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Abstract

Let C be an infinite set of symbols. A function L is a list assignment to
a graph G if L assigns to each vertex of G a non-empty finite subset of
C, called a list. A proper L-coloring of G is an assignment of “colors”to
the vertices of G, from their lists, so that adjacent vertices are colored
with different colors. Interpreted as a theorem about proper list colorings
of complete graphs, P. Hall’s theorem on systems of distinct representa-
tives inspires a generalization, a necessary condition for proper colorings,
known as Hall’s Condition (HC). In this paper we present several refine-
ments of HC, and for each of them, we look into the question: for which
graphs is satisfaction of this condition by the graph and a list assignment
L sufficient for the existence of a proper L-coloring of the graph?

1 Introduction

Graph list coloring was introduced in the late 1970s independently by Vizing [17]
with the intention to study total colorings, and Erdős, Rubin and Taylor [5], with
motivation from Dinitz’s conjecture on n × n arrays. In [10] and [11] Hilton and
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Johnson brought forth a necessary condition on a graph with a list assignment L
for the existence of a proper L-coloring, and proceeded to raise many questions and
give very few answers. In this paper we will raise questions and give a few answers
concerning certain strengthenings, or refinements, of that necessary condition. But
first, here are some definitions in graph theory. The reader can refer to [18].

Throughout this paper, the graph G = (V,E) will be a finite simple graph with
vertex set V = V (G) and edge set E = E(G).

A list assignment to the graph G is a function L which assigns a non-empty finite
set (list) L(v) to each vertex v ∈ V (G).

A proper L-coloring of G is a function ψ : V (G) → ⋃
v∈V (G) L(v) satisfying, for

every u, v ∈ V (G),

(i) ψ(v) ∈ L(v),

(ii) uv ∈ E(G) ⇒ ψ(v) �= ψ(u).

The choice number or list-chromatic number of G, denoted by ch(G), is the small-
est integer k such that there is always a proper L-coloring ofG if L satisfies |L(v)| ≥ k
for every v ∈ V (G). With χ denoting the chromatic number, it is easy to see, and
well known, that χ(G) ≤ ch(G). The extremal equation χ(G) = ch(G) is a major
research interest; see, for instance, [4] and [5].

Theorem 1.1 (P. Hall [9]). Suppose A1, A2, . . . , An are (not necessarily distinct)
finite sets. There exist distinct elements a1, a2, . . . , an such that ai ∈ Ai, i =
1, 2, . . . , n, if and only if for each J ⊆ {1, 2, . . . , n}, |⋃j∈J Aj | ≥ |J |.

A list of distinct elements a1, . . . , an such that ai ∈ Ai, i = 1, . . . , n, is called a
system of distinct representatives of the sets A1, . . . , An. A proper L-coloring of a
complete graph Kn is simply a system of distinct representatives of the finite lists
L(v), v ∈ V . Therefore, as noted in [10], Hall’s theorem can be restated as:

Theorem 1.2. (Hall’s theorem restated). Suppose that L is a list assignment to
Kn. There is a proper L-coloring of Kn if and only if, for all U ⊆ V (Kn), |L(U)| =
|⋃u∈U L(u)| ≥ |U |.

Let L be a list assignment to a simple graph G, H a subgraph of G and C the
set of possible colors. If ψ : V (G) → C is a proper L-coloring of G, then for any
subgraph H ⊂ G, ψ restricted to V (H) is a proper L-coloring of H .

For any σ ∈ C, let H(σ, L) = < {v ∈ V (H) | σ ∈ L(v)} > denote the subgraph
of H induced by the support set {v ∈ V (H) | σ ∈ L(v)}. For convenience, we
sometimes simply write Hσ.

For each σ ∈ C, ψ−1(σ) = {v ∈ V (G) | ψ(v) = σ} ⊆ V (Gσ); ψ
−1(σ) is an

independent set because ψ is a proper L-coloring. Further, ψ−1(σ)∩V (H) ⊆ V (Hσ).
So, |ψ−1(σ) ∩ V (H)| ≤ α(Hσ), where α denotes the vertex independence number.
This implies that
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∑
σ∈C

α(Hσ) ≥
∑
σ∈C

|ψ−1(σ) ∩ V (H)| = |V (H)| for all H ⊆ G.

