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Andrea Švob
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Abstract

In this paper we construct transitive t-designs, for t ≥ 2, and strongly
regular graphs from the Mathieu group M11. We classify transitive t-
designs with 11, 12 and 22 points admitting a transitive action of Mathieu
group M11. The most important result of this classification is proving the
existence of a 3-design with parameters 3-(22, 7, 18). Additionally, we
prove the existence of 2-designs with certain parameters having 55 and
66 points. Furthermore, we classify strongly regular graphs on at most
450 vertices admitting a transitive action of the Mathieu group M11.

1 Introduction

We assume that the reader is familiar with the basic facts of group theory, design
theory and theory of strongly regular graphs. We refer the reader to [1, 23] for
relevant background reading in design theory, to [5, 21] for relevant background
reading in group theory, and to background reading in theory of strongly regular
graphs we refer the reader to [1, 2, 23].

An incidence structure is an ordered triple D = (P,B, I) where P and B are
non-empty disjoint sets and I ⊆ P ×B. The elements of the set P are called points,
the elements of the set B are called blocks and I is called an incidence relation. If
|P| = |B|, then the incidence structure is called symmetric. The incidence matrix
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of an incidence structure is a v × b matrix [mij ] where v and b are the numbers of
points and blocks respectively, such that mij = 1 if the point Pi and the block xj

are incident, and mij = 0 otherwise. An isomorphism from one incidence structure
to another is a bijective mapping of points to points and blocks to blocks which
preserves incidence. An isomorphism from an incidence structure D onto itself is
called an automorphism of D. The set of all automorphisms forms a group called
the full automorphism group of D and is denoted by Aut(D).

A t-(v, k, λ) design is a finite incidence structure D = (P,B, I) satisfying the
following requirements:

1. |P| = v;

2. every element of B is incident with exactly k elements of P;

3. every t elements of P are incident with exactly λ elements of B.
The elements of the set P are called points, and the elements of the set B are called
blocks. Blocks can be regarded as subsets of the set of points. A t-design is called
simple if it does not have repeated blocks. 2-designs are called block designs. If D
is a t-design, then it is also an s-design, for 1 ≤ s ≤ t − 1. Hence every t-design,
for t ≥ 2, is a block design. A simple 2-design having

(
v
k

)
blocks is called complete.

2-designs which are not complete are often called balanced incomplete block designs
(BIBDs). BIBDs have a wide range of applications, e.g. in experimental design,
software testing, coding theory and cryptography. We say that a t-(v, k, λ) design D
is a quasi-symmetric design with intersection numbers x and y (x < y) if any two
blocks of D intersect in either x or y points.

A graph is regular if all the vertices have the same degree; a regular graph is
strongly regular of type (v, k, λ, μ) if it has v vertices, degree k, and if any two adja-
cent vertices are together adjacent to λ vertices, while any two non-adjacent vertices
are together adjacent to μ vertices. A strongly regular graph of type (v, k, λ, μ) is
usually denoted by SRG(v, k, λ, μ).

We say that an incidence structure I is transitive if an automorphism group of
I acts transitively on points and blocks. A transitive incidence structure I is called
primitive if an automorphism group acts primitively on points and blocks.

Further, we say that a graph Γ is transitive (primitive) if an automorphism group
acts transitively (primitively) on the set of vertices of the graph Γ and that a graph
is edge-transitive if an automorphism group acts transitively on the set of edges of
the graph.

A flag of a design is an incident pair (point, block). We say that a t-design is
flag-transitive if an automorphism group acts transitively on the set of flags of the
design.

One of the main problems in design theory is classifying structures with given
parameters or/and with a given automorphism group. In this paper we consider t-
designs, t ≥ 2, admitting a transitive action of the Mathieu group M11 on points and
blocks. Construction of transitive designs from finite simple groups gives additional
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information on the group acting on a design, which is interesting from the group
theoretical point of view. To our best knowledge, this is the first time that the
simple group M11 was taken into consideration for the construction of combinatorial
structures in a way described in this paper.

