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Abstract

We give a new combinatorial proof that the coefficient of the power sym-
metric function pμ in the Schur symmetric function sλ can be expressed in
terms of rim hook tableaux (the Murnaghan-Nakayama rule). Two other
known identities involving the coefficient of pμ in the homogeneous sym-
metric function hλ and the coefficient of pμ in the elementary symmetric
function eλ are proved in similar ways.

1 Introduction

Let sλ be the Schur symmetric function corresponding to the integer partition λ � n
and let pλ be the power symmetric function corresponding to λ. Since the sets
{sλ : λ � n} and {pλ : λ � n} are bases for symmetric functions of degree n, there
are coefficients χλ

μ such that

pμ =
∑
λ�n

χλ
μsλ (1)

for all μ � n. A theorem of Frobenius says that χλ
μ is the value of the irreducible

character of the symmetric group Sn corresponding to λ on the conjugacy class Cμ

of permutations with cycle type μ.
The Murnaghan-Nakayama rule is a method of finding the values of χλ

μ by under-
standing combinatorial objects called rim hook tableaux (also known as border strip
tableaux). This rule can be found in the work of Littlewood and Richardson [2] and
in the work of Murnaghan [8] before the rule was independently found by Nakayama
[9].

Together with the Frobenius formula, the Murnaghan-Nakayama rule has become
a standard method for finding χλ

μ. It appears in most treatments of symmetric
functions and the representation theory of the symmetric group. There are two
proofs traditionally given for the rule; one is found in either [6, 11] and the other in
either [1, 10]. The latter proof uses more machinery from representation theory than
the former.
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More recent proofs include a remarkable proof using labeled abaci [4, 5] and a
combinatorial proof that uses the Pieri rules [3, 13]. These proofs are recounted in
[7].

The Schur basis {sλ : λ � n} is orthonormal with respect to the Hall inner
product. This inner product also satisfies

〈pλ, pμ〉 =
{
zλ if λ = μ,

0 otherwise,

where zλ = n!/|Cλ|. Thus using Eq. (1), the coefficient of pμ in sλ is equal to
〈sλ, pμ/zμ〉 = χλ

μ/zμ, showing that Eq. (1) is equivalent to the identity

sλ =
∑
μ�n

χλ
μ

pμ
zμ

. (2)

We will provide an alternative proof of Eq. (2), thereby providing an alternative
route to the Murnaghan-Nakayama rule. Here we are interpreting χλ

μ as a signed sum
of rim hook tableaux (as opposed to interpreting it as the value of an irreducible
character). An impetus for this work was a question posed to the author by Jeff
Remmel when they were working on [7]. This paper is dedicated to his memory.

There are several advantages to our approach:

1. Our ideas are purely combinatorial, using straightforward sign reversing invo-
lutions and bijections.

The amount of mathematical overhead needed is minimal (other proofs of the
identity require knowledge of representation theory, Littlewood-Richardson co-
efficients, or the Pieri rules). The elementary nature of the argument is a
feature in itself.

2. The ideas we present are closely related to other identities that express the
homogeneous and elementary symmetric functions in terms of the power sym-
metric functions. These identities also involve sums of the form

∑
μ ϕ(μ)pμ/zμ

where ϕ is the character of a representation of the symmetric group.

3. Our proof is valid for an infinite number of indeterminates.

With the exception of the Pieri rule proof, the other three proofs of the rule
require the “classical” definition of the Schur symmetric function given by

sλ(x1, . . . , xn) = Δλ(x1, . . . , xn)/Δ(0)(x1, . . . , xn)

where Δλ(x1, . . . , xn) = det ‖xλj+n−j
i ‖i,j=1,...,n for any λ = (λ1, . . . , λn) � n

(with zero parts allowed as to make the length of λ equal to n). This definition
requires that Schur functions be defined for only a finite number of variables n
before the result can be extended to an infinite number of variables by letting
n approach infinity.
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4. Properties of the Frobenius map can be more readily understood.

