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Abstract

A vector space partition P in F
v
q is a set of subspaces such that every

1-dimensional subspace of Fv
q is contained in exactly one element of P.

Replacing “1-dimensional” by “t-dimensional”, we generalize this notion
to vector space t-partitions and study their properties. There is a close
connection to subspace codes and some problems are interesting and un-
solved even for the set case q = 1.

1 Introduction

A vector space partition of Fv
q consists of subspaces such that every 1-dimensional

subspace is covered exactly once. As a natural extension we consider sets of subspaces
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such that every t-dimensional subspace is covered exactly once. For t ≥ 2 this leads
to questions that even remain unsolved for the set case q = 1. For q ≥ 2 there is a
close relation to constant-dimension or mixed-dimension subspace codes with respect
to the subspace distance. Having such a code at hand, intersecting every codeword
with a hyperplane gives an object that cannot be described as a mixed-dimension
subspace code in terms of the minimum subspace distance directly. However, our
generalization of a vector space partition captures this situation and yields non-trivial
upper bounds for constant-dimension subspace codes.

More precisely, let q > 1 be a prime power and v a positive integer. A vector space
partition P of Fv

q is a set of subspaces with the property that every non-zero vector
is contained in a unique member of P. If P contains md subspaces of dimension d,
then P is of type vmv . . . 1m1 . We may leave out dimensions with md = 0. Subspaces
of dimension 1 in P are called holes. The vector space partition consisting only of
holes and the vector space partition {Fv

q} are called trivial.
Here, we give a natural generalization of this notion. For a positive integer t,

we call a set P of subspaces of Fv
q a vector space t-partition, if all elements of P are

of dimension at least t and every t-dimensional subspace is contained in a unique
element of P. Ordinary vector space partitions are precisely the vector space t-
partitions with t = 1. Besides the simplicity of the proposed generalization, there
are some similarities that promise interesting applications. The class of vector space
t-partitions contains the q-analogs of a Steiner systems, which are given by the cases
where all elements of P have the same dimension. As a further generalization we
mention the possibility of replacing “contained in a unique member of P” by “con-
tained in exactly λ elements of P”, which would include subspace designs (q-analogs
of combinatorial designs). In the case t = 1, this has been considered in [13].

Let P be a non-trivial vector space partition of Fv
q with a non-empty set N of

holes, and k the second smallest dimension of the elements of P. Then, we have
#N ≡ #{N ∈ N : N ≤ H} (mod qk−1) for each hyperplane H of Fv

q . This con-
dition allows to conclude restrictions on #N independently of the dimension v of
the ambient space. Exploiting this congruence condition yields a series of improve-
ments [33, 38, 34] for the maximum size of a partial k-spread, which is the set of
the k-dimensional elements of a vector space partition of type kmk1m1 . The un-
derlying techniques can possibly be best explained using the language of projective
qk−1-divisible linear codes and the linear programming method, see [28].

In our more general setting of a non-trivial vector space t-partition P of F
v
q ,

the set N of its t-dimensional subspaces will play the role of the holes. If N �= ∅
and k > t is the second smallest dimension of the elements of P, we will prove
#N ≡ #{N ∈ N : N ≤ H} (mod qk−t) for each hyperplane H of Fv

q . Similarly,
we will study restrictions on #N independently of the dimension v of the ambient
space. Again some kind of linear programming method will be applied and partially
solved analytically.

The analog of partial k-spreads of maximum size are vector space t-partitions
of type kmktmt with maximum mk (for given parameters v and t), which have been
previously studied under the name (optimal) constant-dimension codes. Denoting
the maximum possible mk by Aq(v, 2k − 2t + 2; k), our main motivation for the
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introduction of vector space t-partitions are indeed the recent improvements of 257 ≤
A2(8, 6; 4) ≤ 289 to 257 ≤ A2(8, 6; 4) ≤ 272 [22] and finally A2(8, 6; 4) = 257 [23].
These parameters play a rather prominent role for constant-dimension codes, since,
besides A2(6, 4; 3) = 77 < 81 [27], all other known upper bounds for Aq(v, d; k), where
d /∈ {2k, 2v − 2k}, are obtained via the so-called Johnson bound and the existence
of divisible codes, see [30]. While the result of [22] is based on more than 1000 hours
computing time, we will apply similar techniques in order to computationally show
m3 ≤ 240 for all vector space 2-partitions of F

7
2 of type 4173m32m2 in less than

seventy hours. For a vector space 2-partition of F8
2 of type 4m42m2 that contains

17 4-dimensional elements in a common hyperplane or passing through a common
point, this directly implies m4 ≤ 257, i.e., meeting the lower bound of A2(8, 6; 4). In
the remaining cases, a direct counting argument gives A2(8, 6; 4) ≤ 272.

While the mentioned result is based on explicit computer computations for fixed
parameters, we have some hope that a more thorough study of vector space 2-
partitions may lead to an improvement of the currently best known bound Aq(8, 6; 4)

≤ (q4 + 1)
2
or of other parameters in general. To that end we will present the

first preliminary results on the existence of vector space t-partitions and the pos-
sible cardinalities of the corresponding set N of t-dimensional subspaces satisfying
#N ≡ #{N ∈ N : N ≤ H} (mod qk−t) for each hyperplane H of Fv

q .
There is another connection with constant-dimension codes. Let C be the set of k-

dimensional elements of a vector space (t+1)-partition of F2k
q of type (k+t)1k�(t+1)�,

where k > t+ 1 ≥ 1. Replacing each element in C by its dual, we obtain a constant-
dimension code in F

2k
q with minimum subspace distance 2k − 2t and cardinality #C

such that every codeword is disjoint from a (k − t)-dimensional subspace.
Vector space t-partitions of type kmktmt are also of interest for the set case, i.e.,

q = 1. In other words, we are considering sets of k-subsets of {1, 2, . . . , v} such that
every t-set is contained in exactly one k-set (or contained in at most one k-set, if
we anticipate the possible completion with t-sets). These structures are equivalent
to binary constant-weight codes with length v and minimum Hamming distance
d ≥ 2k − 2t+ 2. See e.g. [1, 2] for upper bounds on mk.

