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Abstract

In this paper, we consider Cp2 -decompositions of the tensor product of
complete graphs, Km × Kn , where p ≥ 2 is a prime. It is proved that
for any prime p ≥ 2 , with m,n ≥ 3 , the cycle Cp2 decomposes Km×Kn

if and only if (1) either m or n is odd, (2) p2 | (m
2

)
n(n − 1) , and (3)

p2 ≤ mn . This is a companion result of Cp2 -decompositions of Km◦Kn ,
considered by B.R. Smith [J. Combin. Des. 18 (2010), 401–414].

1 Introduction and Definitions

All graphs considered here are simple and finite. For a graph G , the graph
G∗ denotes the symmetric digraph of G ; that is, the digraph obtained from G by
replacing each of its edges by a symmetric pair of arcs. For a graph G and a positive
integer λ , the graph G(λ) is the graph obtained from G by replacing each of its
edges by λ parallel edges. For a graph G and n a positive integer, nG denotes
n vertex disjoint copies of G . Also we denote by Pk a path on k vertices and

we let Ck (respectively,
−→
Ck ) denote a cycle (respectively, directed cycle) of length

k . If S is a nonempty subset of the vertex set V (G) of a graph G , then the
subgraph 〈S〉 of G induced by S is the graph having vertex set S and whose edge
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set consists of those edges of G incident with two vertices of S . Similarly, if E ′

is a nonempty subset of E(G) , then the subgraph 〈E ′〉 of G induced by E ′ is
the graph whose vertex set consists of those vertices of G incident with at least
one edge of E ′ and whose edge set is E ′ . The complete graph on m vertices is
denoted by Km and its complement is denoted by Km . For a digraph D , its arc
set is denoted by A(D) . If H1, H2, . . . , Hk are edge-disjoint subgraphs of the graph
G such that E(G) =

⋃k
i=1E(Hi) , then we say that H1, H2, . . . , Hk decompose G

and we write G = H1 ⊕ H2 ⊕ · · · ⊕ Hk . If each Hi
∼= H , then we say that H

decomposes G and we write H |G . A graph G has a Ck -decomposition or a k -
cycle decomposition whenever Ck |G . A 2 -factor of G is a spanning 2 -regular
subgraph. A 2 -factorization of G is a decomposition of G into 2 -factors. If G
has a 2 -factorization and each 2 -factor of it contains only cycles of length k as its
components, then we say that G has a Ck -factorization and we write Ck ||G . A
k -regular graph G is called Hamilton cycle decomposable if G is decomposable into
k
2

Hamilton cycles when k is even and into k−1
2

Hamilton cycles together with a
perfect matching when k is odd.

For two graphs G and H their wreath product, G ◦H , has vertex set V (G)×
V (H) in which (g1, h1) and (g2, h2) are adjacent whenever g1g2 ∈ E(G) or, g1 = g2
and h1h2 ∈ E(H) . Similarly, G × H , the tensor product of the graphs G and
H , has vertex set V (G) × V (H) in which two vertices (g1, h1) and (g2, h2) are
adjacent whenever g1g2 ∈ E(G) and h1h2 ∈ E(H) ; see Fig. 1. Clearly, the tensor
product is commutative and distributive over edge-disjoint union of graphs; that is,
if G = H1 ⊕H2 ⊕ · · · ⊕Hk , then G×H = (H1 ×H)⊕ (H2 ×H) · · · ⊕ (Hk ×H) .
It can be observed that Km ◦Kn is isomorphic to the complete m -partite graph in
which each partite set has n vertices and (Km ◦Kn)−E(nKm) ∼= Km ×Kn .
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A graph G with m edges is called graceful if it is possible to label the vertices of
G with distinct element from the set {0, 1, 2, . . . , m} in such a way that the induced
edge labeling, which prescribes the integer |i−j| to the edge joining vertices labeled
i and j , assigns the labels 1, 2, . . . , m to the edges of G . Such a labeling is called
a graceful labeling. Thus, a graceful graph is a graph that admits a graceful labeling.
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Let the vertices of Kn be {1, 2, . . . , n} ; then the edge ij of Kn is said to be of
distance min {|i− j|, n− |i− j|} . Hence there are exactly two edges of distance k ,
k ≤ (n−1)/2 , incident with each of its vertices and exactly one edge of distance n/2
incident with each of its vertices, if n is even. Let V (K∗

n) = {v0, v1, v2, . . . , vn−1} ,
and let n be an odd integer. The distance of the arc (vi, vj) in K∗

n is the integer d
with −�n

2
� ≤ d ≤ �n

2
� such that j − i ≡ d (mod n ). Let G be a bipartite graph

with bipartition (X, Y ) , where X = {x0, x1, . . . , xn−1} , Y = {y0, y1, . . . , yn−1} ; if
G contains the set of edges Fi(X, Y ) = {xjyj+i | 0 ≤ j ≤ n−1 , where addition in the
subscript is taken modulo n }, 0 ≤ i ≤ n− 1 , then we say that G has the 1 -factor
of distance i from X to Y . Clearly, if G = Kn,n , then E(G) =

⋃n−1
i=0 Fi(X, Y ) . It

is important to note that Fi(X, Y ) = Fn−i(Y,X), 0 ≤ i ≤ n− 1 .

Finding a Ck -decomposition of K2n+1 or K2n−F , where F is a perfect matching
of K2n , is completely settled by Alspach et al. [4] and Šajna [32]. An alternate
proof for a C2k+1 -decomposition of K2n+1 is obtained by Buratti [14]. A similar
problem is also considered for complete multipartite graphs; in [18], Hanani proved
that the necessary conditions are sufficient for the existence of a C3 -decomposition of
(Km◦Kn)(λ) ; Billington et al. [13] proved that the necessary conditions are sufficient
for the existence of a C5 -decomposition of (Km ◦Kn)(λ) . Further, Cavenagh [17]
solved the C2k -decomposition problem of complete multipartitie graphs, where k =
2, 3, 4 . Manikandan and Paulraja obtained a necessary and sufficient condition for
the existence of a Cp -decomposition of Km ◦Kn , p ≥ 5 , is a prime; see [22, 23]. In
[33, 34, 35], it is proved that the necessary conditions for the existence of C2p , C3p

and Cp2 decompositions of Km ◦Kn are sufficient. Further, in [28], Muthusamy and
Shanmuga Vadivu proved the existence of a Ck -decomposition of Km◦Kn whenever
k is even. Very recently, irrespective of the pairity of k , Buratti et al. [15] actually
solved the existence problem for a k -cycle decomposition of (Km ◦ Kn)(λ) whose
cycle-set can be partitioned into 2 -regular graphs containing all the vertices except
those belonging to one part. Decompositions of (Km ◦Kn)(λ) into cycles of variable
lengths are considered in [9].