Although the identities in Eq. (1) and Eq. (2) can be found relatively easily
from one another using the Hall inner product, the identity in Eq. (2) is the
more natural one when it comes to developing properties of the Frobenius char-
acteristic map. All of the other published proofs of the Murnaghan-Nakayama
rule prove Eq. (1), but it may actually be more useful to have a direct proof of
Eq. (2).

In more detail, let 1Cμ be the indicator function for the conjugacy class Cμ.
The Frobenius characteristic map F can be defined to be the isomorphism from
class functions to symmetric functions that satisfies F (1Cμ) = pμ/zμ. With this
definition, Theorems 3.1 through 3.3 of this paper are all phrased in a way that
allow for F−1(hλ), F

−1(eλ), and F−1(sλ) to be easily identified.

5. A combinatorial proof that ω(sλ) = sλ′ can be given.

The omega involution ω can be defined by ω(pn) = (−1)n−1pn. The identity as
stated in Eq. (2) allows for a direct proof only using tableaux that ω(sλ) = sλ′

where λ′ is the conjugate partition to λ.

The next section of this paper reviews the definitions needed for our work. The
next section also contains a combinatorial proof that χλ

μ = χλ
ν for all rearrangements

ν of μ, a result first found in [12]. We are choosing to include a variant on the proof
in [12] because the result is needed in our forthcoming Theorem 3.3 and because the
ideas in the proof do not seem to be as well known as they could be. Our retelling is
slightly different and is able to avoid invoking the Garsia-Milne involution principle.

Our main results can be found in the third section of this paper where we prove
three identities involving the characters of representations of the symmetric group
and the power symmetric functions in strikingly similar ways, using purely combina-
torial arguments. Theorems 3.1 and 3.2 are proved for an arbitrary integer partition
λ, which generalize the proofs of Theorems 2.11 and 2.12 in [7] where only the case
λ = (n) was considered.

2 Preliminaries

A tableau of shape λ is a filling of the cells in the Young diagram of the integer
partition λ with positive integers. We will draw such Young diagrams using the
English convention where rows weakly decrease in length reading top to bottom.
The weight of a tableau T is

w(T ) =
∏

cells c in T

xTc

where Tc is the integer in the cell c in T . A tableau T of shape λ � n is called

a. row constant if the integers in each row of T are all the same,



A. MENDES /AUSTRALAS. J. COMBIN. 73 (1) (2019), 132–148 135

b. row nondecreasing if the integers in each row of T are nondecreasing when read
from left to right,

c. row increasing if the integers in each row of T are increasing when read from
left to right,

d. column strict if T is row nondecreasing and the integers strictly increase down
each column, and

e. a tabloid if T is row increasing and if each of the integers 1, . . . , n appears
exactly once in T .

Important symmetric functions can be defined in terms of tableaux. For any
integer partition λ, we define

a. the power symmetric function pλ to equal
∑

w(T ) where the sum runs over all
row constant tableaux T of shape λ,

b. the homogeneous symmetric function hλ to equal
∑

w(T ) where the sum runs
over all row nondecreasing tableaux T of shape λ,

c. the elementary symmetric function eλ to equal
∑

w(T ) where the sum runs
over all row increasing tableaux T of shape λ, and

d. the Schur symmetric function sλ to equal
∑

w(T ) where the sum runs over all
column strict tableaux T of shape λ.

For example, all column strict tableaux of shape (4, 2, 1) with weight x3
1x

2
2x3x4 are

1 1 1 4

2 2

3

1 1 1 3

2 2

4

1 1 1 2

2 4

3

1 1 1 2

2 3

4

and so the coefficient of x3
1x

2
2x3x4 in s(4,2,1) is 4.

The goal of this paper is to provide new combinatorial proofs describing how to
write the homogeneous, elementary, and Schur symmetric functions in terms of the
power symmetric functions. This will involve combinatorial objects known as rim
hooks and rim hook tableaux.