The classification of the possible types of vector space t-partitions is also an
interesting problem for q = 1. While it is trivial for t = 1 it is not completely
resolved for t = 2. In the latter case one speaks of pairwise balanced designs (with
index 1) or linear spaces, see e.g. [8, 11, 36]. In [41] in has been shown that there is
no set of triples covering each pair exactly once except a single uncovered pair.1 For
more results in that direction we refer to [26].

The remaining part of this article is structured as follows. In Section 2 we intro-
duce the preliminaries before we study the existence of vector space t-partitions in
Section 3. As a contained substructure, qr-divisible sets of t-subspaces are introduced
and studied in Section 4. We close with several open problems and a conclusion in
Section 5.

1There exist e.g. 6 triples and 6 quadruples of an 11-set leaving exactly one pair uncovered and
12 triples, 3 quadruples, and a quintuple of a 12-set leaving exactly two intersecting pairs uncovered.
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2 Preliminaries

We briefly call k-dimensional subspaces of Fv
q k-subspaces. 1-subspaces are called

points, 2-subspaces are called lines, 3-subspaces are called planes, 4-subspaces are
called solids, and (v − 1)-subspaces are called hyperplanes. The number of k-

subspaces in F
v
q is given by the Gaussian binomial coefficient

[
v
k

]
q
:=
∏k−1

i=0
qv−i−1
qk−i−1

.

Definition 2.1 Let t ∈ N>0. A vector space t-partition of Fv
q is a set P of subspaces

of Fv
q such that every t-subspace of Fv

q is contained in exactly one element of P and
all elements of P have dimension at least t (so that they are incident with at least
one t-subspace). We call P trivial if all elements either have dimension t or v. If P
contains mi elements of dimension t ≤ i ≤ v we call vmv(v − 1)mv−1 . . . tmt the type
of P, where imi can also be omitted if mi = 0.

As an example we consider vector space 2-partitions of F13
2 of type 31597245, which

correspond to 2-Steiner systems of planes in F
13
2 , whose existence has been proved in

[5]. The existence of a vector space 2-partition of F7
2 of type 3

381 is equivalent to the
existence of a binary q-analog of the Fano plane. If it exists it has an automorphism
group of order at most two [31, 6], the number of incidences between the blocks and
other k-subspaces are known [32], and not all sets of blocks incident with a point
can correspond to a Desarguesian line spread [20, 42]. Possible substructures of a
q-analog of the Fano plane presently trigger a lot of research, see e.g. [7, 15] and the
references therein. The maximum known value of m3 of a vector space 2-partition
of F7

2 of type 3m32m2 is m3 = 333 [25]. For general results on the existence of vector
space t-partitions of Fv

q of type s
mstmt , also known as (partial) (s, t)-spreads, we refer

the reader to e.g. [10, 37].
For two k-subspaces U,W in F

v
q the subspace distance is given by dS(U,W ) =

dim(U+W )−dim(U∩W ) = dim(U)+dim(W )−2 dim(U∩W ) = 2k−2 dim(U∩W ).

Definition 2.2 A constant-dimension code C of F
v
q of constant dimension k and

minimum subspace distance d is a set of k-subspaces such that the dimension of the
intersection of any pair of k-subspaces is at most 
k − d/2�. By Aq(v, d; k) we denote
the corresponding maximum size, i.e., the number of k-subspaces.

Each vector space t-partition P of Fv
q of type kmktmt is in 1-to-1-correspondence

to a constant-dimension code C = {U ∈ P : dim(U) = k} with minimum distance
at least 2k − 2t + 2, so that mk ≤ Aq(v, 2k − 2t + 2; k). Note that by duality
we have Aq(v, d; k) = Aq(v, d; v − k). For known bounds, we refer to the online
table http://subspacecodes.uni-bayreuth.de [24]. As an example for constant-
dimension codes we would like to mention lifted maximum rank distance (MRD)
codes, see [9, 16, 39].

Theorem 2.3 (see [40]) For positive integers k, d, v with k ≤ v, d ≤ 2min{k, v−k},
and d ≡ 0 (mod 2), the size of a lifted MRD code C of k-subspaces in F

v
q with

minimum distance at least d is given by

M(q, k, v, d) := qmax{k,v−k}·(min{k,v−k}−d/2+1).

http://subspacecodes.uni-bayreuth.de
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Moreover, there exists a (v−k)-dimensional subspace U of Fv
q such that every element

of C has trivial intersection with U . The set of (min{k, v − k} − d/2 + 1)-subspaces
that is disjoint to U is perfectly covered by the codewords.

Corollary 2.4 For non-negative integers k, t, v with k ≥ t + 2 and v ≥ 2k − t + 1,
there exists a vector space (t+1)-partition of Fv

q of type (v−k+ t)1km(t+1)�, where
logq m = max{k, v − k} · (min{k, v − k} − k + t+ 1).