When G and L satisfy the inequality∑
σ∈C

α(Hσ) ≥ |V (H)| (1)

for each subgraph H of G, they are said to satisfy Hall’s Condition. By the discussion
preceding, Hall’s Condition is a necessary condition for a proper L-coloring of G.
Because removing edges does not diminish the vertex independence number, for G
and L to satisfy Hall’s Condition it suffices that (1) holds for all induced subgraphs
H of G.

Hall’s Condition is sufficient for a proper coloring when G = Kn, because if H is
an induced subgraph of Kn then for each σ ∈ C,

α(Hσ) =

⎧⎨
⎩

1 if σ ∈
⋃

v∈V (H)

L(v)

0, otherwise.

So ∑
σ∈C

α(Hσ) = |
⋃

v∈V (H)

L(v)| ;

therefore Hall’s Condition, that∑
σ∈C

α(Hσ) ≥ |V (H)|

for every such H , is just a restatement of the condition in Theorem 1.2. (It is
necessary to point out here that if σ /∈ L(v) for all v ∈ V (H) then Hσ is the
null graph, and α(Hσ) = 0.) Consequently, Hall’s theorem may be restated: For
complete graphs, Hall’s Condition on the graph and a list assignment suffices for a
proper coloring.

The class of graphs for which Hall’s condition suffices for the existence of proper
list colorings is small; see Theorems 1.3 and 2.3 . Figure 1 shows the smallest graph
with a list assignment L0 for which Hall’s Condition holds, and yet G has no proper
L0-coloring.

Remark 1.1. It is clear that if H is an induced subgraph of G and H �= G, then
H ⊆ G−v for some v ∈ V (G). So, if G−v has a proper L-coloring, then H ⊆ G−v
and L must satisfy (by necessity) (1). Thus, in practice, in order to show that G and
L satisfy Hall’s Condition, it suffices to verify that G− v is properly L-colorable for
each v ∈ V (G) and that G itself satisfies the inequality (1).

Denoted by h(G), the Hall number of a graph G is the smallest positive integer k
such that there is a proper L-coloring of G whenever G and L satisfy Hall’s Condition
and |L(v)| ≥ k for each v ∈ V (G). Clearly, h(G) = 1 if and only if the satisfaction
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of Hall’s Condition by G and a list assignment L is sufficient for the existence of a
proper L-coloring of G. Therefore, h(Kn) = 1 for each n = 1, 2, . . .. It is well-known
(see, for instance, [5] or [12]) that for every n-cycle Cn, n ≥ 4, h(Cn) = 2.

Example 1.1. The following example originally appeared in [10]. Consider the four-
cycle, C4, in Figure 1, a bipartite graph with parts Vi = {ui, vi}, i = 1, 2 and L0 the
list assignment indicated.

�

�

�

�
u1 v2

u2 v1

{a, b} {b, c}

{a, c} {c}

Figure 1: A list assignment to C4.

It is straightforward to see that there is no proper L0-coloring of C4, even though
C4 and L0 satisfy Hall’s Condition. (Use the method suggested in Remark 1.1 to
verify the latter claim.)

Next, we present a couple of results that can be found in [11].

Theorem 1.3. A graph G has the property that for all L, if G and L satisfy Hall’s
Condition then there is a proper L-coloring of G, if and only if every block of G is a
clique.

Lemma 1.1. Hall’s Condition holds for G and L if and only if the inequality (1)
holds for each connected induced subgraph of G.

Suppose G and L satisfy Hall’s Condition and let H be a subgraph of G. H is
said to be an L-tight subgraph of G if∑

σ∈C
α(H(σ, L)) = |V (H)|.