A rim hook of length k is a sequence of k connected cells in the Young dia-
gram of an integer partition that begins in a cell on the southeast boundary and
travels up along the southeast edge such that its removal leaves the Young dia-
gram of a smaller integer partition. The sign of a rim hook ρ, denoted sign ρ, is
(−1)(the number of rows spanned by ρ)−1. For example, a rim hook of length 6 with sign
(−1)3−1 = +1 is shown below inside of the Young diagram of the integer partition
(7, 6, 4, 3, 1):
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Let λ be an integer partition of n and let μ = (μ1, . . . , μ�) be a composition of
n. A rim hook tableau of shape λ and content μ is a filling of the cells of the Young
diagram of λ with rim hooks of lengths μ1, . . . , μ� labeled with 1, . . . , � such that
the removal of the last i rim hooks leaves the Young diagram of a smaller integer
partition for all i. The sign of a rim hook tableau T is the product of all of the signs
of the rim hooks in T . We let

χλ
μ =

∑
T is a rim hook tableau
of shape λ and content μ

sign T.

The integers χλ
μ are of interest because they provide the value of the irreducible

character of Sn corresponding to the integer partition λ on permutations with cycle
type μ. See one of [1, 6, 10] for details.

For example, all of the rim hook tableaux of shape (4, 3, 1) and content (3, 2, 2, 1)
are given in Eq. (3).

1

2 3

4 1 2

3

4

1 2

3

4 1 2 3

4

1 2 3 4

(3)

The signs of these rim hook tableaux are −1, −1, +1, −1, and +1, and so χ
(4,3,1)
(3,2,2,1) =

−1. As another example, we have χ
(4,3,1)
(2,3,1,2) = −1 because the only rim hook tableau

of shape (4, 3, 1) and content (2, 3, 1, 2) is shown in Eq. (4).

21

4

3

(4)

The next theorem shows that it is no coincidence that χ
(4,3,1)
(3,2,2,1) = χ

(4,3,1)
(2,3,1,2). The

combinatorial arguments given in the proof are essentially the same as those described
in [12].

Theorem 2.1. If λ is an integer partition and μ and ν are compositions of n that
are rearrangements of one another, then χλ

μ = χλ
ν .

Proof. The result will follow if we can show that the order of two consecutive rim
hooks can be interchanged. Then, by interchanging consecutive parts repeatedly, the
composition μ can be turned into any rearrangement ν of μ. Therefore we take μ



A. MENDES /AUSTRALAS. J. COMBIN. 73 (1) (2019), 132–148 137

to be the composition (μ1, . . . , μi, μi+1, . . . , μ�) and take ν to be the composition μ
with μi and μi+1 interchanged. We will prove that χλ

μ = χλ
ν by first defining a sign

reversing involution I on the set of rim hook tableaux of shape λ and content μ.
Let T be a rim hook tableau of shape λ and content μ and let C be the cells in

T that are occupied by rim hooks i and i + 1. If C is itself a single rim hook, then
let T ′ be the rim hook tableau found by switching the positions of rim hooks i and
i + 1 in T within C. For example, suppose rim hooks i and i + 1 appear in T as
shown below.

i+1

i

Then rim hooks i and i+ 1 appear in T ′ as shown here:

i

i+1

Rim hook i + 1 lies outside of the rim hook i in T . By outside, we mean that
every cell in rim hook i+ 1 is entirely south of rim hook i or that rim hook i+ 1 is
entirely east of rim hook i. If rim hook i+1 still lies outside of rim hook i in T ′, then
set I(T ) = T ′. If this does not happen (as depicted above) or if C is not a single rim
hook, set I(T ) = T .

Suppose I(T ) �= T and suppose that rim hook i + 1 appears before rim hook i
when reading left to right in T . Since rim hook i+ 1 lies outside of rim hook i in T ,
the last cell (the most north and east cell) of rim hook i+ 1 must appear below the
first cell (the most south and west cell) of rim hook i in T . This situation is depicted
below.

i+1

i

Rim hook i+1 also appears outside of rim hook i in I(T ), which means that the
last cell of rim hook i must appear to the left of the first cell in rim hook i + 1 in
I(T ). This situation in I(T ) is depicted below.