A similar problem of decomposing Km×Kn into cycles of length k is considered
here. In a group divisible design the edge set of Km◦Kn is partitioned into complete
subgraphs whereas in a modified group divisible design the edge set of Km ×Kn is
partitioned into complete subgraphs; see [1, 2, 6, 7, 8]. Hence the graph Km ×Kn

is an important subgraph of Km ◦ Kn . A necessary and sufficient condition for
the existence of a Cp -decomposition of Km ×Kn , p ≥ 5 , p a prime, is obtained
by Manikandan and Paulraja [22, 23, 26]; it is pertinent to mention that a p -cycle
decomposition of Km ×Kn is effectively used to obtain a p -cycle decomposition of
Km ◦Kn ; see [22, 23]. Hamilton cycle decompositions of Km ×Kn are completely
settled by Balakrishnan et al.; see [10]. For related developments of the study of
hamilton cycle decompositions in tensor products of complete multipartite graphs or
of a complete graph and a complete bipartite graph, or a complete bipartite graph
and a complete multipartite graph, see [21, 24, 25]. Existence of a resolvable even
cycle decomposition of Km ×Kn can be found in [29].

In this paper we prove that the obvious necessary conditions for Km × Kn ,
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m,n ≥ 3 to admit a Cp2 -decomposition are sufficient, where p ≥ 2 is a prime. In
fact, we have proved the following result:

Theorem 1.1. For any prime p ≥ 2 , m,n ≥ 3 , Cp2 |Km ×Kn if and only if (1)
either m or n is odd, (2) p2 | (m

2

)
n(n− 1) , and (3) p2 ≤ mn .

This is a companion result of Smith [35] who proved the existence of a Cp2 -
decomposition of Km ◦Kn whenever the necessary conditions are satisfied.

For our future reference we list below some known results.

Theorem 1.2. [4]. For any odd integer t ≥ 3 , if n ≡ 1 or t (mod 2t) , then
Ct |Kn .

Theorem 1.3. (see [20]). Let m ≥ 3 be an odd integer.

(1) If m ≡ 1 or 3 (mod 6 ), then C3 |Km .
(2) If m ≡ 5 (mod 6 ), then Km can be decomposed into (m(m − 1) − 20)/6

3 -cycles and a K5 .

Theorem 1.4 is proven in [3] when m is an odd prime, but one can easily see
that the same proof works for any odd integer m .

Theorem 1.4. [3]. If m and k are odd integers and 3 ≤ k ≤ m , then
Cm ||Ck ◦Km .

Theorem 1.5. [27]. The graph K2m × C2n+1 has a Hamilton cycle decomposition.

Theorem 1.6. [13, 18, 22, 26]. For any prime p , 3 ≤ p ≤ mn , and m ≥ 3 , we
have Cp |Km ◦Kn if and only if (1) (m− 1)n is even and (2) p |m(m− 1)n2 .

Theorem 1.7. [11]. The graph Cr×Cs can be decomposed into two Hamilton cycles
if and only if at least one of r and s is odd.

Theorem 1.8. [23]. For m ≥ 3 and k ≥ 1 , C2k+1 |C2k+1 ×Km .

Theorem 1.9. [27]. If Cr ||G and s |m, then Crs ||G × Km , except possibly for
m ≡ 2 (mod 4 ) when r is odd.

The proof of Theorem 1.10 follows by proceeding as in the proof of Theorem 1.9
(see [27], Theorem 3.10).

Theorem 1.10. If Cr |G and s |m, then Crs |G ×Km , except possibly for m ≡
2 (mod 4) when r is odd.

Theorem 1.11. [31]. If H is a graceful graph of size m , then K2m+1 is H -
decomposable.

A circulant graph G = Circ(n;L) is graph with vertex set V (G) = {v0, v1, v2,
v3, . . . , vn−1} and edge set E(G) = {vivi+� | i ∈ Zn, � ∈ L} , where L ⊆ {1, 2, 3, . . . ,
� n

2
�} . The elements of L are called distances of the circulant graph and L is called

the set of distances.
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Theorem 1.12. [12]. Any connected circulant of degree 4 can be decomposed into
Hamilton cycles.

Theorem 1.13. [16, 19, 34]. Suppose G admits a decomposition into cycles of length
k . Then for each positive integer � the graph G ◦K� admits a Ck -decomposition
and also a Ck� -decomposition.

2 Cp2 -Decomposition of Cn ×Km

Lemma 2.1. For n ∈ {3, 5} , C9 |Cn ×K10 .

Proof. Let G = Cn ×K10 (∼= K10 × Cn ). Let H be the graph of Fig. 2. Let the
vertex sets of K10 and Cn be {u0, u1, u2, u3, u4, v0, v1, v2, v3, v4} and {1, 2, 3, . . . , n} ,
respectively. Let σ = (u0 u1 u2 u3 u4) (v0 v1 v2 v3 v4) be the permutation on the vertex
set of K10 . Then σi(H), 0 ≤ i ≤ 4 decomposes K10 ; see Fig. 3, that is, H |K10 .
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u4

v0
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H
The K10 is shown as K5 ⊕ K5 ⊕ K5,5.

A base copy of H in K10 is shown explicitly.
Fig. 2. Fig. 3.

K5

K5

K5,5

Since K10×Cn = (H⊕H⊕· · ·⊕H)×Cn = (H×Cn)⊕(H×Cn)⊕· · ·⊕(H×Cn) ,
it is enough to prove that C9 |H × Cn . For n = 3 (respectively, n = 5 ), two base
cycles, each of length 9 , in H × C3 (respectively, H × C5 ), are shown in Fig. 4
(respectively, Fig. 5), where the sets of vertices {ui} × V (Cn) and {vi} × V (Cn) ,
0 ≤ i ≤ 4 , are shown as Ui and Vi , 0 ≤ i ≤ 4 , respectively. Rotating each of these
base cycles (of the graphs of Figures 4 and 5) successively, to the right n− 1 times,
we get a desired C9 -decomposition of H × Cn

∼= Cn ×H .
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Two base cycles, each of length 9, of H × C3 are given in solid and broken edges.
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Fig. 5.

Two base cycles, each of length 9, of H × C5 are given in solid and broken edges.

The following lemma is proved in [22].

Lemma 2.2. [22]. For any odd integer t ≥ 11 , we have Ct |C3 ×Kt+1 .
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Combining Lemmas 2.1 and 2.2, we obtain the following lemma:

Lemma 2.3. For any odd integer t ≥ 9 , we have Ct |C3 ×Kt+1 .

The following lemma is proved in [22].

Lemma 2.4. [22]. For any odd integer t ≥ 11 , Ct |C5 ×Kt+1 .

Combining Lemmas 2.1 and 2.4, we obtain the following lemma:

Lemma 2.5. For any odd integer t ≥ 9 , Ct |C5 ×Kt+1 .

Lemma 2.6. For any odd integer t ≥ 5 , Ct |C3 × K2t , and for any odd integer
t ≥ 7 , Ct |C5 ×K2t .

Proof. Let the graph G = Cn × K2t (∼= K2t × Cn ). Denote the vertex set of K2t

by {v∞, v0, v1, v2, . . . , v2t−2} . Let H1 be the graph of Fig. 6 with t− 1 vertices and
t− 1 edges with V (H1) = {v0, v1, v2, . . . , vt−2} .

�
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vt−3Q
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v t−1
2
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v∞v0 �

�
�
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�
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v t−1
2

v t−3
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v t+1
2

Length of P = length of Q′ = (t− 3)/2.

H1

�

�

�

�

v0

v1

v2 P

�
�
�

v t−3
2

Length of P = (t− 3)/2 and
length of Q = (t− 5)/2.

vt−3

H = H1 ∪ {vt−2v∞}.
Fig. 7.Fig. 6.

H1 is a graceful graph with the following labeling:

Label the vertex vi with the label ai , where ai =

{
i/2 if i is even,

t− ( i+1
2
) if i is odd.