In this paper we consider t-designs and strongly regular graphs constructed from
the Mathieu group M11. The group M11 is the simple group of order 7920, the
smallest of five Mathieu simple groups, and up to conjugation it has 39 subgroups
given in Table 1. Using the method introduced in [8], we classify all t-designs on
11, 12 or 22 points on which the group M11 acts transitively on points and blocks.
Additionally, we obtain numerous transitive designs, under the action ofM11, for v =
55, 66. In many cases we prove the existence of 2-designs with certain parameters.
We also prove the existence of a 3-(22, 7, 18) design. In addition, we classify all t-
designs, for t ≥ 2, on which the group M11 acts flag-transitively. This can be seen as
a contribution to the sections in the Handbook of Combinatorial Designs on t-designs
with t ≥ 3 by Khosrovshahi and Laue and to the section on t-designs with t = 2 by
Kreher (references [14, 16]). All the designs obtained in this paper are simple.

Further, we construct strongly regular graphs on 55, 66, 144 or 330 vertices
admitting a transitive action of the simple group M11. The strongly regular graphs
constructed have been known before, but constructed in a different way.

Generators of the group M11 are available on the Internet:

http://brauer.maths.qmul.ac.uk/Atlas/ .

All the structures are obtained by using programs written for Magma [4]. The designs
having 11, 12 or 22 points can be found at the link:

http://www.math.uniri.hr/∼asvob/M11designs.txt .

The strongly regular graphs constructed in this paper can be found at the link:

http://www.math.uniri.hr/∼asvob/SRGs M11.txt .

The paper is organized as follows. In Section 2 we describe the method of con-
struction of transitive designs used in this paper, and in Section 3 we describe com-
binatorial structures constructed under the action of the Mathieu group M11.

2 The method of construction

The method for constructing transitive incidence structures was presented in [10].
Further research of the construction of primitive symmetric 1-designs and regular
graphs for which the stabilizer of a point and the stabilizer of a block are conjugate
is given in [11], [12] and [13]. In [8], a construction of not necessarily primitive, but
still transitive, block designs is presented.

Theorem 1 ([8]) Let G be a finite permutation group acting transitively on the sets
Ω1 and Ω2 of size m and n, respectively. Let α ∈ Ω1 and Δ2 =

⋃s
i=1 δiGα, where

Gα = {g ∈ G | αg = α} is the stabilizer of α and δ1, . . . , δs ∈ Ω2 are representatives
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of distinct Gα-orbits on Ω2. If Δ2 �= Ω2 and

B = {Δ2g : g ∈ G},

then D(G,α, δ1, . . . , δs) = (Ω2,B) is a 1-(n, |Δ2|, |Gα|
|GΔ2

|
∑s

i=1 |αGδi|) design with m·|Gα|
|GΔ2

|
blocks. The group H ∼= G/

⋂
x∈Ω2

Gx acts as an automorphism group on (Ω2,B),
transitively on points and blocks of the design.

If Δ2 = Ω2 then the set B consists of one block, and D(G,α, δ1, . . . , δs) is a design
with parameters 1-(n, n, 1).

If a group G acts t-homogeneously on the set Ω2, then the design obtained,
(Ω2,B), is a t-design (see [8]).

The construction described in Theorem 1 gives us all simple designs on which
the group G acts transitively on the points and blocks; i.e. if G acts transitively on
the points and blocks of a simple 1-design D, then D can be obtained as described
in Theorem 1. It follows from [6, Proposition 1.3.] that the group H acts flag-
transitively on the design (Ω2,B) if and only if the base block Δ2 is a single Gα-orbit.

If a group G acts transitively on Ω, α ∈ Ω, and Δ is an orbit of Gα, then
Δ′ = {αg | g ∈ G, αg−1 ∈ Δ} is also an orbit of Gα. Here Δ′ is called the orbit of
Gα paired with Δ. It is obvious that Δ′′ = Δ and |Δ′| = |Δ|. If Δ′ = Δ, then Δ is
said to be self-paired.

Corollary 1 If Ω1 = Ω2 and Δ2 is a union of self-paired and mutually paired orbits
of Gα, then the design D(G,α, δ1, . . . , δs) is a symmetric self-dual design and the
incidence matrix of that design is the adjacency matrix of a |Δ2|−regular graph.