A. MENDES /AUSTRALAS. J. COMBIN. 73 (1) (2019), 132–148 138

i

i+1

The gap between the rim hooks i and i + 1 in T spans two rows while the gap
between the rim hooks i and i+1 in I(T ) does not. The sign of a rim hook changes
by (−1) every time a rim hook has a vertical line segment, and since the total number
of cells in C is constant, this means that signT �= sign I(T ). Therefore I is a sign
reversing involution and

χλ
μ =

∑
T is a rim hook tableau of shape λ
and content μ such that I(T ) = T

signT.

By applying the same involution I to rim hooks i and i + 1 found in rim hook
tableaux of shape λ but with content ν, we also have

χλ
ν =

∑
T is a rim hook tableau of shape λ
and content ν such that I(T ) = T

signT.

Therefore to complete the proof we will define a sign preserving bijection B from the
set of rim hook tableaux T with shape λ, content μ, and I(T ) = T to the set of rim
hook tableaux T ′ with shape λ, content ν, and I(T ′) = T ′. This bijection will be
defined on a case by case basis.

Case 1: Rim hooks i and i+ 1 do not share a border. Since either rim hook i can be
considered to lie outside of rim hook i+ 1 or vice versa, we define B(T ) to be
the tableau found by switching the labels of i and i+ 1 in T .

For example, if i = 3, the bijection B sends the rim hook tableau

1 2

3

4

to the rim hook tableau
21

4

3

.

Case 2: The cells C form a single rim hook. Define B(T ) to be the tableau found
by switching the labels of i and i + 1 in T ′ where T ′ is the rim hook tableau
described in the definition of the involution I. Since I(T ) = T , rim hook i+ 1
lies outside of i in B(T ), so B(T ) is indeed a rim hook tableau with content ν.
It follows that I(B(T )) = B(T ) and, in this case, that B is a bijection.

For example, if i = 1, the bijection B sends the rim hook tableau

1 2

3

4

to the rim hook tableau
1 2

3

4

.
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The next two paragraphs will show that the signs of T and B(T ) are the same.

If rim hook i + 1 appears before rim hook i when reading left to right in T ,
then the last cell of rim hook i+1 must appear below the first cell of rim hook
i in T . Since I(T ) = T , rim hook i + 1 does not lie outside of rim hook i in
T ′. Therefore the last cell of rim hook i must appear below the first cell of rim
hook i+1 in T ′. This verifies that sign T = signB(T ) if rim hook i+1 appears
before rim hook i in T .

If rim hook i appears before rim hook i+1 in T , then the last cell of rim hook i
must appear to the left of the first cell of rim hook i+1 in T . Since I(T ) = T ,
rim hook i+ 1 does not lie outside of rim hook i in T ′, implying that the last
cell of rim hook i+ 1 must also appear to the left of the first cell of rim hook
i in T ′. This verifies that sign T = signB(T ) if rim hook i appears before rim
hook i+ 1 in T .

We have now shown that B is sign preserving in this case.

Case 3: Not Case 1 and not Case 2. Rim hooks i and i+1 share a border of length
2 or longer in T . Rim hook i + 1 must trace the outside border of C, staring
from the southwest end, as shown below.

i+1

i

Define B(T ) to be the rim hook tableau T created by drawing the rim hook i
to follow along the outside cells of C instead of rim hook i+ 1 following along
the outside cells C and then switching the i and i+1 labels. Because rim hooks
i and i+ 1 are consecutively placed within T , this will always be possible. For
example, the image of the above pair of rim hooks is shown below.

i i+1

Given B(T ), we can easily reconstruct T , showing that B is a bijection. The
sign of the rim hook tableau changes exactly twice when turning T into B(T ):
once at the first cell where rim hooks i and i + 1 border each other and once
at the last cell where rim hooks i and i + 1 border each other. Therefore the
signs of T and B(T ) are the same.
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This completes our description of the sign reversing involution I and the bijection
B, finishing the proof.