If H is non-induced but is L-tight, then the subgraph induced by the vertices of
H will also be L-tight. To see this, let H ′ = G[V (H)], the subgraph of G induced
by the vertices of H . Obviously, α(H ′(σ, L)) ≤ α(H(σ, L)) for all σ ∈ C and all
L : V (G) → F(C) = {finite subsets of C}. If G and L satisfy Hall’s condition and
H is L-tight, then

|V (H)| = |V (H ′)| ≤
∑
σ∈C

α(H ′(σ, L)) ≤
∑
σ∈C

α(H(σ, L)) = |V (H)|.
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Although we will be considering L-tight subgraphs of G only under the assump-
tion that G and L satisfy Hall’s condition, we can allow a subgraph H of G to be
L-tight even in the absence of this assumption. When H is L-tight, then in every
proper L-coloring of H , should any exist, every color σ has to appear α(H(σ, L))
times; i.e., for each σ ∈ C, a maximum independent subset of V (Hσ) is colored σ.
This observation will be much used in the proofs in sections 2, 3, and 4.

The careful reader may have noticed that our definitions so far do not make
sense unless we allow the existence of a null graph Γ, a graph with no vertices and,
therefore, no edges. If σ ∈ C appears on no list L(v), v ∈ V (G), then H(σ, L) = Γ for
every subgraph H of G. We consider Γ to be a subgraph of every simple graph. Since,
clearly, α(Γ) = 0 = |V (Γ)|, Γ is therefore an L-tight subgraph of every subgraph of
a graph G with list assignment L.

In the next section we introduce 4 refinements of Hall’s condition, of two distinct
types, and verify that each condition on a graphG and a list assignment L is necessary
for the existence of a proper L-coloring of G. For each condition HCX on G and L
we define a graph G to be HallX if the satisfying of the condition HCX on G and L
is sufficient for the existence of a proper L-coloring of G. We show that the families
HallX are closed under taking induced subgraphs.

In sections 3 and 4 we show that each of the families HallX are closed under the
operation of attaching a clique at a single vertex; this is also a property possessed
by the family Hall associated with HC, our abbreviation of Hall’s condition. We also
show that cycles of length ≥ 4, and K4-minus-an-edge, which are not Hall, are HallX
for each of the 4 new families.

In section 5 we introduce the Sudoku-Hall conditions, of which we know little. In
section 6 we pose some questions.

2 Refinements of Hall’s Condition

From here on, we will abbreviate Hall’s Condition to HC. The following definitions
are of conditions on a pair (G,L), where L is a list assignment to the graphG. In each
case, the condition is necessary for the existence of a proper L-coloring of G, and in
each case, the condition is at least as strong as HC, meaning that if G and L satisfy
the condition, then they must satisfy HC. This will be obvious in all but Definitions
2.3 and 2.4; in the other definitions, HC will be an explicit requirement. In these
definitions, C will stand for an infinite set of colors such that all list assignments
assign finite subsets of C to vertices of graphs. When L is a list assignment to G and
S ⊆ V (G), let L(S) =

⋃
v∈S L(v). When σ ∈ C\L(V (G)) then G(σ, L) = Γ, the null

graph.

Definition 2.1. G and L are said to satisfy Hall’s Condition plus, denoted HC+,
if they satisfy HC and there is an indexed family {Sσ : σ ∈ C} of independent subsets
of V (G) satisfying:

(i) Sσ ⊆ V (G(σ, L)) for all σ ∈ C (i.e., for all vertices v ∈ Sσ, σ ∈ L(v)).
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(ii) For each L-tight subgraph H of G, |Sσ ∩ V (H)| = α(H(σ, L)).

In the previous definition, any collection {Sσ : σ ∈ C} of independent subsets of
V (G) satisfying (i) and (ii) is called an HC+ -satisfying family with respect to the
pair (G,L).

Definition 2.2. G and L are said to satisfy Hall’s Condition plus plus, denoted
HC++, if they satisfy HC+, and in some HC+ -satisfying family {Sσ : σ ∈ C} of
independent subsets of V (G), the Sσ’s are pairwise disjoint. (That is, Sσ ∩ Sτ = ∅
for σ �= τ).

In both definitions, when V (G(σ, L)) = ∅—i.e., when σ does not appear in the
L-lists on G—then Sσ = ∅ is forced. But it can happen that Sσ = ∅ even when
G(σ, L) �= Γ.

HC ++-satisfying families are defined analogously to HC+ - satisfying families.

If ψ is a proper L-coloring of G, then the ψ supports Sσ = ψ−1(σ) = {v ∈
V |ψ(v) = σ}, σ ∈ C form an HC++ -satisfying family for G and L. So, HC++ (and
hence HC+) is a necessary condition for a proper L-coloring of G.