Proof. Consider a lifted MRD code C of k-subspaces in F
v
q with minimum distance

d = 2k − 2t. Let U be the (v − k)-subspace that has trivial intersection with
the elements from C. Add a (v − k + t)-subspace containing U , and complete the
construction by adding uncovered (t + 1)-subspaces. �

We remark that the construction also works for v = 2k− t, where we obtain a vector
space (t+ 1)-partition of Fv

q of type km+1(t+ 1)� with m = qk.

3 Existence of vector space t-partitions

In this section we will study the possible types of vector space t-partitions of Fv
q for

small dimensions v. Here we will assume t ≥ 2 and refer to the survey [19] for the
case t = 1. From that paper we also transfer the first conditions on the parameters
mi of a vector space t-partition P of Fv

q of type kmk . . . tmt . Since every t-subspace
is contained in a unique element in P, we have

k∑
i=t

mi ·
[
i

t

]
q

=

[
v

t

]
q

, (1)

which is called packing condition in [19] for t = 1. This equation allows us to
suppress the precise value of mt as done in Corollary 2.4. Due to the dimension
formula dim(U + V ) = dim(U) + dim(V ) − dim(U ∩ V ), for any two subspaces U
and V of Fv

q , we have

mi ≤ 1 if 2i > v + t− 1 and mimj = 0 if i+ j > v + t− 1 (2)

for t ≤ i < j ≤ v. The specialization to t = 1 is called dimension condition in [19].
Known constructions of vector space t-partitions are given by lifted MRD codes.

If P is a vector space t-partition of Fv
q , U an element of P, and P ′ a vector space

t-partition of U , then (P\U)∪P ′ is also a vector space t-partition of Fv
q . We call P ′

derived from P, matching the definition of a derived vector space partition for t = 1.
From equations (1) and (2) we conclude that for t ≤ v ≤ t+ 1 each vector space

t-partition P of Fv
q is trivial, i.e., either P = {Fv

q} – type v1 – or P is given by

the
[
v
t

]
q
t-subspaces of Fv

q . In the following we will consider the non-trivial vector

space t-partitions only. For v = t+ 2 the dimension condition allows mt+1 = 1 only,

so that the packing condition gives type (t + 1)1t[
t+2
t ]q−[

t+1
t ]q . Here, P consists of

an arbitrary (t + 1)-subspace U and all t-subspaces not contained in U . So far, all
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discussed cases are unique up to isomorphism. For v = t + 3 we get mt+2 ≤ 1 and

mt+2mt+1 = 0 so that we can have type (t+2)1t
[t+3

t ]q−[
t+2
t ]q or type (t+1)mt+1tmt . In

the latter case we have mt+1 ≤ Aq(t+3, 4; t+1) = Aq(t+3, 4; 2). The corresponding
objects to mt+1 = Aq(t + 3, 4; t + 1) = Aq(t + 3, 4; 2) are so-called (partial) line
spreads of maximum size. If t is odd, then Aq(t + 3, 4; 2) = (qt+3 − 1) /(q2 − 1),
and Aq(t + 3, 4; 2) = (qt+3 − q2(q − 1)− 1) /(q2 − 1) otherwise, see e.g. [3]. Here,
there are several isomorphism types in general. So, using derived vector space t-

partitions, in F
t+3
q there exist vector space t-partitions of type (t+1)it

[t+3
t ]q−i[t+1

t ]q for
all 0 ≤ i ≤ Aq(t + 3, 4; 2). For v = t + 4 we conclude from the dimension condition
that only the types (t+3)1t�, (t+2)1(t+1)at�, and (t+1)bt� might be possible for a
non-trivial vector space t-partition. In the latter case we have b ≤ Aq(t+4, 4; t+1) =
Aq(t + 4, 4; 3). Since the current knowledge on Aq(t + 4, 4; 3) is rather limited, we
mention the known bounds for t = 2 only: A2(6, 4; 3) = 77 with precisely 5 attaining
isomorphism types and q6 + 2q2 + 2q + 1 ≤ Aq(6, 4; 3) ≤ (q3 + 1)

2
= q6 + 2q3 + 1 for

q ≥ 3, see [27]. For type (t + 2)1(t + 1)at� Corollary 2.4 gives a construction with
a = q2t+2, which is tight for t = 2.

Lemma 3.1 If P is a vector space 2-partition of Fv
q of type (v − k + 1)1ka2�, where

k ≥ 3 and v ≥ 2k, then a ≤ q2(v−k).

Proof. Let U be the unique (v−k+1)-subspace of P. The number of lines disjoint
from U is given by

[
v

2

]
q

−
[
v − k + 1

2

]
q

− 1

q
·
[
v − k + 1

1

]
q

·
([

v

1

]
q

−
[
v − k + 1

1

]
q

)

= q2(v−k) · q
2k−1 − qk+1 − qk + q2

(q2 − 1)(q − 1)
.

Since each k-subspace K of P intersects U in exactly one point and the number of
lines in K disjoint from a given point is given by[

k

2

]
q

−
[
k − 1

1

]
q

=
q2k−1 − qk+1 − qk + q2

(q2 − 1)(q − 1)
,

we have a ≤ q2(v−k). �

So the size of the construction from Corollary 2.4 is met for all cases where t ∈ {0, 1}.
For t = 0 the upper bound follows from counting the k-subspaces disjoint to a
(v − k)-subspace. Removing the (v − k)-subspace gives precisely the lifted MRD
codes with corresponding parameters. For t = 1 the construction of Corollary 2.4
is far from being unique. We remark that the five isomorphism types of constant-
dimension codes meeting the upper bound A2(6, 4; 3) = 77 each contain subsets of
64 codewords that intersect a fixed solid in precisely a point. Moreover, there are
exactly four isomorphism types of 64 planes that intersect a fixed solid in precisely
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a point. The three ones that do not equal the lifted MRD code have automorphism
groups of orders 24, 16, and 12, respectively, and all can be extended to a constant-
dimension code of cardinality 77. Lemma 3.1 is also valid for the set case q = 1,
where it is tight.