To illustrate the involution I and the bijection B in the proof of Theorem 2.1,
suppose we wish to show

χ
(4,3,1)
(3,2,2,1) = χ

(4,3,1)
(2,3,1,2)

by starting with a rim hook tableau with content (3, 2, 2, 1), switching rim hooks 1
and 2, and then switching rim hooks 3 and 4.

In switching rim hooks 1 and 2, the involution I pairs the first and third rim hook
tableaux as displayed in Eq. (3). The bijection B sends the second, fourth, and fifth
rim hook tableaux in Eq. (3) to these three rim hook tableaux:

1 2

3

4

1

2

3

4

1

2

3 4

Then, to switch the rim hooks 3 and 4, the involution I pairs the last two of the above
rim hook tableaux before the bijection B sends the remaining rim hook tableau to
the rim hook tableau in Eq. (4).

3 Combinatorial proofs of identities involving the power

symmetric functions

The symmetric group acts on the set of tabloids of shape λ � n by using σ ∈ Sn to
permute the elements in T and by then sorting the integers in each row of T into
increasing order. Given σ ∈ Sn, let ϕλ(σ) be the number of tabloids T of shape λ
that satisfy σT = T . For example, ϕ(3,2,1)

(
(1 5)(2 6)

)
= 4; here are the 4 tabloids of

shape (3, 2, 1) that are fixed by (1 5)(2 6):

1 3 5

2 6

4

2 3 6

1 5

4

1 4 5

2 6

3

2 4 6

1 5

3

The function ϕλ is constant on the conjugacy class Cμ containing the permuta-
tions with cycle type μ, so we let ϕλ

μ denote the value of ϕλ on Cμ. Furthermore, if
Sλ is the Young subgroup of Sn and 1 is the trivial representation of Sλ, then ϕλ is
the character of the induced representation 1↑Sn

Sλ
. See [1, 10] for details.

Theorem 3.1. We have hλ =
∑
μ�n

ϕλ
μ

pμ
zμ

.

Proof. Multiplying through by n!, we will prove

n!hλ =
∑
μ�n

|Cμ|ϕλ
μpμ =

∑
σ∈Sn

ϕλ(σ) pμ(σ) (5)
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where μ(σ) denotes the cycle type of σ.
Count the right hand side of Eq. (5) by first selecting a permutation σ ∈ Sn.
To account for the pμ(σ) term, assign an integer c to each cycle of σ. Inspired

by the use of the power symmetric functions in Pólya theory, this c will be called
the color of the cycle. Choosing a color for each cycle is the same as choosing a
row-constant tableau with shape μ(σ), where we associate each cycle with a row and
fill each cell in a given row with the color c of the corresponding cycle.

Lastly, select a tabloid T of shape λ such that σT = T . The choice of σ, the
colors c for each cycle, and the tabloid T account for all terms on the right hand side
of Eq. (5).

Write σ in cycle notation such that the maximum integer in each cycle appears
first. Arrange the colored cycles of σ such that smaller colors appear first and, if
two cycles have the same color, write the cycle with the smaller maximum element
first. Since σT = T , the integers in each cycle of σ must appear in a single row of
T . Place the cycles of σ using this order into the rows of the Young diagram of λ
to indicate which row of T contains the integers in each cycle. Let U be the set of
objects created in this way.

For example, if λ = (7, 4, 3) and σ is the permutation

(7 6)1 (10)1 (12 3 9)1 (1)2 (5 2)2 (13 4 11)2 (14 8)3

where the color of each cycle is denoted by the subscript, then one U ∈ U is shown
in Eq. (6).

(13 4 11)2

(7 6)1 (5 2)2

(10)1(12 3 9)1 (1)2 (14 8)3

(6)

If we define the weight of U ∈ U to be

w(U) =

n∏
i=1

x(the color of the cycle containing i in U),

then by construction, the right side of Eq. (5) is equal to
∑

U∈U w(U). In the above
example, w(U) = x6

1x
6
2x

2
3.