Using Theorem 1 and Corollary 1 from [8], we construct t-designs and strongly
regular graphs from the Mathieu group M11. Additionally, combining the method
given in Theorem 1 with the results presented in [6, Proposition 1.3.] we obtain all
flag-transitive designs from the Mathieu group M11.

The method of constructing designs and regular graphs described in Theorem 1
is a generalization of results presented in [7, 11, 12]. Using Corollary 1, one can
construct all regular graphs admitting a transitive action of the group G, but we will
be interested only in those regular graphs that are strongly regular.

For further details about implementing the construction and obtaining the results,
including the isomorph rejection, we refer the reader to [9].

3 Combinatorial structures from M11

The Mathieu group M11 is a simple group of order 7920, and up to conjugation it has
39 subgroups. It is the smallest sporadic group and acts 4-transitively on 11 points.
There are five simple Mathieu groups, introduced by Emile Mathieu in [17, 18, 19]
and M11 is the smallest among all Mathieu groups. The t-designs arising from the
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Mathieu groups M22, M23 and M24 have been studied in work by Kramer, Magliveras
and Mesner (see [15]), but those arising from M11 in the way described in this paper
have not been explored so far.

In Table 1 we give the list of all the subgroups, up to conjugation, and some of
their properties. Since each transitive action of a group G is permutation isomorphic
to an action of G on cosets of its subgroup, the indices of the subgroups in Table 1
give us degrees of all transitive actions of the group M11.

Subgroup Structure Order Index Subgroup Structure Order Index

H1 I 1 7920 H21 Z5 : Z4 20 396
H2 Z2 2 3960 H22 SL(2, 3) 24 330
H3 Z3 3 2640 H23 S4 24 330
H4 Z4 4 1980 H24 E9 : Z4 36 220
H5 E4 4 1980 H25 E9 : Z4 36 220
H6 Z5 5 1584 H26 S3 × S3 36 220
H7 S3 6 1320 H27 GL(2, 3) 48 165
H8 S3 6 1320 H28 Z11 : Z5 55 144
H9 Z6 6 1320 H29 A5 60 132
H10 Q8 8 990 H30 A5 60 132
H11 D8 8 990 H31 E9 : Q8 72 110
H12 Z8 8 990 H32 (S3 × S3) : Z2 72 110
H13 E9 9 880 H33 E9 : Z8 72 110
H14 D10 10 792 H34 S5 120 66
H15 Z11 11 720 H35 (E9 : Z8) : Z2 144 55
H16 A4 12 660 H36 A6 360 22
H17 D12 12 660 H37 PSL(2, 11) 660 12
H18 QD16 16 495 H38 A6.Z2 720 11
H19 E9 : Z2 18 440 H39 M11 7920 1
H20 Z3 × S3 18 440

Table 1: Subgroups of the group M11

Generators of all subgroups presented in Table 1 are given in the Appendix.

3.1 t-designs with v ≤ 22

In this section we give all t-designs with at most 22 points on which the group M11

acts transitively. The designs are obtained from the group M11 by using Theorem 1.
In that case, the stabilizers of points are subgroups of M11 having the indices 11,
12 and 22. The list of all designs obtained is given in Table 2. In each table we
give the parameters of the constructed structures, the number of non-isomorphic
structures and their full automorphism group. The group M11 acts 4-transitively on
11 points, hence all designs obtained by Theorem 1 on 11 points are 4-designs. The
designs marked with ∗ are flag-transitive. Additionally, we have obtained two more
flag-transitive designs that are not mentioned in Table 2, the complements of the
designs with parameters 4-(11, 5, 1) and 3-(12, 4, 3).
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Parameters of designs # of blocks # non-isomorphic Full automorphism group