The graph H1 is graceful, and so H1 |K2t−1 , by Theorem 1.11. Let H be a graph
obtained from H1 by adding the edge vt−2v∞ ; see Fig. 7. Since H1 |K2t−1 , we have
H |K2t .

Since K2t×Cn = (H⊕H⊕· · ·⊕H)×Cn = (H×Cn)⊕(H×Cn)⊕· · ·⊕(H×Cn) , it
is enough to prove that Ct |H × Cn . Let V (Cn) = {1, 2, 3, . . . , n} and let V (H) =
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{v∞, v0, v1, v2, . . . , vt−2} ; see Fig. 7. For n = 3 (respectively, n = 5 ), two base
cycles, each of length t in H × C3 (respectively, H × C5 ), are shown in Fig. 8
(respectively, Fig. 9), where {v∞} × V (Cn) and {vi} × V (Cn) are shown as Z and
Zi , 0 ≤ i ≤ t− 2 , respectively. Rotating each of these base cycles (of the graph of
Figs. 8 and 9) successively, to the right n− 1 times, we obtain a Ct -decomposition
of H × Cn

∼= Cn ×H .
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Two base cycles, each of length t, of H × C3 are given in solid and broken edges.
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Two base cycles, each of length t, of H × C5 are given in solid and broken edges.

Theorem 2.1. If p ≥ 3 is a prime and m ≡ 0 or 1 (mod p2) , then Cp2 |C3×Km .

Proof. We prove this theorem in two cases.

Case 1. m ≡ 1 (mod p2 ).
Let m = kp2 + 1 . If k = 1 , then the result follows by Lemma 2.3. If k = 2 , then
Cp2 |K2p2+1 , by Theorem 1.2. Consequently, C3×K2p2+1 = (C3×Cp2)⊕(C3×Cp2)⊕
· · · ⊕ (C3 ×Cp2) and Cp2 |C3 ×Cp2

∼= Cp2 ×C3 , by Theorem 1.8. Next assume that
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k ≥ 3 . Consider the graph

C3 ×Kkp2+1 = C3 ×
(
Kp2+1 ⊕Kp2+1 ⊕ · · · ⊕Kp2+1︸ ︷︷ ︸

k times

⊕Kk ◦Kp2
)

= C3 ×Kp2+1 ⊕ C3 ×Kp2+1 ⊕ · · · ⊕ C3 ×Kp2+1︸ ︷︷ ︸
k times

⊕C3 × (Kk ◦Kp2)

= C3 ×Kp2+1 ⊕ C3 ×Kp2+1 ⊕ · · · ⊕ C3 ×Kp2+1︸ ︷︷ ︸
k times

⊕(C3 ×Kk) ◦Kp2

By Lemma 2.3, Cp2 |C3 × Kp2+1 . Since C3 |C3 × Kk , by Theorem 1.8, we have
(C3×Kk)◦Kp2 = (C3⊕C3⊕· · ·⊕C3)◦Kp2 = (C3◦Kp2)⊕(C3◦Kp2)⊕· · ·⊕(C3◦Kp2) .
By Theorem 1.4, Cp2 |C3 ◦Kp2 .

Case 2. m ≡ 0 (mod p2 ).
Let m = kp2 . If k = 1 , then C3 ×Kp2 = (C3×Cp2)⊕ (C3×Cp2)⊕ · · ·⊕ (C3×Cp2)
and Cp2 |C3×Cp2 , by Theorem 1.8. If k = 2, then the result follows by Lemma 2.6.
Assume that k ≥ 3 . The graph C3 ×Kkp2 = C3 ×

(
kKp2 ⊕ (Kk ◦Kp2)

)
= k(C3 ×

Kp2) ⊕ C3 × (Kk ◦ Kp2) = k(C3 × Kp2) ⊕ (C3 × Kk) ◦ Kp2 . Clearly C3 × Kp2 =
(C3 ×Cp2)⊕ (C3×Cp2)⊕ · · ·⊕ (C3×Cp2) and Cp2 |C3×Cp2 , by Theorem 1.8. The
graph (C3 ×Kk) ◦Kp2 = (C3 ◦Kp2) ⊕ (C3 ◦Kp2) ⊕ · · · ⊕ (C3 ◦Kp2) , by Theorem
1.8 and Cp2 |C3 ◦Kp2 , by Theorem 1.4.

The proof of the following lemma is similar to the proof of Lemma 3.1 of [22].

Lemma 2.7. For any odd integer t ≥ 5 , Ct ||C5 × Ct .

Theorem 2.2. If p ≥ 3 is a prime and m ≡ 0 or 1 (mod p2) , then Cp2 |C5×Km .

Proof. We prove the theorem in two cases.

Case 1. m ≡ 1 (mod p2) .
Let m = kp2 + 1 . If k = 1, then the result follows by Lemma 2.5. If k = 2 , then
Cp2 |K2p2+1 , by Theorem 1.2. Consequently, C5×K2p2+1 = (C5×Cp2)⊕(C5×Cp2)⊕
· · · ⊕ (C5 × Cp2) . Now Cp2 |C5 × Cp2 by Lemma 2.7. Next assume that k ≥ 3 .
Consider the graph

C5 ×Kkp2+1 = C5 ×
(
Kp2+1 ⊕Kp2+1 ⊕ · · · ⊕Kp2+1︸ ︷︷ ︸

k times

⊕Kk ◦Kp2
)

= C5 ×Kp2+1 ⊕ C5 ×Kp2+1 ⊕ · · · ⊕ C5 ×Kp2+1︸ ︷︷ ︸
k times

⊕(C5 ×Kk) ◦Kp2.

By Lemma 2.5, Cp2 |C5 ×Kp2+1 . Since C5 |C5 ×Kk , by Theorem 1.8, (C5 ×Kk) ◦
Kp2 = (C5 ⊕ C5 ⊕ · · · ⊕ C5) ◦Kp2 = (C5 ◦Kp2)⊕ (C5 ◦Kp2)⊕ · · · ⊕ (C5 ◦Kp2) . By
Theorem 1.4, Cp2 |C5 ◦Kp2 .

Case 2. m ≡ 0 (mod p2) .
Let m = kp2 . If k = 1 , then C5 ×Kp2 = (C5×Cp2)⊕ (C5×Cp2)⊕ · · ·⊕ (C5×Cp2)
and Cp2 |C5 ×Cp2 , by Lemma 2.7. If k = 2 , then the result follows by Lemma 2.6.
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Assume that k ≥ 3 . The graph C5 ×Kkp2 = C5 ×
(
kKp2 ⊕ (Kk ◦Kp2)

)
= k(C5 ×

Kp2)⊕(C5×Kk)◦Kp2 . Clearly C5×Kp2 = (C5×Cp2)⊕(C5×Cp2)⊕· · ·⊕(C5×Cp2)
and Cp2 |C5×Cp2 , by Lemma 2.7. The graph (C5×Kk) ◦Kp2 = (C5 ◦Kp2)⊕ (C5 ◦
Kp2)⊕ · · · ⊕ (C5 ◦Kp2) , by Theorem 1.8 and Cp2 |C5 ◦Kp2 , by Theorem 1.4.