For an induced subgraph H of G, the conditional independence number of G with
respect to H , denoted α(G|H), is the maximum cardinality of an independent set I
of V (G) such that |I ∩ V (H)| = α(H).

Definition 2.3. A graph G with list assignment L is said to satisfy Hall’s Condi-
tion star, denoted HC*, if ∑

σ∈C
α(Hσ|Tσ) ≥ |V (H)|, (2)

for every induced subgraph H of G and every induced L-tight subgraph T of H .

Definition 2.4. A graph G with a list assignment L is said to satisfy Hall’s Con-
dition star star, denoted HC**, if∑

σ∈C
min
T�H

α(Hσ|Tσ) ≥ |V (H)|, (3)

for every induced subgraph H of G, where the minimum is taken over all L-tight
induced subgraphs T of H . (T � H means: T is an induced subgraph of H .)

As mentioned in section 1, we consider the null graph Γ to be an L-tight subgraph
of any induced subgraph H of G; Γσ = Γ for each σ ∈ C. Since α(H|Γ) = α(H) for
all H , it follows that HC**=⇒ HC* =⇒ HC.

Theorem 2.1. HC** is a necessary condition for the existence of a proper L-coloring
of a graph G.
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Proof. Suppose ψ is a proper L-coloring of G. We proceed to show that HC** holds.
Let H be an induced subgraph of G. Suppose T is an L-tight induced subgraph of
H . Then ∑

σ∈C
α(Tσ) = |V (T )|, (4)

and the number of times that σ ∈ C appears as a color assigned by the function
ψ on T , i.e., |ψ−1(σ) ∩ V (T )|, is actually α(Tσ). Therefore the number of times an
arbitrary color σ ∈ C appears as a color in H must satisfy the inequality

|ψ−1(σ) ∩ V (H)| ≤ α(Hσ|Tσ) (5)

because ψ−1(σ) ∩ V (H) ⊆ V (Hσ) is an independent set of vertices of Hσ which
extends (by T being L-tight) a maximum independent set of vertices of Tσ. Since
inequality (5) holds for every L-tight induced subgraph T of H , it must be that

|V (H)| =
∑
σ∈C

|ψ−1(σ) ∩ V (H)| ≤
∑
σ∈C

min
T�H

α(Hσ|Tσ)

which establishes the inequality (3).

Definition 2.5. For ♦ ∈ { empty string, +, ++, *, ** }, G is a Hall♦ graph if,
whenever G, L satisfy HC♦, there is a proper L-coloring of G.

We convene that “G is a Hall♦ graph”, “G is Hall♦”, and “G ∈ Hall♦” all mean
the same thing. Since HC++ =⇒ HC+ =⇒ HC and HC** =⇒ HC* =⇒ HC, it
follows that Hall++ ⊇ Hall+ ⊇ Hall and that Hall** ⊇ Hall* ⊇ Hall.

The rest of this paper is mainly devoted to proving some fundamental results
about the graph families Hall♦. There are two main results, in each case:

1. If G ∈ Hall♦ and H is an induced subgraph of G, then H ∈ Hall♦.

2. If G ∈ Hall♦ and X is obtained from G by attaching a clique to G at a single
vertex of G, then X ∈ Hall♦.

We will dispose the first of these right here.

Theorem 2.2. Suppose that ♦ ∈ { empty string, +, ++, *, ** }, G ∈ Hall♦ and
H is an induced subgraph of G. Then H ∈ Hall♦.

Proof. Suppose that L is a list assignment to H such that H and L satisfy HC♦.
Extend L to a list assignment L̃ to G such that for all v ∈ V (G)\V (H), |L̃(v)| >
|V (G)|, and the sets L̃(v), v ∈ V (G)\V (H), are pairwise disjoint, and each disjoint
from L(V (H)) =

⋃
u∈V (H) L(u). Then the only L̃-tight induced subgraphs of G

are L-tight induced subgraphs of H . It is then straightforward to verify, from the
assumption that H and L satisfy HC♦, that G and L̃ satisfy HC♦. Therefore,
because G ∈ Hall♦, there is a proper L̃-coloring of G. The restriction of such a
coloring of H is a proper L-coloring of H . Since L was an arbitrary list assignment
to H such that H and L satisfy HC♦, it follows that H ∈ Hall♦.
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A family G of (finite simple) graphs has a forbidden-induced-subgraph charac-
terization if and only if there is a collection F of graphs such that G ∈ G if and
only G contains no element of F as an induced subgraph. The following lemma is
folklorically well known.