For v ≥ t + 5 the situation gets rather involved, so that we assume t = 2 and
v = 7 in the remaining part of this section. The dimension condition allows just
the following types: 612�, 513m̃32�, 4m43m32�, and 3m̄32�, where m̄3 ≤ Aq(7, 4; 3)
with e.g. 333 ≤ A2(7, 4; 3) ≤ 381 and 6978 ≤ A3(7, 4; 3) ≤ 7651, see [24]. For
the other parameterized cases we have m4 ≤ Aq(7, 6; 4) = Aq(7, 6; 3) = q4 + 1 and
m̃3 ≤ q8, which is tight, see Corollary 2.4 and Lemma 3.1. Now, let us first look at
constructions for the two maximal values for m4.

Lemma 3.2 For each prime power q ≥ 2 there exist vector space 2-partitions of F7
q

of type 4m43m32� with

(m4, m3) =
(
q4 + 1, q8 − q4

)
and (m4, m3) =

(
q4, q8 − q4 + q2 + q + 1

)
.

Proof. Let C8 be a lifted MRD code of q8 solids in F
8
q with minimum distance 6

and U be the unique solid having trivial intersection to the elements from C8. For an
arbitrary hyperplaneH of F8

q that does not contain U we set C7 := {V ∩H : V ∈ C8},
so that C7 consists of q4 solids and q8 − q4 planes. If S is an arbitrary solid in H
that contains U ∩ H , then C7 ∪ S together with the uncovered lines of H gives a
vector space 2-partition of H with type 4q

4+13q
8−q42�. For the other case, consider

r =
[
3
1

]
q
<
[
4
1

]
q
arbitrary solids S1, . . . , Sr in H containing U ∩ H . Denoting the[

3
2

]
q
= r lines contained in U ∩ H by L1, . . . , Lr, we choose r planes E1, . . . , Er

such that Li ⊆ Ei ⊆ Si. With this, C7 ∪ {Ei : 1 ≤ i ≤ r} can be completed
by the uncovered lines to a vector space 2-partition of H of type 4m43m32� with
(m4, m3) = (q4, q8 − q4 + q2 + q + 1). �

With respect to upper bounds for m3 we consider the objects of P that are
incident to a given point P . Modulo P we obtain vector space partitions of F6

2 of
type 3m̄32m̄21�. The possible types have been completely classified, see e.g. [19]. If
m̄3 = 3j + r with j ∈ N and r ∈ {0, 1, 2}, then m̄2 ≤ 21− 5r + r2 − 7j =: f(m̄3).

Lemma 3.3 If P is a vector space 2-partition of F7
2 of type 4

m43m32�, then m3 ≤ 240
if m4 = 17 and m3 ≤ 276 if m4 = 16.

Proof. Let S be a set of 16 or 17 solids in F
7
2 pairwise intersecting in a point. By

dualization we obtain a set of 16 or 17 planes in F
7
2 with trivial intersection. Those

configurations have been classified up to symmetry in [29]. Given all possible choices
for S, we develop an integer linear programming formulation for the maximization of
m3. For each plane E in F

7
2 we introduce a variable xE ∈ {0, 1} with E ∈ P iff xE = 1,

so that m3 =
∑

E≤F7
2
xE . If L is a line of F7

2 that is contained in an element of S,
then we have

∑
L≤E≤F7

2
xE = 0 and

∑
L≤E≤F7

2
xE ≤ 1 otherwise. The LP relaxation of

the current formulation can be further improved by adding
∑

P≤E≤F7
2
xE ≤ f(τ(P )),
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where P is a point in F
7
2 and τ(P ) counts the number of elements of S that contain

P . Given S we denote the corresponding integer linear programming formulation by
ILPS and its LP relaxation by LPS .

For #S = 17 it took 7 minutes to compute the 715 linear programs LPS . Except
10 cases, all of them have a target value strictly less than 240. In exactly one case
a target value of 240 can be attained for ILPS , which took less than 66 hours to
verify computationally. For #S = 16 we computed the 14445 instances LPS leaving
just 28 cases with a target value of at least 247. It took 6 h to verify that ILPS has
a target value of at most 276 for these 28 instances. After 99 h there remain just
7 instances which may yield a target value strictly greater than 247, i.e., the lower
bound given by Lemma 3.2. �

Let ai denote the number of points of F7
2 that are contained in exactly i solids of

S. We remark that for #S = 17, we can easily deduce a1 = 7, a2 = 112, and a3 = 8,
so that m3 ≤ 7·f(1)+112·f(2)+8·f(3)

7
= 273. For #S < 17 even less information on the ai

is sufficient to establish a competitive upper bound for m3.

Lemma 3.4 If P is a vector space 2-partition of F7
2 of type 4m43m32�, then m3 ≤

381−
⌈
m4(61−m4)

7

⌉
.