3 Crs -Decomposition of G×Km

Lemma 3.1. Let s ≥ 7 be an odd integer and r ≥ 3 . Then there exists a directed
s -cycle decomposition C of K∗

2s such that each arc of the directed cycles of C can
be assigned the label 1 or r−1 , so that both the symmetric pair of arcs (ai, aj) and
(aj , ai) receive the same label 1 or r − 1 and the sum of the labels of the arcs on
each of the directed cycles of C is relatively prime to r .

Proof. Let s = 2k + 1 . Let A = {a0, a1, . . . , as−1} and B = {b0, b1, . . . , bs−1} be
a partition of the vertex set of K∗

2s . Let σ = (a0 a1 . . . as−1)(b0 b1 . . . bs−1) be a

permutation of the vertex set of V (K∗
2s) . We obtain a

−→
Cs -decomposition C of K∗

2s

as follows: let
−→
C = a0 b2k a1 b2k−1 a2 b2k−2 . . . bk+1 ak a0 be a (base) directed cycle of

length s , which has exactly one arc, namely (ak, a0) , of distance −k in 〈A〉 and
all of its other arcs join vertices of A and B . Consider the following s directed

s -cycles C ′ = {−→C , σ(
−→
C ), σ2(

−→
C ), . . . , σs−1(

−→
C )} of K∗

2s . Let C ′
0 be the set of reverse

directed cycles of C ′ . Let C ′′ be the 2s directed cycles in C ′ ∪ C ′
0 . The above

directed base cycle
−→
C is constructed based on a technique in [5].

Now assign the label 1 or r − 1 to the arcs of the directed cycles of C ′′ as
follows: alternately assign the labels 1 and r − 1 , beginning from the first arc of
each of the directed cycles in C ′ ⊆ C ′′ , so that the first and last arcs of the directed
s -cycle get the label 1 . If the arc (x, y) of a directed s -cycle in C ′ is assigned the
label 1 (respectively, r − 1 ), its corresponding arc (y, x) in a directed s -cycle of
C ′
0 is also assigned the same label 1 (respectively, r − 1 ). Thus every symmetric

pair of arcs (x, y) and (y, x) on the directed cycles of C ′′ receive the same label. It
can be easily verified that sum of the labels of the arcs of each of the directed cycles
in C ′′ is r� s

2
� + 1 , which is relatively prime to r .

Clearly, K∗
2s−A(C ′′) , where A(C ′′) denotes the arc set of C ′′ , is the subdigraph

of K∗
2s having the arc set X = {(ai, bi), (bi, ai) | 0 ≤ i ≤ s−1} ∪ {all arcs of distances

± 1,±2, . . . ,±(k − 1) in 〈A〉 and all arcs of distances ± 1,±2, . . . ,±k, in 〈B〉} .
(Note that arcs of distances ±k of A have already been used by the directed cycles
of C ′′ .)

Next, we obtain a
−→
Cs -decomposition of K = K∗

2s − A(C ′′) and assign the label
1 or r − 1 to the arcs of the directed cycles of the decomposition.

Case 1. k is even.
In K = K∗

2s −A(C ′′) , consider the (base) directed s -cycle

−→
C 1 : b0 a0 a1 b1 b2 b2k b3 b2k−1 . . . b 3k+4

2
bk+4

2
b 3k+2

2
bk+6

2
. . . bk bk+3 bk+1 b0;



R.S. MANIKANDAN ET AL. /AUSTRALAS. J. COMBIN. 73 (1) (2019), 107–131 118

see Fig. 10 and the directed s -cycles D = {−→C 1, σ(
−→
C 1), σ2(

−→
C 1), . . . , σs−1(

−→
C 1)} ,

where σ = (a0 a1 a2 . . . as−1)(b0 b1 b2 . . . bs−1) ; observe that
−→
C 1 misses exactly two

of the bj , namely, b(k+2)/2 and bk+2 . Each of the directed cycles of D contains
exactly two arcs from the set {(ai, bi), (bi, ai) | 0 ≤ i ≤ s − 1} and the remaining
s− 2 arcs have the distances ±3,±4, . . . ,±k, 1, −2 in 〈B〉 and the distance 1 in
〈A〉 ; see Fig. 10.
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Fig. 10.

k

A (base) directed cycle
−→
C 1 in the graph K.

−→
C 1

Next we assign the label 1 or r − 1 to the arcs of the directed cycles in D as

follows: we partition the distances {±3,±4, . . . ,±k} of the arcs of σi(
−→
C 1) , 0 ≤ i ≤

s− 1 into two sets X = {±3,±5,±7 . . . ,±(k − 1)} and Y = {±4,±6,±8 . . . ,±k}
and assign the label 1 (respectively, r − 1 ) to the arcs with distances in X (re-

spectively, Y ). We have yet to label the five arcs of σi(
−→
C 1) , 0 ≤ i ≤ s −

1 , namely,
(
σi(b0), σ

i(a0)
)
,
(
σi(a0), σ

i(a1)
)
,
(
σi(a1), σ

i(b1)
)
,
(
σi(b1), σ

i(b2)
)

and(
σi(bk+3), σ

i(bk+1)
)
. Other than these five arcs in each of the directed cycles of D ,
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the sum of the labels of the arcs is a multiple of r , as both 1 and r − 1 occur an
equal number of times. Now we label the three arcs

(
σi(b0), σ

i(a0)
)
,
(
σi(a0), σ

i(a1)
)
,(

σi(a1), σ
i(b1)

)
, 0 ≤ i ≤ s−1 , of σi(

−→
C 1) as shown in Fig. 11; assign the label of the

other two arcs,
(
σi(b1), σ

i(b2)
)
,
(
σi(bk+3), σ

i(bk+1)
)
, 0 ≤ i ≤ s − 1 , of σi(

−→
C 1) as

follows: for 0 ≤ � ≤ (s− 1)/2 , the arc
(
σ2�(b1), σ

2�(b2)
)
is assigned the label 1 and

the arc
(
σ2�(bk+3), σ

2�(bk+1)
)
is assigned the label r− 1 , and for 0 ≤ � ≤ (s− 3)/2 ,

let the arcs
(
σ2�+1(b1), σ

2�+1(b2)
)
and

(
σ2�+1(bk+3), σ

2�+1(bk+1)
)
be assigned the la-

bels r− 1 and 1 , respectively. On these five arcs the sum of the labels is relatively
prime to r . The sum of the labels of each directed s -cycle in D is either r� s

2
� − 1

or r� s
2
� + 1 , which is relatively prime to r .
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Fig. 11.

The directed s -cycles in D do not contain all the arcs of K = K∗
2s − A(C ′′) .

Now, consider the subdigraph R = K∗
2s − A(C ′′ ∪ D) , consisting of all arcs of

distances ±2,±3, . . . ,±(k−1), −1, in 〈A〉 , and the arcs of distances −1, 2 in 〈B〉 .
The subdigraph R will be decomposed into directed cycles of the required type after
considering the next case.

Case 2. k is odd.