Lemma 2.1. A family G of graphs has a forbidden-induced-subgraph characterization
if and only if G is closed under the operation of taking induced subgraphs.

Proof. Suppose that G ∈ G if and only if G contains no subgraph in F as an induced
subgraph. Since an induced subgraph of an induced subgraph is an induced subgraph,
it follows that every induced subgraph of any G ∈ G is in the family G.

Now suppose that G is closed under the operation of taking induced subgraphs.
Take F = {F | F is a finite simple graph and F /∈ G}. Then G ∈ G if and only if
G has no induced subgraph from F .

Given G, closed under taking induced subgraphs, one would like as small a
collection of forbidden induced subgraphs characterizing G as can be found. The
family given in the proof of Lemma 2.1 is the largest such characterizing family,
the opposite of what is desired. In every case the smallest characterizing fam-
ily is the family of “smallest” graphs not in G, otherwise known as the family
of graphs vertex-critical with respect to the property of not being in G: F =
{H | H is a finite, simple graph, H /∈ G, and for every v ∈ V (H), H − v ∈ G}.
The following improvement of Theorem 1.3 gives the optimal forbidden-induced-
subgraph characterization of the Hall graphs. A proof can be found in [12].

Theorem 2.3. The following are equivalent.

(a) G ∈ Hall.

(b) Every block of G is a clique.

(c) G has no induced cycle subgraph Ct, t > 3, nor any induced K4-minus-an-edge.

In the next to last section of this paper we will give two more refinements of
Hall’s Condition, both referring to tight subgraphs of a graph with a list assignment
satisfying Hall’s Condition. We call these two the Sudoku-Hall condition and the
generalized Sudoku-Hall condition. Any mathematician who often attempts Sudoku
puzzles will, upon reading the definitions, quickly understand why we have chosen the
terminology. But why have we relegated these refinements to the next to last section?
Because we have nothing to say about them! For now we leave the exploration of
this new territory to others.

However, we can answer a burning question about these and all possible refine-
ments of HC which are distinguished from HC only by requirements concerning
tight subgraphs. The burning question: are any of these refinements sufficient as
well as necessary conditions on G and L for a proper L-coloring of G? In other
words, could there be such a condition, HCX, such that every finite simple graph is
HallX?
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We will show that the answer is no by giving one of many examples of a graph
G and a list assignment L satisfying HC such that G is not properly L-colorable
and there are no non-null L-tight subgraphs of G. [Perhaps we should stipulate that
“distinguished from HC only by requirements concerning tight subgraphs” includes
that whenever HC is satisfied and Γ is the only L-tight subgraph of G, then HCX
is satisfied.]

Example 2.1.

{d, e}

{c, e}

{c, d}

{b, e}

{b, d}

{b, c}

{a, e}

{a, d}

{a, c}

{a, b}

{a, b, c, d, e}

{a, b, c, d, e}

Figure 2: G = K2 ∨K10 with a list assignment.

The graph G in Figure 2 is K2 ∨ K10, the join of K2 with the empty graph on
10 vertices. The list assignment L assigns {a, b, c, d, e} to each vertex of K2 and
distributes the 10 two-subsets of {a, b, c, d, e} to the 10 vertices of K10. Therefore G
has no proper L-coloring, for in any such coloring, the colors on the vertices of K2

would form a two-subset of {a, b, c, d, e}, and thus one of the vertices of K10 would
not be colorable.