Proof. Let ai denote the number of points of F7
2 that are contained in exactly i

of the m4 solids of P. Counting points gives
∑

i≥0 ai =
[
7
1

]
2
= 127 and

∑
i≥0 iai =[

4
1

]
2
m4 = 15m4. Since every pair of solids of P intersects in exactly one point,

we additionally have
∑

i≥0 i(i − 1)ai = m4(m4 − 1). With this and the definition

of the function f ,
⌊
1
7

∑
i≥0 f(i) · ai

⌋
is an upper bound for m3. Next we maximize∑

i≥0 f(i) ·ai for non-negative integers ai satisfying the three equations stated above.
Since Lemma 3.3 gives a stronger bound than m3 ≤ 274 for m4 = 17, we can assume
m4 ≤ 16 in the following. From the last two equations we conclude

a1 = m4(16−m4) +
∑
i≥3

i(i− 2)ai ≥
∑
i≥3

(2i− 3)ai,

so that a1 ≥ 2l − 3 if al ≥ 1 for some l ≥ 3. We claim that ai = 0 for all i ≥ 3
in an optimal solution. Assume al ≥ 1 for some l ≥ 3. Now, we modify the given
ai-vector by decreasing al by 1, increasing al−1 by 1, increasing a2 by l−1, decreasing
a1 by 2l− 3 and increasing a0 by l− 2. The resulting vector (a′0, a

′
1, . . . ) satisfies the

three equations and has non-negative integer entries. By this operation the value of∑
i≥0 f(i) · ai increases by f(l − 1)− f(l) + 2l − 6 ≥ f(l − 1)− f(l) ≥ 1. Thus, the

optimal solution is given by a2 =
(
m4

2

)
, a1 = m4(16−m4), and a0 = 127− m4(31−m4)

2

with ⌊
1

7

∑
i≥0

f(i) · ai
⌋
=

⌊
1

7
· (m2

4 − 61m4 + 2667
)⌋

= 381−
⌈
m4(61−m4)

7

⌉
.

�
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We remark that Lemma 3.4 gives m3 ≤ 278 for m4 = 16. Summarizing the binary
case q = 2, we have the following bounds for maxm3:

m4 17 16 15 14 13 12 11 10 9
maxm3 240 247. . . 276 248. . . 282 249. . . 287 252. . . 291 273. . . 297 274. . . 302 275. . . 308 276. . . 314

m4 8 7 6 5 4 3 2 1 0
maxm3 284. . . 320 285. . . 327 286. . . 333 287. . . 341 291. . . 348 297. . . 356 300. . . 364 312. . . 372 333. . . 381

The upper bounds are obtained from Lemma 3.3 and Lemma 3.4. Lemma 3.2 gives
constructions for m4 ∈ {16, 17}. The construction for m4 = 0 is taken from [25]. For
m4 ∈ {1, 2, 3, 4, 8, 12, 13} the stated lower bounds are obtained from an integer linear
programming formulation with prescribed subgroups of the automorphism group, i.e.,
the Kramer–Mesner approach. All other lower bounds are obtained by replacing a
solid by a plane contained in the solid.

4 qr-divisible sets of t-subspaces

Besides the conditions of Equation (1) and Equation (2), there is another technique
for excluding the existence of (ordinary) vector space partitions, which just takes
into account the second smallest occurring dimension. To this end, let P be a non-
trivial vector space partition of Fv

q , N �= ∅ be its set of holes2, i.e., 1-dimensional
elements, and k be the second smallest dimension of the elements of P. Then, we have
#N ≡ #{N ∈ N : N ≤ H} (mod qk−1) for each hyperplane H of Fv

q . Assigning a
weight w(H) ∈ N to every hyperplane H via wN (H) := #N −#{N ∈ N : N ≤ H},
we can say that the weights of the hyperplanes are divisible by qk−1. So, we also
call the set N of points qk−1-divisible. The possible cardinalities of qr-divisible sets
of points, or equivalently the length of qr-divisible linear codes, see [28], are quite
restrictive. This approach allows to exclude the existence of vector space partitions
without knowing the precise values of themi or the dimension v of the ambient space.
The asymptotic result on the maximal cardinality of partial spreads from [38] can e.g.
be obtained using qr-divisible sets of points, see [34]. However, there are some rare
cases where the existence of a vector space partition was excluded with more involved
techniques, see e.g. [12] for the exclusion of a vector space partition of type 4133626

in F
8
2. Nevertheless, the classification of all possible cardinalities of qr-divisible sets

of points is an important relaxation. So far, in the binary case, the classification is
complete for r ≤ 2 only, see [28, Theorem 13], while there is a single open case for
r = 3. A general result for small cardinalities but arbitrary parameters q and r was
obtained in [28, Theorem 12], see Theorem 5.1. For each pair of parameters there
is a largest integer F(q, r), called Frobenius number, such that no qr-divisible set of
points of cardinality F(q, r) exists, see e.g. [21] for some bounds. For qr-divisible
multisets of points the possible cardinalities have been completely characterized in
[30].

The aim of this section is to generalize the notion of qr-divisible sets of points to
qr-divisible sets of t-subspaces and to deduce restrictions for the possible cardinalities
of such sets.

2In, e.g., [18] the author speaks of the tail of the vector space partition and considers lower
bounds for its length, i.e., the cardinality of N .
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Definition 4.1 Let C be a set of t-subspaces in F
v
q . We call C qr-divisible if #C ≡

#{C ∈ C : C ≤ H} (mod qr) for all hyperplanes H of Fv
q .

The link between qr-divisible sets of t-subspaces and vector space t-partitions is
given by:

Proposition 4.2 Let P be a non-trivial vector space t-partition of Fv
q with mi = 0

for all t < i < k, then the set N of t-subspaces of P is qk−t-divisible.