In K = K∗
2s −A(C ′′) , consider the (base) directed s -cycle

−→
C 2 : b0a0a1b1b2b2kb3b2k−1 . . . bk+1

2
b 3k+1

2
bk+3

2
b 3k−1

2
. . . bk+2bkb0;

see Fig. 12 and the directed s -cycles D = {−→C 2, σ(
−→
C 2), σ2(

−→
C 2), . . . , σs−1(

−→
C 2)} ,

where σ = (a0 a1 . . . as−1)(b0 b1 . . . bs−1) ; observe that
−→
C 2 misses exactly two of the

bj , namely, b3(k+1)/2 and bk+1 . Each of the directed cycles of D contains exactly
two arcs from the set {(ai, bi), (bi, ai) | 0 ≤ i ≤ s− 1} and the remaining s− 2 arcs
have the distances ±3,±4, . . . ,±k, 1, −2 in 〈B〉 and the distance 1 in 〈A〉 ; see
Fig. 12.

Next we assign the label 1 or r − 1 to the arcs of the directed cycles in D as

follows: we partition the distances {±3,±4, . . . ,±k} of the arcs of σi(
−→
C 2) , 0 ≤ i ≤

s− 1 , into two sets L = {±3,±5,±7 . . . ,±k} and M = {±4,±6,±8 . . . ,±(k− 1)}
and assign the label 1 (respectively, r− 1 ) to the arcs of σi(

−→
C 2) with distances in

L (respectively, M ) and assign the label r−1 to the arcs σi(b0, a0) and σi(a1, b1) ,

0 ≤ i ≤ s−1 . We have yet to label the three arcs of σi(
−→
C 2) , 0 ≤ i ≤ s−1 , namely,(

σi(a0), σ
i(a1)

)
,
(
σi(b1), σ

i(b2)
)
and

(
σi(bk+2), σ

i(bk)
)
, 0 ≤ i ≤ s− 1 . Apart from
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these three arcs of σi(
−→
C 2) , the sum of the labels of arcs of each of the directed cycles

of D is a multiple of r , because both 1 and r− 1 occur an equal number of times.
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−k

−→
C 2

A (base) directed cycle
−→
C 2 in the graph K.

We label these three arcs as follows: for 0 ≤ � ≤ (s − 1)/2 , assign the label
1 to the arcs

(
σ2�(b1), σ

2�(b2)
)
and

(
σ2�(bk+2), σ

2�(bk)
)
and the label r − 1 to the

arc
(
σ2�(a0), σ

2�(a1)
)
, and for 0 ≤ � ≤ (s − 3)/2 , assign the label r − 1 to the

arcs
(
σ2�+1(b1), σ

2�+1(b2)
)

and
(
σ2�+1(bk+2), σ

2�+1(bk)
)

and the label 1 to the arc(
σ2�+1(a0), σ

2�+1(a1)
)
; on these three arcs the sum of the labels is relatively prime

to r .
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Observe that the sum of the labels of each of the directed s -cycles in D is either
r� s

2
� − 1 or r� s

2
� + 1 , which is relatively prime to r . The directed s -cycles in D

do not contain all the arcs of K = K∗
2s − A(C ′′) . Now, consider the subdigraph

R = K∗
2s −A(C ′′ ∪D) , consisting of all arcs of distances ±2,±3, . . . ,±(k− 1), −1 ,

in 〈A〉 , and the arcs of distances −1, 2 in 〈B〉 .
Next, irrespective of the parity of k , we show that R = K∗

2s − A(C ′′ ∪ D)

can be decomposed into
−→
Cs . Clearly, the arc set of R is all arcs of distances

{±2,±3, . . . ,±(k − 1), −1 , in 〈A〉} ∪ {all arcs of distances − 1, 2 in 〈B〉} ; the

arcs of R are contained in 〈A〉 ∪ 〈B〉 . Let
−→
C 3 and

−→
C 4 be two directed s -cycles

of 〈B〉 induced by the arcs of distances −1 and 2 , in 〈B〉 , respectively, and −→
C 5

be the directed s -cycle induced by the arcs of distance 1 in 〈A〉 . Each arc in

A(
−→
C 3) ∪ A(

−→
C 4) ∪ A(

−→
C 5) is assigned the same label of its symmetric arc on the

directed cycles of D . In each of the directed s -cycles we have constructed so far,
including D , the number of arcs receiving the label 1 and r−1 differs by one. Hence
the sum of labels of the arcs of each of these directed s -cycles is relatively prime to

r . The remaining arc set of the digraph R′ = R − (
A(

−→
C 3) ∪ A(

−→
C 4) ∪ A(

−→
C 5)

)
is

{all arcs of distances ± 2, ±3, . . . ,±(k − 1) in 〈A〉} .
If k is even, then consider the pairs of distances {2, 3}, {4, 5}, . . . , {k− 2, k− 1}

in 〈A〉 . Clearly, each pair of distances gives rise to a circulant graph in U(〈A〉) ,
the underlying graph of 〈A〉 , that can be decomposed into two hamilton cycles (of
length s ), by Theorem 1.12. Each of these hamilton cycles of U(〈A〉) is oriented
into two directed hamilton cycles of R′ , one in the clockwise direction and the other
in the anticlockwise direction. The reverse cycles of these two directed cycles give
another two directed hamilton cycles, taking care of the distances −i and −(i+ 1)
in 〈A〉 . Then each pair (i, i + 1) gives rise to four directed s -cycles of R′ . We
assign the labels 1 and r−1 alternately to the directed cycles so that the symmetric
pair of arcs, that is, the arcs (ai, aj) and (aj , ai) , receive the same label 1 or r−1 .
Clearly, the sum of the labels of each of the directed cycles is r� s

2
� + 1 , which is

relatively prime to r .

If k is odd, then as above, pair the distances, except the distances ±2 , as
follows: {3, 4}, {5, 6}, . . . , {k − 2, k − 1} . Repeating the same argument as in the
last paragraph, we obtain arc-disjoint labeled directed s -cycles of R′ . The arcs of

distance 2 (respectively, −2 ) induce a directed s -cycle. Let
−→
C 6 (respectively,

−→
C 7 )

be the directed s -cycle whose arcs have the distance 2 (respectively, −2 ) in 〈A〉 .
In fact,

−→
C 7 is the reverse cycle of

−→
C 6 . The arcs of

−→
C 6 are alternately labeled 1

and r− 1 so that the first and last arcs of the directed s -cycle get the label 1 and

each arc in A(
−→
C 7) is assigned the same label of its symmetric arc in

−→
C 6 . Thus, the

sum of the labels of each of the directed cycles in R′ is r� s
2
�+1 , which is relatively

prime to r .

Lemma 3.2. If s ≥ 3 is an odd integer and r ≥ 3 , then Crs |Cr ×K2s .

Proof. We complete the proof in three cases.
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Case 1. s ≥ 7 .

Let V (K∗
2s) = {a0, a1, a2, . . . as−1, b0, b1, b2, . . . , bs−1} . Obtain a directed s -cycle de-

composition C of K∗
2s with arcs labeled 1 or r − 1 as in the proof of Lemma 3.1.

We assume that V (K2s) = V (K∗
2s) .

To each directed s -cycle in C , we construct an rs -cycle in Cr×K2s
∼= K2s×Cr

as follows: let
−→
Cs ∈ C . For our convenience, let

−→
Cs = (w0, w1, . . . , ws−1) and

Cr = (v1, v2, . . . , vr) . Then V (
−→
Cs)× V (Cr) =

⋃s−1
i=0

({wi} × V (Cr)
) ⊂ V (K2s × Cr) .