It is clear from that explanation that for every v ∈ V (G), G − v is properly L-

colorable. Further,
∑

σ∈{a,b,c,d,e}
α(Gσ) = 4 · 5 = 20 > |V (G)| = 12. Therefore G and L

satisfy Hall’s Condition. To see that G has no L-tight induced subgraph other than
Γ, the null graph, involves some checking that we leave to the reader. (The smallest∑
σ∈C

α(Hσ) − |V (H)| can be, as H ranges over non-null induced subgraphs of G, is

1 = 5 − 4 = 6 − 5, achieved in two different ways, one with |V (H)| = 4, and the
other with |V (H)| = 5.)

Is K2 ∨K10 the smallest graph with a list assignment satisfying the list of patho-
logical requirements given above? We do not know, but it is the smallest such graph
of the form K2 ∨Km, if the list assignments are confined to those of the type exhib-
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ited in Figure 2 : the vertices of the K2 are assigned the same list L, and the lists
on Km are 2-subsets of L.

We end this section with a rather technical lemma which allows us, in the proofs
to come, to consider only list assignments L to a graph G such that G(σ, L) is
connected, for all σ ∈ C.
Lemma 2.2. Suppose that L is a list assignment to G, σ ∈ C and L̃ is obtained
from L by replacing σ in the lists on some components of G(σ, L) by a symbol τ ∈
C\L(V (G)). Then:

(a) there is a proper L-coloring of G if and only if there is a proper L̃-coloring of
G; and,

(b) for ♦ ∈ { empty string, +, ++, * }, G and L satisfy HC♦ if and only if G
and L̃ satisfy HC♦. If G and L̃ satisfy HC**, then so do G and L.

Proof. Claim (a) is easy to see, so we prove claim (b).

Suppose that H is an induced subgraph of G. Because σ is replaced by τ on
entire components of G(σ, L), and thus on entire components of H(σ, L), which are
subgraphs of components of G(σ, L), it is clear that α(H(σ, L)) = α(H(σ, L̃)) +

α(H(τ, L̃)), and therefore, since τ /∈ L(V (G)),
∑
μ∈C

α(H(μ, L)) =
∑
μ∈C

α(H(μ, L̃)).

Since this holds for arbitrary H , it follows that G and L satisfy HC if and only
if G and L̃ satisfy HC. Suppose that G and L satisfy HC and {Sμ : μ ∈ C} is an
HC+-satisfying (HC++-satisfying) family with respect to the pair (G,L). Define
{S̃μ : μ ∈ C} by S̃μ = Sμ if μ ∈ C\{σ, τ}, S̃τ = {v ∈ Sσ|L̃(v) is obtained from
L(v) by replacing σ by τ}, and S̃σ = Sσ\S̃τ . If the Sμ are pairwise disjoint, then
so are the S̃μ. If H is an L̃-tight subgraph of G, then H is also L-tight, since∑
μ∈C

α(H(μ, L)) =
∑
μ∈C

α(H(μ, L̃)). Therefore, since {S̃μ : μ ∈ C} is HC+-satisfying

with respect to (G,L), for μ ∈ C\{σ, τ}, |Sμ∩V (H)| = |S̃μ∩V (H)| = α(H(μ, L)) =
α(H(μ, L̃)). Because τ replaces σ on entire components of H(σ, L), α(H(σ, L)) =
α(H(σ, L̃))+α(H(τ, L̃)) =|Sσ∩V (H)| = |S̃σ∩V (H)| + |S̃τ∩V (H)|. Since S̃σ∩V (H)
is an independent set of vertices of H(σ, L̃), |S̃σ ∩ V (H)| ≤ α(H(σ, L̃)) ; similarly,
|S̃τ ∩ V (H)| ≤ α(H(τ, L̃)). Therefore, |S̃σ ∩ V (H)| = α(H(σ, L̃)) and |S̃τ ∩ V (H)|
= α(H(τ, L̃)). This completes the proof that if G and L satisfy HC+ (HC++),
then so do G and L̃. In the other direction: If {S̃μ : μ ∈ C} is an HC+-satisfying
(HC++-satisfying) family with respect to G and L̃, define {Sμ : μ ∈ C}, by Sμ = S̃μ,
μ ∈ C\{σ, τ}, Sτ = ∅, and Sσ = S̃σ∪S̃τ . It is straightforward to see that {Sμ : μ ∈ C}
is an HC+-satisfying (HC++-satisfying) family with respect to G and L.