Proof. Using the convention
[
l−1
0

]
q
= 1, we have

[
l
t

]
q
− [l−1

t

]
q
=
[
l−1
t−1

]
q
· ql−t, which

is divisible by qk−t for all l ≥ k. Note that we have v > k since P is non-trivial.
Counting the t-subspaces of Fv

q gives
∑v−1

i=k mi

[
i
t

]
q
+ #N =

[
v
t

]
q
. Now, let H be an

arbitrary hyperplane of Fv
q , N ′ be the set of elements of N that are contained in

H , and P ′ := {U ∩ H : U ∈ P, dim(U) ≥ k} ∪ N ′ be a vector space t-partition
of H of type (v − 1)m

′
v−1 . . . (k − 1)m

′
k−1(t)#N ′

, where we allow t = k − 1, slightly
abusing notation. With this, we have

∑v−1
i=k−1m

′
i

[
i
t

]
q
+#N ′ =

[
v−1
t

]
q
. By subtracting

both equations we conclude that qk−t divides #N −#N ′ since each i-subspace in P
with i ≥ k corresponds either to an i-subspace or an (i− 1)-subspace in P ′ and qk−t

divides
[
l
t

]
q
− [l−1

t

]
q
for l ≥ k. �

In the following let N be a qr-divisible set of t-subspaces in F
v
q with minimal v,

i.e., N is not completely contained in any hyperplane. By ai we denote the number
of hyperplanes H of Fv

q with #{N ∈ N : N ≤ H} = i and set n := #N . Double-
counting the incidences of the tuples (H) and (B,H), where H is a hyperplane and
B ∈ N with B ≤ H gives:

n−1∑
i=0

ai =

[
v

1

]
q

and

n−1∑
i=0

iai = n ·
[
v − t

1

]
q

. (3)

For two different elements B1, B2 of N their span 〈B1, B2〉 has a dimension i between
t + 1 and 2t. Denoting the number of corresponding ordered pairs by bi, double-
counting gives:

n−1∑
i=0

i(i− 1)ai =

2t∑
i=t+1

bi

[
v − i

1

]
q

and

2t∑
i=t+1

bi = n(n− 1). (4)

As a first non-existence criterion we state:

Lemma 4.3 For a non-empty qr-divisible set N of t-subspaces in F
v
q , there exists a

hyperplane H with #{N ∈ N : N ≤ H} < n/qt, where n = #N .

Proof. Let i be the smallest index with ai �= 0. Then, the equations of (3) are
equivalent to

∑
j≥0 ai+qrj =

[
v
1

]
q
and

∑
j≥0 (i+ qrj) · ai+qrj = n

[
v−t
1

]
q
. Subtracting i

times the first equation from the second equation gives
∑

j>0 q
rjai+qrj = n · qv−t−1

q−1
−

i · qv−1
q−1

. Since the left-hand side is non-negative, we have i ≤ qv−t−1
qv−1

· n < n
qt
. �
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The proof of Lemma 4.3 expresses the simple fact that a hyperplane with the
minimum number of t-subspaces in N contains at most as many t-subspaces as the
average number of t-subspaces in N per hyperplane. Lemma 4.3 excludes e.g. the
existence of q-divisible sets N of t-subspaces in F

v
q of a cardinality n ∈ [1, q − 1].

Next we turn to constructions of qr-divisible sets of t-subspaces. For t = 1 each
k-subspace and each affine k-subspace, i.e., the difference of a (k + 1)-subspace and
a contained k-subspace, yields a qk−1-divisible set. With this, the next lemma shows
that a qr-divisible set of t-subspaces of cardinality qr+1 exists for all integers r, t ≥ 1.

Lemma 4.4 Let N be a qr-divisible set of t-subspaces in F
v
q such that qr divides

#N . Then, for each s ∈ N there exists a qr-divisible set N ′ of (t + s)-subspaces in
F
v+s
q .

Proof. Assume s ≥ 1, choose an s-subspace U in F
v+s
q such that Fv

q ⊕ U = F
v+s
q ,

and set N ′ = {U +N : N ∈ N}. �

Lemma 4.5 For integers t ≥ 1 and a ≥ 2 let N be a t-spread in F
at
q , i.e., a set of

qat−1
qt−1

disjoint t-subspaces. Then N is q(a−1)t-divisible.

Proof. Since any point in F
at
q is contained in a unique member of N and x · [t

1

]
q
+(

qat−1
qt−1

− x
)
· [t−1

1

]
q
=
[
at−1
1

]
q
for x = q(a−1)t−1

qt−1
, every hyperplane contains exactly x

elements from N . The divisibility follows from qat−1
qt−1

− q(a−1)t−1
qt−1

= q(a−1)t. �

We remark that t-spreads exist for all values of t, a, and q. Examples can e.g. be
obtained from the so-called subfield construction, i.e., taking all

[
a
1

]
qt
= qat−1

qt−1
points

in F
a
qt considering Fqt as a t-dimensional vector space over Fq.

Lemma 4.6 For integers t ≥ 1, s ≥ 0, and a ≥ 2 let N be a union of qs disjoint
t-spreads S1, . . . ,Sqs in F

at
q , i.e., Si ∩Sj = ∅ for i �= j. Then N is q(a−1)t+s-divisible.

Proof. For each hyperplane H and each index 1 ≤ i ≤ qs we have #Si ≡ #{U ∈
Si : U ≤ H} (mod q(a−1)t) due to Lemma 4.5. The result follows from #N = qs·#S1

and #{U ∈ N : U ≤ H} ≡ qs ·#{U ∈ S1 : U ≤ H} (mod q(a−1)t+s). �

In F
at
q there can be at most

[
at
t

]
q
· [t

1

]
q
/
[
at
1

]
q
pairwise disjoint t-spreads, which is just

the number of t-subspaces of Fat
q divided by the number of t-subspaces of a t-spread.