3-(11, 3, 1)∗ 165 1 S11

4-(11, 4, 1)∗ 330 1 S11

4-(11, 5, 1)∗ 66 1 M11

4-(11, 5, 6)∗ 396 1 M11

3-(12, 3, 1)∗ 220 1 S12

3-(12, 4, 6)∗ 330 1 M11

3-(12, 4, 3)∗ 165 1 M11

3-(12, 5, 6)∗ 132 1 M11

3-(12, 5, 30) 660 1 M11

3-(12, 6, 2)∗ 22 1 M11

3-(12, 6, 10)∗ 110 1 M11

5-(12, 6, 6) 792 1 M12

2-(22, 7, 36) 396 1 M11

2-(22, 7, 180) 1980 1 M11

2-(22, 7, 360) 3960 3 M11

2-(22, 7, 720) 7920 2 M11

3-(22, 7, 18) 792 1 M11 × Z2

3-(22, 7, 90) 3960 3 M11 × Z2

3-(22, 7, 180) 7920 1 M11

Table 2: t-designs constructed from the group M11, v ≤ 22

Remark 1 We proved the existence of a 3-(22, 7, 18) design, since it is the first
known example of the design with these parameters. The 2-designs with 22 points
having parameters (22, 7, 36) and (22, 7, 180) from Table 2 are not mentioned in [20]
since r > 41. To the best of our knowledge, the designs with these parameters
have not been known before. The Steiner system 4-(11, 5, 1) is known as the Witt
design W11. For further information on W11 we refer the reader to [25, 26]. The t-
designs having the parameters of other transitive t-designs described in Table 2 were
previously known. For further information on quasi-symmetric 3-(12, 6, 2) we refer
the reader to [22], and for others known designs mentioned in Table 2 see [14, 20].

3.2 BIBDs with v = 55

In this section we give all 2-designs with 55 points on which the group M11 acts
transitively. Note that there are no t-designs with v = 55 and t ≥ 3 on which M11

acts transitively. The designs are obtained from the group M11 by using Theorem 1.
In that case, the stabilizer of a point is a subgroup of M11 having index 55. The
list of all designs obtained is given in Table 3. In Table 3 we give the parameters of
the constructed structures, the number of non-isomorphic structures and their full
automorphism group.
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Parameters of block designs # non-isomorphic Full automorphism group

2-(55, 3, 4) 1 M11

2-(55, 3, 8) 1 M11

2-(55, 4, 8) 1 M11

2-(55, 4, 16) 7 M11

2-(55, 6, 10) 1 M11

2-(55, 6, 20) 2 M11

2-(55, 6, 40) 67 M11

2-(55, 7, 14) 1 M11

2-(55, 7, 28) 5 M11

2-(55, 7, 56) 115 M11

2-(55, 9, 8) 1 M11

2-(55, 9, 32) 10 M11

2-(55, 9, 48) 23 M11

2-(55, 9, 64) 16 M11

2-(55, 9, 96) 632 M11

2-(55, 10, 12) 2 M11

2-(55, 10, 20) 1 M11

2-(55, 10, 24) 4 M11

2-(55, 10, 40) 8 M11

2-(55, 10, 48) 6 M11

2-(55, 10, 60) 27 M11

2-(55, 10, 80) 9 M11

2-(55, 10, 120) 1647 M11

2-(55, 12, 44) 5 M11

2-(55, 12, 88) 43 M11

2-(55, 12, 176) 6025 M11

2-(55, 13, 104) 81 M11

2-(55, 13, 208) 9086 M11

2-(55, 15, 56) 6 M11

2-(55, 15, 112) 8 M11

2-(55, 15, 140) 53 M11

2-(55, 15, 280) 23748 M11

2-(55, 16, 80) 3 M11

2-(55, 16, 160) 93 M11

2-(55, 16, 320) ≥ 8500 M11

2-(55, 18, 68) 2 M11

2-(55, 18, 102) 8 M11

2-(55, 18, 136) 39 M11

2-(55, 18, 204) 215 M11

2-(55, 18, 272) 161 M11

2-(55, 18, 408) ≥ 20162 M11

2-(55, 19, 152) 18 M11

2-(55, 19, 228) 173 M11

2-(55, 19, 304) 376 M11

2-(55, 19, 456) ≥ 15310 M11

2-(55, 21, 140) 9 M11

2-(55, 21, 280) 249 M11

2-(55, 21, 560) ≥ 14250 M11

2-(55, 22, 308) 220 M11

2-(55, 22, 616) ≥ 18400 M11

2-(55, 24, 184) 8 M11

2-(55, 24, 368) 256 M11

2-(55, 24, 736) ≥ 12100 M11

2-(55, 25, 200) 8 M11

2-(55, 25, 320) 25 M11

2-(55, 25, 400) 445 M11

2-(55, 25, 800) ≥ 12800 M11

2-(55, 27, 78) 1 S11

2-(55, 27, 234) 8 M11

2-(55, 27, 312) 56 M11

2-(55, 27, 468) 308 M11

2-(55, 27, 624) 626 M11

2-(55, 27, 936) ≥ 16905 M11

Table 3: BIBDs constructed from M11, v = 55
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Remark 2 Designs from Table 3 are not mentioned in [20] since r > 41. To our best
knowledge they have not been known before, so we proved the existence of 2-designs
with the parameters listed in Table 3. The design with parameters 2-(55, 4, 8) is
flag-transitive.