We denote {wi} × V (Cr) by Wi , 0 ≤ i ≤ s − 1 . If the label of the arc (wi, wi+1)

is r − 1 (respectively, 1) in
−→
Cs , then consider the set of edges Fr−1(Wi,Wi+1) (re-

spectively, F1(Wi,Wi+1) ) from Wi to Wi+1 in 〈Wi ∪Wi+1〉 ⊆ Cs × Cr ; in fact,
the label of an arc, namely, 1 or r − 1 of the directed s -cycle is used to de-
cide the distance of the 1 -factor from Wi to Wi+1 in 〈Wi ∪Wi+1〉 ; recall that
F1(Wi,Wi+1) = Fr−1(Wi+1,Wi) . Then

⋃s−1
i=0 F�i(Wi,Wi+1) , where �i is the label of

the arc (wi, wi+1) in
−→
Cs , is a cycle of length rs , as the sum

∑s−1
i=0 �i is relatively

prime to r . Thus each directed cycle
−→
Cs of K∗

2s yields a cycle of length rs in the
graph K2s × Cr

∼= Cr ×K2s .

Case 2. s = 5 .

Let V (K10) = {a0, a1, . . . , a4, b0, b1, . . . , b4} , Ai = {ai} × V (Cr) , 0 ≤ i ≤ 4 , and
Bi = {bi}× V (Cr) , 0 ≤ i ≤ 4 . Let σ = (A0A1A2A3A4)(B0B1B2B3B4) be a permu-
tation, where Ai (respectively, Bj ) is the partite set of K10×Cr that corresponds to
the vertex ai (respectively, bj ) of K10 . Then the eighteen 5r -cycles which decom-
pose the graph K10 × Cr are listed below; (recall that F1(Ai, Bj) = Fr−1(Bj , Ai) ).

C i
1 = F1

(
σi(A0), σ

i(B4)
)⊕Fr−1

(
σi(B4), σ

i(A1)
)⊕F1

(
σi(A1), σ

i(B3)
)⊕

Fr−1

(
σi(B3), σ

i(A2)
)⊕F1

(
σi(A2), σ

i(A0)
)
, 0 ≤ i ≤ 4;

C i
2 = F1

(
σi(A0), σ

i(A2)
)⊕Fr−1

(
σi(A2), σ

i(B3)
)⊕F1

(
σi(B3), σ

i(A1)
)⊕

Fr−1

(
σi(A1), σ

i(B4)
)⊕F1

(
σi(B4), σ

i(A0)
)
, 0 ≤ i ≤ 4;

C11 = F1(A0, A1) ⊕ Fr−1(A1, B1) ⊕ F1(B1, B2) ⊕ Fr−1(B2, B0) ⊕ Fr−1(B0, A0);
C12 = F1(A1, A2) ⊕ Fr−1(A2, B2) ⊕ Fr−1(B2, B3) ⊕ F1(B3, B1) ⊕ Fr−1(B1, A1);
C13 = F1(A2, A3) ⊕ F1(A3, B3) ⊕ F1(B3, B4) ⊕ Fr−1(B4, B2) ⊕ Fr−1(B2, A2);
C14 = Fr−1(A3, A4) ⊕ F1(A4, B4) ⊕ Fr−1(B4, B0) ⊕ F1(B0, B3) ⊕ F1(B3, A3);
C15 = Fr−1(A4, A0) ⊕ Fr−1(A0, B0) ⊕ F1(B0, B1) ⊕ Fr−1(B1, B4) ⊕ F1(B4, A4);
C16 = Fr−1(A0, A4) ⊕ Fr−1(A4, A3) ⊕ F1(A3, A2) ⊕ F1(A2, A1) ⊕ F1(A1, A0);
C17 = Fr−1(B0, B2) ⊕ Fr−1(B2, B4) ⊕ Fr−1(B4, B1) ⊕ F1(B1, B3) ⊕ F1(B3, B0);
C18 = F1(B1, B0) ⊕ Fr−1(B0, B4) ⊕ F1(B4, B3) ⊕ Fr−1(B3, B2) ⊕ F1(B2, B1) .

Case 3. s = 3 .

Let V (K6) = {w1, w2, . . . , w6}. Let V (K6 × Cr) = V (K6) × V (Cr) =
⋃6

i=1

({wi} ×
V (Cr)

)
. We denote {wi} × V (Cr) by Wi, 1 ≤ i ≤ 6. Then the ten 3r -cycles which

decompose the graph K6 × Cr are listed below;
C1 = F1(W1, W4) ⊕ F1(W4, W2) ⊕ Fr−1(W2, W1);
C2 = F1(W2, W5) ⊕ Fr−1(W5, W3) ⊕ F1(W3, W2);
C3 = F1(W3, W4) ⊕ F1(W4, W6) ⊕ Fr−1(W6, W3);
C4 = F1(W4, W1) ⊕ Fr−1(W1, W5) ⊕ F1(W5, W4);
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C5 = F1(W5, W2) ⊕ Fr−1(W2, W6) ⊕ Fr−1(W6, W5);
C6 = F1(W6, W1) ⊕ Fr−1(W1, W3) ⊕ Fr−1(W3, W6);
C7 = Fr−1(W1, W2) ⊕ F1(W2, W3) ⊕ Fr−1(W3, W1);
C8 = F1(W4, W3) ⊕ Fr−1(W3, W5) ⊕ Fr−1(W5, W4);
C9 = Fr−1(W5, W1) ⊕ F1(W1, W6) ⊕ F1(W6, W5);
C10 = Fr−1(W6, W2) ⊕ F1(W2, W4) ⊕ Fr−1(W4, W6).

Corollary 3.1. If s ≥ 3 is an odd integer, r ≥ 3 and Cr |G , then Crs |G×K2s .

Proof. As Cr |G , G×K2s = (Cr×K2s)⊕ (Cr×K2s)⊕· · ·⊕ (Cr×K2s) . Now apply
Lemma 3.2 to the graph Cr ×K2s .

Lemma 3.3. Let (s,m) �= (1, 2) and let r ≥ 3 be an odd integer with m ≡
2 (mod 4) . If s |m, then Crs |Cr ×Km .

Proof. Since m ≡ 2 (mod 4) , let m = 2� , where � is an odd integer.

Case 1. s is odd.

Subcase 1.1. s = 1 .
By Theorem 1.8, Cr |Cr ×Km .

Subcase 1.2. s ≥ 3 .
Since s |m , s | � . Let m = 2st , where t is an odd integer. If t = 1 , then s = �
and hence Crs |Cr × K2s , by Lemma 3.2. So we assume that t ≥ 3 . The graph
Cr ×Km = Cr ×K2st = Cr ×

(
tK2s ⊕ (Kt ◦K2s)

)
= t(Cr × K2s)⊕Cr × (Kt ◦K2s) .

By Lemma 3.2, Crs | (Cr ×K2s) . Further, the graph

Cr × (Kt ◦K2s) = (Cr ×Kt) ◦K2s

= (Cr ⊕ Cr ⊕ · · · ⊕ Cr) ◦K2s, by Theorem 1.8

=
(
(Cr ◦Ks)⊕ (Cr ◦Ks)⊕ · · · ⊕ (Cr ◦Ks)

)◦K2

= (Crs ⊕ Crs ⊕ · · · ⊕ Crs) ◦K2, by Theorem 1.13

= (Crs ◦K2)⊕ (Crs ◦K2)⊕ · · · ⊕ (Crs ◦K2)

= Crs ⊕ Crs ⊕ · · · ⊕ Crs, by Theorem 1.13.

