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Connected odd factors of graphs
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Abstract

An odd factor of a graph is a spanning subgraph in which every vertex
has odd degree. Catlin [J. Graph Theory 12 (1988), 29–44] proved that
every 4-edge-connected graph of even order has a connected odd factor.
In this paper, we consider graphs of odd order, and show that for every
4-edge-connected graph G of odd order, there exists a vertex w such that
G−w has a connected odd factor. Moreover, we show that the condition
on 4-edge-connectedness in the above theorem is best possible.

1 Introduction

In this paper, we mainly deal with multigraphs, which may have multiple edges but
have no loops. A graph without multiple edges or loops is called a simple graph. Let
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G be a multigraph with vertex set V (G) and edge set E(G). The number of vertices
in G is called its order and denoted by |G|, and the number of edges in G is called
its size and denoted by e(G). The degree of a vertex v in G is denoted by degG(v).

An odd subgraph (respectively, even subgraph) of G is a subgraph in which every
vertex has odd degree (resp. positive even degree). A spanning odd subgraph of G
is called its odd factor, and a spanning even subgraph of G is called its even factor.
It follows immediately from the handshaking lemma that a connected multigraph
containing an odd factor has even order. This condition is also sufficient as shown
in Theorem 1 and Proposition 7. For a graph G, let odd(G) denote the number of
odd components (i.e., components of odd order) of G, and for a set S of integers, an
S-factor of G is a spanning subgraph F satisfying degF (v) ∈ S for all v ∈ V (F ).

Theorem 1 (Amahashi [1]). Let n be a positive odd integer. Then a multigraph G
has a {1, 3, . . . , n}-factor if and only if

odd(G− S) ≤ n|S| for all S ⊂ V (G).

In particular, every connected multigraph of even order has an odd factor (i.e., a
{1, 3, 5, . . .}-factor).

A multigraph having a connected even factor is called a supereulerian multi-
graph. A survey on supereulerian multigraphs is found in Catlin [3] and Kouider
and Vestergaad [8]. The following theorem gives a sufficient condition for a graph to
have a connected even factor, which was shown by using a well-known result on two
edge-disjoint spanning trees [10, 12].

Theorem 2 (Jaeger [7]). Every 4-edge-connected multigraph has a connected even
factor.

There are infinitely many 3-edge-connected cubic graphs (i.e., 3-regular graphs)
which have no Hamiltonian cycles. Since a connected even factor of a cubic graph
is a Hamiltonian cycle, the above fact says that there exist infinitely many 3-edge-
connected simple graphs which have no connected even factors.

Analogously, we focus on a connected odd factor in this paper. Catlin [2] proved
the following. In fact, he proved a stronger statement in terms of collapsible sub-
graphs.

Theorem 3 (Catlin [2], Theorem 2). Every 4-edge-connected multigraph of even
order has a connected odd factor.

We show that we cannot lower the edge-connectivity condition in Theorem 3 as
follows.

Proposition 4. There exist infinitely many 3-edge-connected simple graphs of even
order which have no connected odd factors.
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By the handshaking lemma, it is clear that every connected graph of odd order
has no odd factor, so when we deal with a connected graph G of odd order, we might
consider an odd factor in G− w for some vertex w. This motivates us to show our
main theorems.

Theorem 5. For every 4-edge-connected multigraph G of odd order, there exists a
vertex w such that G− w has a connected odd factor.

Theorem 6. There exist infinitely many 3-edge-connected simple graphs G of odd
order such that for every vertex v of G, G− v has no connected odd factor.

2 Proofs of Theorems

We begin with some other notations. Let G be a multigraph. Then let Veven(G) and
Vodd(G) denote the set of vertices of even degree and that of odd degree, respectively.
For a vertex set X of G, the subgraph of G induced by X is denoted by 〈X〉G. For
two disjoint vertex sets X and Y of G, the set of edges of G joining X to Y is denoted
by EG(X, Y ), and the number of edges of G joining X to Y is denoted by eG(X, Y ).
Thus eG(X, Y ) = |EG(X, Y )|.

For a positive integer k, a spanning k-regular subgraph of G is called a k-regular
factor or briefly a k-factor. For a vertex set T of G, a subgraph J of G is called a
T -join if Vodd(J) = T . The following is a well-known fact. As far as we know, it was
first proved in [6], but it appeared in several literatures, such as [2, Lemma 1].

Proposition 7. Let G be a connected multigraph and T ⊆ V (G). Then there exists
a T -join in G if and only if |T | is even.