3.3 BIBDs with v = 66

In this section we give all 2-designs with 66 points on which the group M11 acts
transitively. Note that there is no t-designs with v = 66 and t > 2 on which M11

acts transitively. The designs are obtained from the group M11 by using Theorem 1.
In that case, the stabilizer of a point is subgroup of M11 having the index 66.

In Table 4 we give the parameters of the constructed structures, the number of
non-isomorphic structures and their full automorphism group.

Parameters of block designs # non-isomorphic Full automorphism group

2-(66, 13, 36) 1 M11

2-(66, 13, 48) 13 M11

2-(66, 13, 72) 43 M11

2-(66, 13, 96) 79 M11

2-(66, 13, 144) ≥ 1210 M11

2-(66, 14, 56) 6 M11

2-(66, 14, 84) 33 M11

2-(66, 14, 112) 105 M11

2-(66, 14, 168) ≥ 223 M11

2-(66, 26, 100) 2 M11

2-(66, 26, 120) 2 M11

2-(66, 26, 200) 33 M11

2-(66, 26, 240) 4 M11

2-(66, 26, 300) 159 M11

2-(66, 26, 400) 1799 M11

2-(66, 26, 600) ≥ 8910 M11

2-(66, 27, 36) 1 M11

2-(66, 27, 72) 1 M11

2-(66, 27, 216) 60 M11

2-(66, 27, 324) 49 M11

2-(66, 27, 432) 412 M11

2-(66, 27, 648) ≥ 7913 M11

Table 4: BIBDs constructed from M11, v = 66

Remark 3 Designs from Table 4 are not mentioned in [20] since r > 41. As far as
we know, they were not known before, so we proved the existence of 2-designs with
the parameters listed in Table 4.
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3.4 Strongly regular graphs

Using the method described in Theorem 1 and Corollary 1, we have obtained all
regular graphs with at most 450 vertices admitting a transitive action of the group
M11. Using a computer search we have obtained strongly regular graphs on 55, 66,
144 or 330 vertices. Finally, we give the full automorphism groups of the constructed
SRGs.

Theorem 2 Up to isomorphism there are exactly 5 strongly regular graphs with at
most 450 vertices, admitting a transitive action of the group M11. These strongly
regular graphs have parameters (55, 18, 9, 4), (66, 20, 10, 4), (144, 55, 22, 20),
(144, 66, 30, 30) and (330, 63, 24, 9). Details about the strongly regular graphs obtained
are given in Table 5.

Graph Γ Parameters Aut(Γ)

Γ1 (55,18,9,4) S11

Γ2 (66,20,10,4) S12

Γ3 (144,55,22,20) M11

Γ4 (144,66,30,30) M12 : Z2

Γ5 (330,63,24,9) S11

Table 5: SRGs constructed from the Mathieu group M11

Remark 4 The graphs Γ1 and Γ2 are the triangular graphs T (11) and T (12), re-
spectively. Strongly regular graphs with parameters (144, 55, 22, 20), (144, 66, 30, 30)
and (330, 63, 24, 9) have been known before (see [2, 3]). The adjacency matrix of
a SRG(144, 66, 30, 30) is the incidence matrix of a symmetric design with parame-
ters (144, 66, 30), a design with Menon parameters (related to a regular Hadamard
matrix of order 144). This symmetric design is described in [24]. The group M11

does not act flag transitively on that symmetric (144, 66, 30) design, since the base
block is the union of Gα-orbits (see Theorem 1). However, the Mathieu group M12

acts flag transitively on that symmetric (144, 66, 30) design. Consequently, the group
M12 acts edge-transitively on the constructed SRG(144, 66, 30, 30), while the Math-
ieu group M11 does not. The SRG(330, 63, 24, 9) is the distance 1 or 4 graph in the
Johnson graph J(11, 4). The Johnson graph J(11, 4) can also be constructed from
the Mathieu group M11 using Theorem 1. The strongly regular graphs Γ1,Γ2,Γ3 and
Γ4 are edge-transitive with respect to their full automorphism group. Additionally,
the same holds for the complements of the graphs Γ1 and Γ2.
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Appendix

In this section we give generators of the subgroups of M11 described in Section 3,
Table 1, as permutations on 11 points.