Case 2. s ≥ 2 is even.
Since s |m, s = 2q, where q is an odd integer.

Subcase 2.1. q = 1 .

Now, Cr ×Km = (Cr ×K2)⊕ (Cr ×K2)⊕ · · · ⊕ (Cr ×K2) = C2r ⊕C2r ⊕ · · · ⊕C2r ,
since r is odd.

Subcase 2.2. q ≥ 3 .

Let m = 2qa = sa , where a is an odd integer. If a = 1 , then s = m . By
Theorem 1.5, Crs |Cr×K2q . So we assume that a ≥ 3 . Since Cr×Ksa = Cr×

(
aKs⊕
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(Ka ◦Ks)
)
= a(Cr ×Ks)⊕Cr × (Ka ◦Ks) , by Theorem 1.5, Crs |Cr ×Ks ; further,

Cr × (Ka ◦Ks) = (Cr ×Ka) ◦Ks

= (Cr ⊕ Cr ⊕ · · · ⊕ Cr) ◦Ks, by Theorem 1.8

= (Cr ◦Ks)⊕ (Cr ◦K9s)⊕ · · · ⊕ (Cr ◦Ks)

= Crs ⊕ Crs ⊕ · · · ⊕ Crs, by Theorem 1.13.

Corollary 3.2. Let (s,m) �= (1, 2) and let r ≥ 3 be an odd integer with m ≡
2 (mod 4) . If Cr |G and s |m , then Crs |G×Km .

Proof. Since Cr |G , we have G×Km = (Cr ×Km)⊕ (Cr ×Km)⊕ · · ·⊕ (Cr ×Km) .
Now apply Lemma 3.3 to the graph Cr ×Km .

Theorem 1.10 can be improved as follows using Corollary 3.2.

Theorem 3.1. Let (s,m) �= (1, 2) and let r ≥ 3 be an odd integer. If Cr |G and
s |m, then Crs |G×Km .

In the proof of the following lemma we obtain some decompositions based on [5].

Lemma 3.4. Let s ≥ 5 be an odd integer and r ≥ 3 . Then there exists a directed
s -cycle decomposition C of K∗

s+1 such that each arc of the directed cycles of C can
be assigned the label 1 or r−1 , so that both the symmetric pair of arcs (ai, aj) and
(aj , ai) receive the same label and the sum of the labels of the arcs on each of the
directed cycles of C is relatively prime to r .

Proof. Let s = 2k + 1 and V (K∗
s+1) = {a∞, a0, a1, . . . , as−1} . Let σ = (a∞)(a0a1a2

. . . as−1) be a permutation in V (K∗
s+1) . We obtain a

−→
Cs -decomposition C of K∗

s+1

as follows.

Case 1. k is even.

Let
−→
C : a0 a1 a2k a2 a2k−1 . . . ak

2
a 3k+2

2
ak+4

2
a 3k

2
. . . ak+2 ak+1 a∞ a0 be a (base) directed

cycle of length s . Now C ′ = {−→C , σ(
−→
C ), σ2(

−→
C ), . . . , σs−1(

−→
C )} is a decomposition

of K∗
s+1 into directed s -cycles; observe that

−→
C misses exactly one vertex, namely,

a(k+2)/2 of K∗
s+1 . Each of the distances ±1,±2,±3,±4, . . . ,±(k − 1),−k appears

exactly once in each of its directed s -cycles of C ′ , except the distance k ; see Fig. 13.

Assign the label 1 (respectively, r − 1 ) to the arcs of distances ±(2i+ 1) , 0 ≤
i ≤ (s− 5)/4 (respectively, ±2i, 1 ≤ i ≤ (s− 5)/4 ) to each of the directed s -cycles
of C ′ ; assign the label r − 1 to the arcs

(
σi(ak+1), σ

i(a∞)
)
and

(
σi(a∞), σi(a0)

)
,

0 ≤ i ≤ s − 1 of σi(
−→
C ) . We label the arcs (σi(ak

2
), σi(a 3k+2

2
)) , 0 ≤ i ≤ s − 1 as

follows: for 0 ≤ � ≤ (s − 1)/2 , the arc
(
σ2�(ak

2
), σ2�(a 3k+2

2
)
)

is assigned the label

1 and, 0 ≤ � ≤ (s − 3)/2 , the arc
(
σ2�+1(ak

2
), σ2�+1(a 3k+2

2
)
)

is assigned the label
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r − 1 . It can easily be verified that the sum of the labels of the arcs of each of the
directed s -cycles of C ′ is relatively prime to r .

Case 2. k is odd.

Let
−→
C 1 : a0a1a2ka2a2k−1 . . . ak−1

2
a 3k+3

2
ak+3

2
a 3k+1

2
. . . ak+2ak+1a∞a0 be a (base) directed

cycle of length s . Let σ = (a∞)(a0a1 . . . as−1) be a permutation of V (K∗
s+1) . A set

of s directed s -cycles C ′ is given by {−→C 1, σ(
−→
C 1), σ2(

−→
C 1), . . . , σs−1(

−→
C 1)} ; observe

that
−→
C 1 misses exactly one vertex, namely, a(k+1)/2 of K∗

s+1 . It can be seen that
each of the distances ±1,±2,±3,±4, . . . ,±(k− 1),−k appears exactly once in each
of its directed s -cycles of C ′ , except the distance k ; see Fig. 14.
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A (base) directed cycle
−→
C with the distances marked on the arcs of the directed cycle.

Assign the label 1 (respectively, r − 1 ) to the arcs of distances ±(2i + 1) ,
0 ≤ i ≤ (s − 7)/4 (respectively, ±2i , 1 ≤ i ≤ (s − 3)/4 ) to the directed s -cycles

of C ′ . We have yet to label the three arcs of σi(
−→
C 1) , namely,

(
σi(ak+1), σ

i(a∞)
)
,(

σi(a∞), σi(a0)
)
,
(
σi(a 3k+3

2
), σi(ak+3

2
)
)
, 0 ≤ i ≤ s− 1 . Other than these three arcs

of σi(
−→
C 1) , the sum of the labels of the arcs of each of the directed cycles of C ′ is
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a multiples of r , since both 1 and r − 1 occur an equal number of times. These
three arcs with labels are shown in Fig. 15; on these three arcs the sum of the labels
is relatively prime to r .
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A (base) directed cycle
−→
C 1 with the distances marked on the arcs of the cycle.
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Regardless of the parity of k , we prove that K = K∗
s+1 −A(C ′) can be decom-

posed into
−→
Cs . Clearly, the arc set of K is all arcs of distance k in K∗

s+1 ; these arcs

induce a directed s -cycle
−→
C2 = a0aka2kak−1 . . . ak+1a0 . In

−→
C 2 , assign the label to

the arc (ai, ai+k) of distance k , the same label of the arc (ai+k, ai) of distance −k
in the cycles of C ′ . When k is even, the arcs of distance −k in the directed cycles
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of C ′ are exactly
(
σi(ak

2
), σi(a 3k+2

2
)
)
, 0 ≤ i ≤ s−1 , and these arcs are assigned the

label 1 or r − 1 according as i is even or odd, respectively. Hence the sum of the

labels of the arcs of
−→
C 2 is relatively prime to r , since s is odd. When k is odd, the

arcs of distance −k in the directed cycles of C ′ are exactly
(
σi(a 3k+3

2
), σi(ak+3

2
)
)
,

0 ≤ i ≤ s− 1 , and these arcs are assigned the label 1 for 0 ≤ i ≤ �s/2� , and r− 1

for �s/2� ≤ i ≤ s − 1 . Hence the sum of the labels of the arcs of
−→
C 2 is relatively

prime to r , because s is odd.