If that upper bound is reached one speaks of a t-parallelism. These are known to exist
for (v = at, t, q) in {(2a, 2, 2), (2i, 2, q), (6, 2, 3), (6, 3, 2)} for all integers a, i ≥ 2, see
e.g. [14] and the cited references therein. So far, no non-existence result is known. If
the stated upper bound on the number of t-spreads is not met, one speaks of a partial
t-parallelism. For the maximum number p(v, t, q) of pairwise disjoint t-spreads in F

v
q ,

the lower bounds p(2a, 2, q) ≥ q2�log(2a−1)� + · · · + q + 1, p(at, t, q) ≥ 2t − 1, and
p(at, t, q) ≥ 2, where a ≥ 2, are proven in [4] and [14].

Next we present a lower bound on the cardinality of a non-empty qr-divisible set
of t-subspaces:
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Theorem 4.7 Let t ≥ 2 and r ≥ 1 be integers and N �= ∅ be a qr-divisible set of
t-subspaces in F

v
q , where v is minimal.

(i) If qr divides #N , then #N ≥ qr+1.

(ii) If #N is not divisible by qr, then #N ≥ qt+1 and #N ≥ qr+ q(κ−1)t−1
qt−1

·qr−(κ−1)t,

where κ is the smallest positive integer satisfying qκt−1
qt−1

≥ qr.

Proof.

(i) Assume #N = lqr for some positive integer l. Setting Δ = qr, y = qv−t−1, and
ci = ai(q− 1) for all 0 ≤ i ≤ #N − 1, the equations from (3) are equivalent to

l−1∑
i=0

ciΔ = qt+1y − 1 and
l−1∑
i=0

i(Δ− 1)ciΔ = l(Δ− 1) (qy − 1) .

From Equation (4) we conclude

l(lΔ− 1)(q−t+1y − 1) ≤
l−1∑
i=0

i(iΔ− 1)ciΔ ≤ l(lΔ− 1)(y − 1),

so that

l(Δ− 1) (qy − 1) =
l−1∑
i=0

i(Δ− 1)ciΔ ≤
l−1∑
i=0

i(iΔ− 1)ciΔ ≤ l(lΔ− 1)(y − 1).

Since l ≥ 1, we have (Δ−1) (qy − 1) ≤ (lΔ−1)(y−1), so that qΔ+Δy+ y ≤
2Δ + qy for l ≤ q − 1. Since q ≥ 2 and Δ ≥ q, we obtain y ≤ 0, which is a
contradiction. Thus, l ≥ q and #N ≥ qr+1.

(ii) Assume #N = lqr +x with 0 < x < qr for some integers x, l. Lemma 4.3 gives
#N ≥ qt + 1 and from the divisibility we conclude l ≥ 1, so that we assume
l = 1 in the following. With this, Δ = qr, and y = qv−t, the equations from (3)
are equivalent to

x(q − 1)ax = x
(
qty − 1

)
and x(q − 1)ax = (x+Δ)(y − 1),

so that Δ/y = x + Δ − xqt and 0 ≤ v − t ≤ r. Isolating x gives (qt − 1) x =

(y− 1) · Δ
y
= Δ ·

(
1− 1

y

)
, which implies that qt − 1 divides y− 1, i.e., t divides

v, and that x is increasing with y. So, let v = κ · t for some positive integer κ

with (κ− 1)t ≤ r. Then, x = q(κ−1)t−1
qt−1

· qr−(κ−1)t is increasing with κ. Of course

#N ≤ [v
1

]
q
/
[
t
1

]
q
, so that qr ≤ qκt−1

qt−1
.

�
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The construction of Lemma 4.4 and the remark before Lemma 4.4 show that (i) is
tight. If r ≤ t, then the first part of (ii) is tight due to the construction of Lemma 4.5
with a = 2. If t-parallelisms exist for all parameters (the dimension v has of course
to be divisible by t), then also the second part of (ii) is tight. The construction of
Lemma 4.6 shows that also a weaker assumption suffices for this claim.

We remark that Theorem 4.7 generalizes a theorem on the so-called length of the
tail of a vector space partition, originating from [17], for the special case t = 1, where
the k-subspaces automatically are disjoint.

Theorem 4.8 ([35, Theorem 10]) For a non-empty qr-divisible set N of pairwise
disjoint k-subspaces in F

v
q the following bounds on n = #N are tight.

(i) We have n ≥ qk + 1 and if r ≥ k then either k divides r and n ≥ qk+r−1
qk−1

or

n ≥ q(a+2)k−1
qk−1

, where r = ak + b with 0 < b < k and a, b ∈ N.

(ii) Let qr divide n. If r < k then n ≥ qk+r − qk + qr and n ≥ qk+r otherwise.

Aiming at characterizations of all possible cardinalities of qr-divisible sets of t-
subspaces it is useful to collect some more constructions. Taking the set of all
t-subspaces gives another construction of divisible sets of t-subspaces.

Lemma 4.9 For integers t ≥ 1 and v ≥ t + 1 the set N of all t-subspaces of Fv
q is

qv−t-divisible.

Proof. We have
[
v
t

]
q
− [v−1

t

]
q
=
[
v−1
t−1

]
q
· qv−t. �

The set of achievable cardinalities of qr-divisible sets of t-subspaces is closed under
addition:

Lemma 4.10 Let N1 and N2 be qr-divisible sets of t-subspaces in F
v1
q and F

v2
q , re-

spectively. Then, there exists a qr-divisible set of t-subspaces in F
v1
q ⊕ F

v2
q

∼= F
v1+v2
q

with cardinality #N1 +#N2.