H1 =I

H2 =〈(1, 3)(2, 11)(4, 9)(6, 7)〉
H3 =〈(1, 3, 10)(2, 7, 4)(6, 11, 9)〉
H4 =〈(1, 7, 2, 4, 6)(3, 11, 8, 10, 9)〉
H5 =〈(1, 7, 3, 11, 4, 6, 5, 8, 9, 10, 2)〉
H6 =〈(1, 3)(2, 9)(4, 11)(8, 10), (1, 3)(2, 11)(4, 9)(6, 7)〉
H7 =〈(2, 11)(3, 6)(4, 10)(8, 9), (2, 6, 11, 3)(4, 8, 10, 9)〉
H8 =〈(2, 7, 11)(3, 8, 10)(4, 9, 6), (1, 5)(2, 11)(3, 10)(4, 6)〉
H9 =〈(2, 3)(6, 9)(7, 10)(8, 11), (2, 7, 11)(3, 8, 10)(4, 9, 6)〉
H10 =〈(1, 9)(2, 3)(5, 6)(8, 10), (1, 10, 6)(4, 11, 7)(5, 9, 8)〉
H11 =〈(1, 8, 9)(2, 10, 3)(4, 11, 6), (1, 4, 10)(2, 9, 6)(3, 8, 11)〉
H12 =〈(1, 7, 2, 4, 6)(3, 11, 8, 10, 9), (1, 7)(2, 6)(3, 11)(8, 9)〉
H13 =〈(1, 11, 9, 10, 8)(2, 6, 4, 5, 3), (1, 7, 3, 11, 4, 6, 5, 8, 9, 10, 2)〉
H14 =〈(2, 11)(3, 6)(4, 10)(8, 9), (2, 6, 11, 3)(4, 8, 10, 9), (2, 8, 11, 9)(3, 10, 6, 4)〉
H15 =〈(1, 11)(2, 7)(3, 6)(9, 10), (1, 7)(2, 11)(4, 8)(9, 10), (2, 7)(3, 9)(4, 8)(6, 10)〉
H16 =〈(1, 11, 7, 8, 4, 6, 10, 9)(2, 3), (1, 4)(6, 11)(7, 10)(8, 9), (1, 7, 4, 10)(6, 9, 11, 8)〉
H17 =〈(1, 7, 8)(2, 4, 11)(3, 6, 10), (1, 3)(2, 9)(4, 11)(8, 10), (1, 3)(2, 11)(4, 9)(6, 7)〉
H18 =〈(1, 6)(2, 3)(5, 9)(7, 11), (1, 9)(2, 3)(5, 6)(8, 10), (1, 10, 6)(4, 11, 7)(5, 9, 8)〉
H19 =〈(2, 11)(3, 6)(4, 10)(8, 9), (1, 8, 9)(2, 10, 3)(4, 11, 6), (1, 4, 10)(2, 9, 6)(3, 8, 11)〉
H20 =〈(1, 5)(2, 6)(3, 9)(7, 10), (1, 3, 10)(4, 11, 8)(5, 9, 7), (1, 11, 9)(3, 8, 7)(4, 5, 10)〉
H21 =〈(2, 11)(3, 6)(4, 10)(8, 9), (2, 4, 11, 10)(3, 8, 6, 9), (1, 8, 6, 3, 9)(2, 4, 10, 11, 7)〉
H22 =〈(2, 3)(6, 9)(7, 10)(8, 11), (1, 11, 4, 6)(7, 9, 10, 8), (1, 4)(6, 11)(7, 10)(8, 9),