Theorem 3.2. If s ≥ 3 is an odd integer and r ≥ 3 , then Crs |Cr ×Ks+1 .

Proof. We consider two cases.

Case 1. s ≥ 5 .

Let V (K∗
s+1) = {a∞, a0, a1, a2, . . . as−1} . Obtain a directed s -cycle decomposition

C of K∗
s+1 with arcs labeled 1 or r − 1 as in the proof of Lemma 3.4. We assume

that V (Ks+1) = V (K∗
s+1) .

To each directed s -cycle in C , we obtain an rs -cycle in Cr×Ks+1
∼= Ks+1×Cr

as follows: let
−→
Cs ∈ C . For our convenience, let

−→
Cs = (a1, a2, . . . , as) and Cr =

(v1, v2, . . . , vr) . Then V (
−→
Cs)× V (Cr) =

⋃s
i=1

({ai} × V (Cr)
) ⊂ V (Ks+1 × Cr) . We

denote {ai} × V (Cr) by Ai , 1 ≤ i ≤ s . If the label of the arc (ai, ai+1) is r − 1

(respectively, 1) in
−→
Cs , then consider the set of edges Fr−1(Ai, Ai+1) (respectively,

F1(Ai, Ai+1) ) from Ai to Ai+1 in 〈Ai ∪ Ai+1〉 ⊆ Cs × Cr ; in fact, the label of an
arc, namely, 1 or r− 1 of the directed s -cycle, is used to decide the distance of the
1 -factor from Ai to Ai+1 in 〈Ai ∪Ai+1〉 . Then

⋃s
i=1 F�i(Ai, Ai+1) , where �i is the

label of the arc (ai, ai+1) in
−→
Cs , is a cycle of length rs , since the sum

∑s−1
i=0 �i is

relatively prime to r . Thus each directed cycle
−→
Cs of K∗

s+1 yields a cycle of length
rs in the graph Ks+1 × Cr

∼= Cr ×Ks+1 .

Case 2. s = 3 .

Let u1, u2, u3, u4 be the vertices of K4 . Then V (K4 × Cr) = V (K4) × V (Cr) =⋃4
i=1

({ui} × V (Cr)
)
. We denote {ui} × V (Cr) by Ui , 1 ≤ i ≤ 4 . Then the four

3r -cycles which decompose the graph K4 × Cr are listed below;

C1 = F1(U1, U2)⊕ Fr−1(U2, U3)⊕ F1(U3, U1);

C2 = Fr−1(U1, U4)⊕ Fr−1(U4, U2)⊕ F1(U2, U1);

C3 = F1(U1, U3)⊕ F1(U3, U4)⊕ Fr−1(U4, U1);

C4 = Fr−1(U2, U4)⊕ F1(U4, U3)⊕ Fr−1(U3, U2).

Corollary 3.3. If s ≥ 3 is an odd integer, r ≥ 3 and Cr |G , then Crs |G×Ks+1 .

Proof. Since Cr |G , G ×Ks+1 = (Cr ×Ks+1) ⊕ (Cr ×Ks+1) ⊕ · · · ⊕ (Cr ×Ks+1) .
Now apply Theorem 3.2 to the graph Cr ×Ks+1 .
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4 Proof of the main result

We use the following theorem in the proof of Theorem 1.1.

Theorem 4.1. [30]. If m,n ≥ 3 , then C4 | (Km × Kn)(λ) if and only if
4 | λ(m

2

)
n(n− 1) and (Km ×Kn)(λ) is an even regular graph.

Proof of Theorem 1.1. The proof of necessity is obvious, and we prove the suf-
ficiency in two cases. Because of Theorem 4.1, we suppose that p ≥ 3 . Since
the tensor product is commutative, we assume that m is odd; so m ≡ 1, 3 or 5
(mod 6 ).

Case 1. n ≡ 0 or 1 (mod p2 ).

Subcase 1.1. m ≡ 1 or 3 (mod 6 ).

By Theorem 1.3, C3 |Km and hence Km × Kn = (C3 × Kn) ⊕ (C3 × Kn) ⊕ · · · ⊕
(C3 ×Kn) . Apply Theorem 2.1 to C3 ×Kn .

Subcase 1.2. m ≡ 5 (mod 6 ).

By Theorem 1.3, Km = C3 ⊕ C3 ⊕ · · · ⊕ C3 ⊕ C5 ⊕ C5 . The graph Km × Kn =
(C3×Kn)⊕(C3×Kn)⊕· · ·⊕(C3×Kn)⊕(C5×Kn)⊕(C5×Kn) . Since Cp2 |C3×Kn

and Cp2 |C5 ×Kn , by Theorems 2.1 and 2.2, Cp2 |Km ×Kn .

Case 2. n �≡ 0 (mod p2 ) and n �≡ 1 (mod p2 ).

Subcase 2.1. p2 | (m
2

)
.

Clearly, m ≡ 0 or 1 (mod p2 ). Since m is odd, m ≡ 1 or p2 (mod 2p2 ). Since
Cp2 |Km , by Theorem 1.2, Km ×Kn = (Cp2 ×Kn)⊕ (Cp2 ×Kn)⊕ · · ·⊕ (Cp2 ×Kn) .
Now apply Theorem 1.8 to Cp2 ×Kn .

Subcase 2.2. p | (m
2

)
and p |n(n− 1) .

Since Cp |Km , by Theorem 1.2, it suffices to show that Cp2 |Cp ×Kn , where n ≡ 0
or 1 (mod p ).

Subcase 2.2.1. n is odd.

Since Cp |Kn , by Theorem 1.2, Cp ×Kn = (Cp ×Cp)⊕ (Cp ×Cp)⊕ · · · ⊕ (Cp ×Cp)
and Cp2 |Cp × Cp , by Theorem 1.7.

Subcase 2.2.2. n is even.

If n ≡ 0 (mod p ), then Cp2 |Cp×Kn , by Theorem 3.1. If n ≡ 1 (mod p ), then let
n = kp + 1 , k odd (since n is even). If k = 1 , the result follows by Theorem 3.2
and so we assume that k ≥ 3 . The graph

Cp ×Kkp+1 = Cp×
(
Kp+1 ⊕Kp+1 ⊕ · · · ⊕Kp+1︸ ︷︷ ︸

k times

⊕Kk ◦Kp

)
= Cp ×Kp+1 ⊕ Cp ×Kp+1 ⊕ · · · ⊕ Cp ×Kp+1︸ ︷︷ ︸

k times

⊕Cp × (Kk ◦Kp);

and Cp2 | (Cp × Kp+1) , by Theorem 3.2 and Cp |Kk ◦ Kp , by Theorem 1.6. Con-
sequently, Cp × (Kk ◦ Kp) = Cp × (Cp ⊕ Cp ⊕ · · · ⊕ Cp) and Cp2 |Cp × Cp , by
Theorem 1.7. This completes the proof of the theorem.
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