In many cases an ambient space of dimension smaller than v1 + v2 is sufficient.

5 Conclusion and open problems

Vector space t-partitions have many properties in common with ordinary vector space
partitions, so that this class forms an interesting generalization. We have presented
a few initial results on the existence of vector space t-partitions and their relaxation
to qr-divisible sets of t-subspaces. Only scratching the surface in this paper, we close
with some open problems.

While Lemma 3.1 gives an upper bound on the cardinality of constant-dimension
codes of dimension k in F

2k
q with subspace distance 2k − 2 such that the codewords

are disjoint from a (k + 1)-subspace U , the underlying question is more general.
What about t > 1 in Lemma 3.1? If we forgo the link to vector space t-partitions
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via duality, we can ask for an upper bound on the cardinality of constant-dimension
codes of dimension k in F

v
q with subspace distance d such that the codewords are

disjoint from an s-subspace U . For the parameters q = 2, v = 7, k = 3, d = 4, and
s = 3 the corresponding LMRD gives an example of cardinality 256. So far we are
only able to prove an upper bound of 290.3 So, we ask for tighter bounds in this
specific case and for the general problem.

In Section 4 we have seen that the set of holes of a vector space t-partition has to
be a qr-divisible set of t-subspaces. This significantly restricts the possible types of
vector space t-partitions and raises the question how tight the resulting restrictions
are. For q = 1, the condition of qr-divisibility is trivially satisfied in all cases. Indeed,
we are not aware of any example of a hole configurationN of t-subsets which provably
is not realizable as a vector space t-partition for q = 1, i.e., a partition of the set of
t-subsets of a set V such that all parts of size t are given by N .

Having determined the minimum possible cardinality of a qr-divisible set of t-
subspaces, for many parameters with t ≥ 2, in Theorem 4.7, one can ask for the
spectrum of possible cardinalities. For t = 1 the following is known:

Theorem 5.1 ([28, Theorem 12]) For the cardinality n of a qr-divisible set C of
1-subspaces over Fq we have

n /∈
[
(a(q − 1) + b)

[
r + 1

1

]
q

+ a+ 1, (a(q − 1) + b+ 1)

[
r + 1

1

]
q

− 1

]
,

where a, b ∈ N0 with b ≤ q − 2, a ≤ r − 1, and r ∈ N>0.
In other words, if n ≤ rqr+1, then n can be written as a

[
r+1
1

]
q
+ bqr+1 for some

a, b ∈ N0.

For q = 2, t = 2, and r = 1 we remark that the possible cardinalities are given
by N≥4. Examples of cardinality 4 and 6 are given by Lemma 4.4, Lemma 4.5 gives
a construction for cardinality 5, and Lemma 4.9 gives a construction for cardinal-
ity 7, so that Lemma 4.10 continues these constructions to all cardinalities in N≥8.
For other parameters there are gaps in the sets of possible cardinalities. For which
parameters can these sets be completely determined? What is the second small-
est cardinality? Can Theorem 5.1 be generalized, i.e., for which ranges do integer
combinations of two base constructions explain all possible cardinalities? What is
the largest cardinality n such that no qr-divisible set of t-subspaces of cardinality n
exists? This number was called Frobenius number for the special case t = 1 in [28].
Determine bounds on the Frobenius number.

Almost the same questions can be asked for vector space t-partitions. As for
ordinary vector space partitions, the classification of all possible types is indeed a
very hard problem if the dimension is not too small. However, for vector space t-
partitions in F

7
2 some improvements of the presented results seem to be achievable.

3Since no vector space partition of F6
2 of type 3121812 exists, every point P (outside of U) can

be contained in at most 17 planes, which implies an upper bound of 
(127− 7) · 17/7� = 291. This
upper bound can not be attained, since otherwise the argument from [30] gives a 4-divisible multiset
of 3 points, which does not exist.
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Triggered by the motivating example of A2(8, 6; 4) < 289, we ask for a computer-
free proof of Aq(8, 6; 4) < (q4 + 1)

2
. Nevertheless having just a very tiny numerical

evidence, we state the following two rather strong conjectures in order to stimulate
the search for counter examples.

Conjecture 5.2 Aq(2k, 2k − 2; k) = q2k + 1 for each k ≥ 4.

We remark that the conjecture is true for the set case q = 1, while A1(6, 4; 3) =
2 = 16 + 1 (slightly abusing notation).

Conjecture 5.3 If P is a vector space 2-partition of F2k−1
q of type kqk+1(k−1)mk−12�,

then mk−1 ≤ q2k − qk for all k ≥ 4.

Again the conjecture is true for the set case q = 1.

References

[1] E. Agrell, A. Vardy and K. Zeger, Upper bounds for constant-weight codes, IEEE
Trans. Inform. Theory 46 (7) (2000), 2373–2395.

[2] M. Best, A. Brouwer, F. MacWilliams, A. Odlyzko and N. J.A. Sloane, Bounds for
binary codes of length less than 25, IEEE Trans. Inform. Theory 24 (1) (1978), 81–93.

[3] A. Beutelspacher, Partial spreads in finite projective spaces and partial designs,
Math. Z. 145(3) (1975), 211–229.

[4] A. Beutelspacher, Partial parallelisms in finite projective spaces, Geom. Dedicata
36 (2-3) (1990), 273–278.
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