(1, 7, 4, 10)(6, 9, 11, 8)〉
H23 =〈(3, 6, 10)(4, 9, 8)(5, 11, 7), (1, 6, 2, 7)(3, 10, 11, 5), (1, 11, 2, 3)(5, 6, 10, 7),

(1, 2)(3, 11)(5, 10)(6, 7)〉
H24 =〈(1, 11)(2, 7)(3, 6)(9, 10), (1, 7)(2, 11)(4, 8)(9, 10), (1, 2, 8)(3, 10, 9)(4, 11, 7),

(2, 7)(3, 9)(4, 8)(6, 10)〉
H25 =〈(2, 11)(3, 6)(4, 10)(8, 9), (1, 4, 10)(2, 9, 6)(3, 8, 11), (2, 4, 11, 10)(3, 8, 6, 9),

(1, 6, 3)(2, 8, 4)(9, 11, 10)〉
H26 =〈(2, 11)(3, 6)(4, 10)(8, 9), (1, 4, 10)(2, 9, 6)(3, 8, 11), (1, 6, 3)(2, 8, 4)(9, 11, 10),

(2, 8, 11, 9)(3, 10, 6, 4)〉
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H27 =〈(1, 5)(2, 6)(3, 9)(7, 10), (1, 3, 10)(4, 11, 8)(5, 9, 7), (1, 5)(3, 7)(4, 11)(9, 10),
(1, 11, 9)(3, 8, 7)(4, 5, 10)〉

H28 =〈(1, 5)(2, 7)(3, 8)(4, 9), (1, 2, 11)(3, 4, 9)(6, 8, 10)〉
H29 =〈(1, 7, 2)(3, 4, 10)(6, 8, 9), (2, 10)(3, 11)(4, 6)(7, 8)〉
H30 =〈(3, 5)(6, 7)(8, 9)(10, 11), (3, 6, 10)(4, 9, 8)(5, 11, 7), (1, 6, 2, 7)(3, 10, 11, 5),

(1, 11, 2, 3)(5, 6, 10, 7), (1, 2)(3, 11)(5, 10)(6, 7)〉
H31 =〈(2, 11)(3, 6)(4, 10)(8, 9), (1, 4, 10)(2, 9, 6)(3, 8, 11), (2, 6, 11, 3)(4, 8, 10, 9),

(1, 6, 3)(2, 8, 4)(9, 11, 10), (2, 8, 11, 9)(3, 10, 6, 4)〉
H32 =〈(1, 5)(2, 6)(3, 9)(7, 10), (1, 3, 10)(4, 11, 8)(5, 9, 7), (1, 5)(3, 7)(4, 11)(9, 10),

(1, 4, 5, 11)(3, 9, 7, 10), (1, 11, 9)(3, 8, 7)(4, 5, 10)〉
H33 =〈(1, 7, 11, 9, 5, 3, 4, 10)(2, 6), (1, 3, 10)(4, 11, 8)(5, 9, 7), (1, 5)(3, 7)(4, 11)(9, 10),

(1, 4, 5, 11)(3, 9, 7, 10), (1, 11, 9)(3, 8, 7)(4, 5, 10)〉
H34 =〈(1, 4)(3, 9)(5, 8)(6, 7), (1, 7, 6, 5, 4, 8)(2, 10, 9)(3, 11)〉
H35 =〈(1, 6)(2, 3)(5, 9)(7, 11), (1, 11, 5)(3, 6, 8)(4, 9, 10)〉
H36 =〈(1, 5)(2, 6)(3, 9)(7, 10), (1, 3, 5, 7)(4, 10, 11, 9), (1, 3, 10)(4, 11, 8)(5, 9, 7),

(1, 5)(3, 7)(4, 11)(9, 10), (1, 4, 5, 11)(3, 9, 7, 10), (1, 11, 9)(3, 8, 7)(4, 5, 10)〉
H37 =〈(1, 7)(2, 11)(4, 8)(9, 10), (1, 10, 8, 3)(2, 7, 9, 6)〉
H38 =〈(1, 8)(2, 6)(3, 4)(10, 11), (1, 6, 8, 7)(2, 10, 9, 3)〉
H39 =〈(1, 2)(4, 5)(6, 11)(8, 10), (1, 6, 9, 4)(3, 8, 7, 11)〉
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