Given a U ∈ U , create a permutation τ by listing the integers in U without
parentheses, reading each row from left to right beginning with the top row. Create
a tableau T ′ by recording the color of each cell in a tableau of shape λ. In this way,
each U ∈ U is in a natural 1–1 correspondence with a pair of the form (τ, T ′) where
τ ∈ Sn and T ′ is a tableau of shape λ with nondecreasing rows. For example, the
above U corresponds to (τ, T ′) where

τ = 10 12 3 9 1 14 8 7 6 5 2 13 4 11

and the corresponding T ′ is shown here:
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T ′ =
1 1 1 1 2 3 3

1 1 2 2

2 2 2

These pairs are counted by n!hλ, the left hand side of Eq. (5), as needed.
This weight preserving correspondence between U ∈ U and pairs (τ, T ′) is a

bijection because the placement of the parentheses in σ can be reconstructed. Indeed,
after τ is placed into the Young diagram of shape λ, there is a unique way to insert
pairs of parentheses into each row so that the maximum element in each cycle appears
first and cycles of the same color are sorted in increasing order according to maximum
element.

This unique way is to locate the maximum integer in each row in τ with color c,
to place that integer and everything to its right that also has color c in one cycle,
and to iterate. As an example, if

τ = 6 3 10 12 11 1 7 14 13 2 4 9 5 8

and T ′ is as shown below,

T ′ =
1 1 2 2 2 3 3

2 2 2 2

1 1 1

then the U ∈ U corresponding to the pair (τ, T ′) is equal to this object:

(9 5 8)1

(14 13 2 4)2

(6 3)1 (10)2(12 11)2(1)3 (7)3

This completes the proof.

Let signμ denote the sign of any permutation σ with cycle type μ.

Theorem 3.2. We have eλ =
∑
μ�n

signμ ϕ
λ
μ

pμ
zμ

.

Proof. This identity can be written as

n!eλ =
∑
σ∈Sn

sign(σ)ϕλ(σ)pμ(σ). (7)

Let U be the same set of objects created in the proof of Theorem 3.1. Define the
sign of U ∈ U to be the sign of the underlying permutation. It follows that the right
hand side of Eq. (7) is equal to

∑
U∈U sign(U)w(U).

We now define a sign reversing, weight preserving involution I on U . Take U ∈ U .
Each cell in U has a color given by the color of the cycle to which it belongs. Let
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c be the smallest color that appears in two cells within a single row. If no such c
exists, define I(U) = U . Otherwise, in the highest row of U that contains two cells
colored c, let m be the largest integer colored c and let m′ be the second largest
integer colored c.

If m and m′ are in the same cycle, then create I(U) by

1. cutting that cycle into two cycles, one starting with m and one starting with
m′, and then

2. listing the newly created cycle that starts with m′ before the cycle starting
with m.

If m and m′ are not in the same cycle, then create I(U) by

1. writing the cycle containing m′ after the cycle containing m, and then

2. concatenating the two cycles, creating one cycle starting with m.

For example, if U ∈ U is as shown in Eq. (6), then I(U) is shown here:

(13 4 11)2

(7 6)1 (5 2)2

(12 3 9 10)1(1)2 (14 8)3

The function I is a weight preserving involution. If U is not a fixed point, then
the total number of cycles in U changes by one and so signU �= sign I(U). The fixed
points under I cannot have a repeated color in any row, and so, in a similar manner
as in the proof of Theorem 3.1, fixed points correspond to pairs (τ, T ′) where τ ∈ Sn

and T ′ is a tableau with strictly increasing rows. These pairs correspond to n!eλ, as
needed.

Those familiar with the representation theory of the symmetric group might rec-
ognize that the coefficient signμ ϕ

λ
μ in the statement of Theorem 3.2 is the character

of the representation sign⊗ 1↑Sn
Sλ
. See [1, 10] for details.

Theorem 3.3. Eq. (2) is true. Restated, we have

n!sλ =
∑
σ∈Sn

χλ
μ(σ)pμ(σ) (8)

for all λ � n.

