leading to WMs via Gauss sums.

1986: Seberry [28] reported WTMs with n = 363, 1183, 1805, 2601, 3174, 5103.
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1988: Koukouvinos and Kounias [16] found four non-equivalent classes of WMs for
n = 33.

1990: Seberry and Yamada [32] described a product construction for HMs using
so-called M-structures: WTMs of order 4u and 4v yield a WTM for n = 2uv. Let
q ≡ 1 mod 4 be a prime power. If (q+1)/2 is a prime power or (q+3)/2 is the order
of a symmetric conference matrix (see [7]), then there is a symmetric WTM with
n = (q+2); if there is a WTM with n = (q−1) or a HM of order (q−1)/2, then there
is a WTM for n = q. If there exist symmetric conference matrices of order (q− 1)/2
or a symmetric HM of order (q− 1)/2, then there is a symmetric WTM with n = q.
They also proved that under certain assumptions WTMs with n ∈ {q, q + 2, 2q + 1}
exist.

1990: Koukouvinos and Kounias [17] proved that there are no WMs for n = 39.

1991: Xia [41] proved the existence of WMs with n = tq2 for q ≡ 1 mod 4 a prime
power and t an integer in {2k+1 | 0 � k � 16}∪ {37, 59, 61, 67}∪ {2i · 10j · 26k +1 |
i, j, k � 0}.
1992: Doković [8] showed that there is one equivalence class of WMs for n = 29, 31,
respectively.

1992: Seberry and Yamada [33] discussed a construction for WTMs with symmetric
blocks based on Miyamoto’s work [21].

1993: Doković [9] determined, up to equivalence, all WMs with n = 33, 35, 39; he
showed that there is no WM for n = 35.

1995: Doković [10] determined, up to equivalence, all WMs with n = 25, 37.

1999: Schmidt [24] introduced WMs with group-invariant blocks and established
a correspondence to certain relative difference sets in non-abelian groups. He also
reported an infinite family of relative difference sets in certain dicyclic groups, sup-
porting Ito’s Conjecture on Hadamard groups [15].

2002: Horton et al. [14] constructed WMs with n = 41, 43, 45.

2003: Seberry et al. [31] constructed several WMs for certain odd parameters n � 63.

2005: Xia et al. [42] constructed WTMs with n = q2 for q ≡ 1 mod 4 a prime power.

2008: Holzmann et al. [12] determined, up to equivalence, all WMs with n =
35, 47, 53, 59; they proved there are no WMs for n = 47, 53, 59.

2012: Lang and Schneider [20] determined the equivalence classes of Turyn type
WMs up to n = 99.

2017: Seberry and Balonin [30] constructed two infinite families of HMs related to
WTMs (variation of signs in (1), called propus array).

2018: Barrera Acevedo and Dietrich [5] reported new families of WMs and Ito ma-
trices whose blocks are developed over abelian groups.
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[9] D. Ž. Doković, Williamson Matrices of Orders 4n for n = 33, 35, 39, Discrete Math.
115 (1993), 267–271.
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