We prove Proposition 4. It is known that the Petersen graph of order 10, denoted
by PG10, is a 3-edge-connected simple graph and does not have a Hamiltonian cycle
(see (1) of Figure 1). Let M be a simple graph of even order which has the following
property: M has three specified vertices v1, v2 and v3 such that the new graph M+u
obtained from M by adding a new vertex u together with three new edges uv1, uv2
and uv3 is 3-edge-connected. For example, every complete graph with even order
and every graph obtained from 3-edge-connected graph with odd order by removing
a vertex of degree 3 can be M . Two examples of graphs M are shown in (2) of
Figure 1.

Proof of Proposition 4. For every vertex x of the Petersen graph PG10, we replace x
with a graph M , that is, we delete x and add a graph M keeping the edges incident
to x in PG10 with new ends v1, v2 and v3. Note that such a graph M is denoted by
Mx since we can choose a graph M depending on x as shown in (3) of Figure 1. We
denote the resulting graph by G∗. Then G∗ has even order since every Mx has even
order, and G∗ is 3-edge-connected since both Mx + u and PG10 is 3-edge-connected.
Moreover, it is obvious that there are infinitely many such graphs G∗ since there are
infinitely many graphs M .
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We now show that G∗ has no connected odd factors. Suppose that G∗ has a
connected odd factor F . Then for every vertex x of PG10, we have

∑
v∈V (Mx)

degF (v) = eF

(
V (Mx), V (G∗)− V (Mx)

)
+ 2e

(〈V (Mx)〉F
)
.

Since F is an odd factor of G∗ and Mx has even order, it follows from the above
equality that η := eF

(
V (Mx), V (G∗) − V (Mx)

)
is even. Since F is a connected

factor, η is positive. We know that every edge of F joining V (Mx) to V (G∗)−V (Mx)
corresponds to an edge of the basis Petersen graph PG10. Hence η = 2 since PG10

is a cubic graph. Thus the set of edges of F joining V (Mx) to V (G∗) − V (Mx)
for all x ∈ V (PG10) forms a connected 2-factor of PG10, which is a Hamiltonian
cycle of PG10, but this contradicts the fact that PG10 has no Hamiltonian cycle.
Consequently Proposition 4 is proved. �

v1 v3v2

v1 v3v2

Mb

Ma

Mc

Mx

a

b

c

x

(1) (3)(2)

Figure 1: (1) The Petersen graph PG10 of order 10. (2) Two examples of graphs M .
(3) A graph G∗, which is obtained from PG10 by replacing each vertex x by a graph
Mx.

In order to prove Theorem 5, we use the following two theorems. The first theorem
was shown by using the result on two edge-disjoint spanning trees [10, 12].

Theorem 8 (Catlin [4], see [5]). Let k ≥ 1 be an integer and let G be a multigraph.
Then G is 2k-edge-connected if and only if for all X ⊆ E(G) with |X| ≤ k, G −X
has k edge-disjoint spanning trees.

A k-edge-connected multigraph G is said to be minimally k-edge-connected if for
every edge e of G, G− e is not k-edge-connected. Then the following holds.

Theorem 9 (Mader [9], Problem 49 of §6 in [11]). Let k ≥ 1 be an integer. Then
every minimally k-edge-connected graph has a vertex of degree k. In particular, every
k-edge-connected multigraph G has a k-edge-connected spanning subgraph H that has
a vertex of degree k in H.

We prove Theorem 5 by the similar arguments to those of Theorems 2 and 3,
using Theorems 8 and 9 efficiently.
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Proof of Theorem 5. By Theorem 9, G has a 4-edge-connected spanning subgraph
H that has a vertex w of degree 4 in H . Let X be a set of two edges incident with
w. By Theorem 8, H − X has 2 edge-disjoint spanning trees T ′

1 and T ′
2. Since w

has degree two in H − X, w is a leaf in both T ′
1 and T ′

2. Thus, T1 = T ′
1 − w and

T2 = T ′
2 − w are edge-disjoint spanning trees in H − w.

Then |Veven(T1)| is even (possibly V (T1) = ∅) since |T1| = |H−w| and |Vodd(T1)| =
|T1| − |Veven(T1)| are both even. By Proposition 7, T2 has a subgraph J such that
degJ(x) is odd for all x ∈ Veven(T1) and degJ(y) is even for every y ∈ V (J)−Veven(T1).
Then T1 ∪ J is a connected odd factor of H − w, which is obviously the desired
connected odd factor of G− w. �
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Figure 2: (1) A 3-edge-connected cubic graph G28 of order 28 with a specified vertex
z, which has no Hamiltonian path. (2) A connected spanning subgraph F of G∗ such
that degF (z), degF (y) ∈ {1, 3} and degF (x) = 2 for all x ∈ V (G28)− {y, z}.