Proof. To account for the choice of σ ∈ Sn and the pμ(σ) on the right hand side
of Eq. (8), select a colored permutation with cycles colored in the same way as in
Theorem 3.1. Arrange the colored cycles in the same way as in Theorem 3.1 with
smaller colors first and then sorted by smallest maximum element. One such σ is

(8 3 1)1 (12 9)1 (7 2)2 (13 4 11 5 10 6)2
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where the color of each cycle is its subscript.
To account for the χλ

μ(σ) term in Eq. (8), select a rim hook tableau of shape λ
and content ν where ν is the composition giving the lengths of the colored cycles in
σ (using Theorem 2.1). Write down each colored cycle on top of the corresponding
rim hook in the rim hook tableau.

For example, if λ = (5, 5, 3) and σ is as displayed above, then ν = (3, 2, 2, 6) and
one object created by this process is given here:

(13 4 11

(7 2)2 5 10 6)2

(8 3 1)1 (12 9)1

In the above object we have not drawn the integer labels on the rim hooks because
these labels can be deduced from the colors and the maximum integer in each cycle.
For example, the underlying rim hook tableau with the correctly labeled rim hooks
for the object shown above is:

1 2

3 4

Let T be the set of all objects created in this way. The weight of T ∈ T is

w(T ) =

n∏
i=1

x(the color of the cycle containing i in T )

and the sign of T is the sign of the underlying rim hook tableau. The cells of a
given color in any given T ∈ T form a skew-shape. For example, the weight of the
T ∈ T shown above is x5

1x
8
2 and the sign is −1. The right side of Eq. (8) is equal to∑

T∈T sign(T )w(T ) by construction.
We now define a sign reversing and weight preserving involution I on T . Scan

the cells of T ∈ T from left to right and from top to bottom, looking for the first
occurrence of either

Case A: a cell x in the same rim hook as the cell immediately below x, or

Case B: a cell colored c that is immediately above the terminal cell in a c colored
rim hook.

The example T displayed above is in Case A because the cell containing 5 and the
cell below the 5 are both contained in the same rim hook.

Suppose we are in Case A and let x be the first cell that is in the same rim hook
as the cell below x. Let m be the maximum integer in the rim hook containing x.
Define I(T ) to be the element in T created by following these instructions:
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1. Cut the rim hook containing x at the down step between x and the cell below
x. This ends the rim hook below x at the cell below x.

2. Let C be the cells that are in the same row as x, that are the same color as
x, and belong to a rim hook that has a maximum integer no bigger than m.
Erase all rim hooks and parentheses in C.

3. Reinsert parentheses into C, thereby creating cycles and rim hooks, in the
unique manner that forces the maximum element in each cycle to appear first
and forces cycles to be sorted in increasing order according to maximum element
(in the same way as found at the end of the proof of Theorem 3.1).

For example, if T is the object displayed above, then I(T ) is here:

(13 4 11)2

(7 2 5)2 (10 6)2

(8 3 1)1 (12 9)1

If T is in Case A, then I(T ) will be in Case B because the cell x that was in the
same rim hook as the cell below x is now a cell colored c that is immediately below
the terminal cell in a c colored rim hook.

No cell preceding x (when cells in T are read left to right and from top to bottom)
can fit into either Case A or Case B because the involution I only changes cells to
the right of x, in rows below x, and in C. Cells in C will not fall into Case A because
rim hooks in C are contained in one row. Cells in C will not fall into Case B because
the first terminal cell of a rim hook in a row below C is the cell below x.

Now suppose T is in Case B and let x be the first cell colored c that is immediately
above a terminal cell in a c colored rim hook. Suppose the maximum integer in the
rim hook below x is m. Define I(T ) to be the element in T created by following
these instructions:

1. Let C be the cells that are in the same row as x, that are the same color as x,
and that are in a rim hook with a maximum integer no bigger than m. Erase
all rim hooks and parentheses in C.

2. Extend the rim hook below x to include x and the cells in C to the right of
cell x.

3. Reinsert parentheses into the remaining cells in C, thereby creating cycles
and rim hooks, in the unique manner that forces the maximum element in
each cycle to appear first and forces cycles to be sorted in increasing order
according to maximum element (in the same way as found at the end of the
proof of Theorem 3.1).