We then prove Theorem 6, whose proof is similar to that of Proposition 4. Let
G28 be the cubic graph of order 28 shown in Figure 2. Since the Petersen graph is
3-edge-connected, so is G28. Then G28 has no Hamiltonian path.

Proof of Theorem 6. Let M be a graph of even order defined in the proof of Propo-
sition 4 (see (2) of Figure 1). Let z be the central vertex of G28 shown in Figure 2.
For every vertex x of G28 with x �= z, we replace x by a graph M , that is, we delete
x and add a graph M keeping the edges incident to x in G28 with new ends v1, v2
and v3. Note that such a graph M is denoted by Mx since we can choose a graph M
depending on x (see (3) of Figure 1). We denote the resulting graph by G∗∗. Then
G∗∗ has odd order since every Mx has even order, and G∗∗ is 3-edge-connected since
G28 and Mx are 3-edge-connected. It is obvious that there are infinitely many such
graphs G∗∗.

We now show that for every vertex w of G∗∗, G∗∗ − w has no connected odd
factor. Suppose that G∗∗ − w has a connected odd factor F for some vertex w.
We first assume that w is contained in some My, y ∈ V (G28) − {z}. For every
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x ∈ V (G28)− {y, z}, we have

∑
v∈V (Mx)

degF (v) = eF

(
V (Mx), V (G∗∗)− V (Mx)

)
+ 2e

(〈V (Mx)〉F
)
.

Since every vertex of Mx has odd degree in F and Mx has even order, it follows from
the above equality that ηx := eF

(
V (Mx), V (G∗∗) − V (Mx)

)
is even. Since F is a

connected factor, ηx is positive. Thus ηx = 2 since G28 is a cubic graph. Note that
degF (z) = 1 or 3. For My with w ∈ V (My), we have

∑
v∈V (My)−{w}

degF (v) = eF

(
V (My − w), V (G∗∗)− V (My − w)

)

+ 2e(〈V (My − w)〉F ).

Since every vertex of My − w has odd degree in F , and My − w has odd order, it
follows from the above equality that ηy := eF

(
V (My), V (G∗∗)−V (My)

)
is odd. Thus

ηy is 1 or 3.

We know that each edge of F joining V (Mx) to V (G∗∗) − V (Mx) for x ∈
V (G28) − {z} or joining z to V (G∗∗) − {z} corresponds to an edge of G28. Thus,
the set of edges of F joining V (Mx) to V (G∗∗)− V (Mx) for x ∈ V (G28)− {z}, and
joining z to V (G∗∗)− {z} forms a connected spanning subgraph F̃ of G28 such that
deg

˜F (z), deg ˜F (y) ∈ {1, 3} and deg
˜F (x) = 2 for all x ∈ V (G28)− {y, z}.

If deg
˜F (z) = 1 and deg

˜F (y) = 1, then F̃ must be a Hamiltonian path of G28,
which contradicts the fact that G28 has no Hamiltonian path. If deg

˜F (z) = 1 and

deg
˜F (y) = 3, then by removing one edge of F̃ incident with y not contained in the

path in F̃ connecting y and z, we obtain a Hamiltonian path of G28, a contradiction
(see the second graph of Figure 2 (2)). The same situation occurs when deg

˜F (z) = 3

and deg
˜F (y) = 1. Suppose that deg

˜F (z) = 3 and deg
˜F (y) = 3. Then F̃ is either

a spanning subgraph consisting of three edge disjoint paths connecting z and y, or
consisting of two disjoint cycles and a path internally disjoint from the cycles such
that one cycle contains z, the other contains y and the path connects z and y. We
choose two edges of F̃ so that one is incident with z, the other is incident with y,
and furthermore, the chosen edges are not contained in a same path in F̃ connecting
z and y in the former case, and the chosen edges are not contained in a path in F̃
connecting z and y in the latter case. By removing the chosen edges from F̃ , we
obtain a Hamiltonian path of G28, a contradiction (see the third graph and fourth
graph of Figure 2 (2)).

We then assume that w = z. In this case, by the same argument to show that
ηx = 2 in above, we obtain a Hamiltonian cycle F̃ of G28 − z by deg

˜F (x) = 2 for all
x ∈ V (G28 − z). This implies that G28 has a Hamiltonian path starting at z. This is
a contradiction. Consequently Theorem 6 is proved. �
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