If T ∈ T is in Case B, then I(T ) will be in Case A because the cell x that was the
same color as the rim hook below x is now in the same rim hook as the cell below x.
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No cell preceding x will fit into Case A or Case B since I(T ) differs from T in cells
that are to the right of x, in rows below x, and in C. Cells in C will not fall into
Case A or Case B for similar reasons as outlined above.

If T ∈ T is not in either Case A or Case B, then we define I(T ) = T . The
function I on a Case B object is the defined to be inverse function to I on a Case A
object, making I an involution.

This completes our description of the involution I. As a second example, I pairs
these two elements in T :

16) (14 7 12

11 (6 1)3 3

4 15 (2)2 10

)3

(9)1 8 5 13)1

I

16) (14 7 12

11 (6 1)3 3

4 15)1(2)2 10

)3

(9 8 5)1 (13)1

If T is not a fixed point, then I changes the sign of T because I removes exactly
one vertical segment in Case A and introduces exactly one vertical segment into a
rim hook in Case B. The involution is weight preserving.

Fixed points under I cannot have any rim hooks that span two or more rows
because otherwise we would be in Case A. Thus all fixed points have sign +1. Fixed
points cannot have a cell with color c above another cell with color c because, since
all the rim hooks are flat, we would be in Case B.

One example of a fixed point is here:

(11 9)3 (13)5

(8 4)2 (16 1 12)4

(7 2 3)1 (15)1(5)2 (6)2 (14 10)2

Create a permutation τ by listing the integers in a given fixed point without
parentheses, reading each row from left to right beginning with the top row. Create
a tableau T ′ by recording the color of each cell in a tableau of shape λ. In this way, a
fixed point under I is in a natural 1–1 correspondence with a pair of the form (τ, T ′)
where τ ∈ Sn and T ′ is a column strict tableau of shape λ. The ordering of the rim
hooks with larger colors outside smaller colors guarantees that T ′ is column strict.

For example, the above fixed point corresponds to (τ, T ′) where σ is

σ = 7 2 3 15 5 6 14 10 8 4 16 1 12 11 9 13

and the column strict tableau shown here:

T ′ =
1 1 1 1 2 2 2 2

2 2 4 4 4

3 3 5
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The fixed point corresponding to the pair (τ, T ′) can be reconstructed in the same
manner as found at the end of the proof of Theorem 3.1.

These pairs are counted by n!sλ, the left hand side of Eq. (8), as needed.

4 Final remarks

The proof of Theorem 3.3 is valid when the integer partition λ is replaced with a
skew shape λ/α, giving a combinatorial proof only using tableaux that

sλ/α =
∑

μ�|λ/α|

χλ/α
μ

pμ
zμ

. (9)

The identity in Eq. (9) allows for a combinatorial proof that ω(sλ/α) = sλ′/α′ .
Indeed, if a rim hook ρ of length k in a rim hook tableau has i horizontal steps and
j vertical steps, then i + j = k − 1 and the sign of ρ is (−1)j. The sign of the
conjugated rim hook ρ′ is

sign ρ′ = (−1)i = (−1)k−1(−1)j = sign σ sign ρ,

where σ is a permutation with cycle type (k). This implies that

signμ χ
λ/α
μ = χλ′/α′

μ

where signμ is the sign of a permutation with cycle type μ. Therefore, if ω is the
involution on the ring of symmetric functions defined by ω(pn) = (−1)n−1pn, then
using Theorem 3.3 we have

ω(sλ/α) =
∑

μ�|λ/α|

χλ/α
μ

ω(pμ)

zμ

=
∑

μ�|λ/α|

signμ χ
λ/α
μ

pμ
zμ

=
∑

μ�|λ/α|

χλ′/α′
μ

pμ
zμ

= sλ′/α′ ,

giving a combinatorial proof of why ω(sλ/α) = sλ′/α′ completely in terms of tableaux.
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