Suppose that H is an induced subgraph of G and T is an L-tight subgraph of
H . As above, it follows that T is L̃-tight. Conversely, if T is L̃-tight, then it is
L-tight, as we now show. Clearly α(H(μ, L)|T (μ, L)) = α(H(μ, L̃)|T (μ, L̃)) for all
μ ∈ C\{σ, τ}. Because τ replaces σ on components of G(σ, L), in the formation of
L̃, if A ⊆ V (G(σ, L̃)), B ⊆ V (G(τ, L̃)) are independent sets in G, then A ∪ B ⊆
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V (G(σ, L)) is independent. Further, every independent set of vertices of G(σ, L) is
uniquely representable as such a union. From these remarks, it can be seen that
α(H(σ, L)|T (σ, L)) = α(H(σ, L̃)|T (σ, L̃)) + α(H(τ, L̃)|T (τ, L̃)) . From this equation

we have that
∑
μ∈C

α(H(μ, L)|T (μ, L)) =
∑
μ∈C

α(H(μ, L̃)|T (μ, L̃)), and thus, since H

and T ⊆ H were arbitrary, that G and L satisfy HC* if and only if G and L̃ satisfy
HC*. From the equation above, we also conclude that

min
T⊆H

α(H(σ, L)|T (σ, L)) ≥ min
T⊆H

α(H(σ, L̃)|T (σ, L̃)) + min
T⊆H

α(H(τ, L̃)|T (τ, L̃)).
Therefore if G and L̃ satisfy HC**, then so do G and L.

Corollary 2.1. Suppose ♦ ∈ {emptystring,+,++, ∗}. G ∈ Hall♦ ⇐⇒ G is prop-
erly L-colorable for every L such that G and L satisfy HC♦ and, for all colors σ ∈ C,
G(σ, L) is connected.

Proof. The “=⇒” claim is trivial. Conversely, suppose that G is properly L̃-colorable
for every L̃ such that G and L̃ satisfy HC♦ and, for all σ ∈ C, G(σ, L̃) is connected.
Suppose that L is a list assignment to G such that G and L satisfy HC♦. To show
that G ∈ Hall♦, it suffices to show that for every such L, G is properly L-colorable.
Using the convenience of the infinitude of C, we replace L by a list assignment L̃
obtained by repeated replacements of symbols σ ∈ L(V (G)) by new symbols, with
each replacement satisfying the hypothesis of Lemma 2.2 with respect to G and the
current list assignment. By repeated application of Lemma 2.2, part (b), G and L̃
satisfy HC♦. We can arrange for L̃ to satisfy: G(τ, L̃) is connected, for every τ ∈ C.
By assumption, G is properly L̃-colorable. By repeated application of part (a) of
Lemma 2.2, G is properly L-colorable.

We leave open the questions: In Lemma 2.2(b), does the “only if” conclusion
hold when ♦ = ** ? In Corollary 2.1, does the backward implication hold when ♦
= ** ? Clearly a “yes” to the first question implies a “yes” to the second.

3 Hall, Hall+ and Hall++ Graphs

A particular case of the next lemma has already been used, in the proof of Theorem
2.2, in an extreme case where the conclusion was obvious. The finer version will be
useful in this section.

Lemma 3.1. Suppose that H is an induced subgraph of G, L is a list assignment
to G, L0 is the restriction of L to V (H), and ♦ ∈ {+,++}. Suppose that G and L
satisfy HC, H and L0 satisfy HC♦, and the only L-tight subgraphs of G are subgraphs
of H. Then every HC♦-satisfying family for H and L0 is an HC♦-satisfying family
for G and L; so G and L satisfy HC♦.

Proof. Let {Sσ|σ ∈ C} be an HC♦-satisfying family for H and L0. For each σ ∈ C,
Sσ ⊆ V (H(σ, L0)) ⊆ V (G(σ, L)), and for each L-tight subgraph X of G, since X is
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an L0-tight subgraph of H , |Sσ ∩ V (X)| = α(X(σ, L0)) = α(X(σ, L)). Therefore,
{Sσ|σ ∈ C} is an HC♦-satisfying family for H and L.

Theorem 1.3 implies that the class of Hall graphs is closed under the operation
of attaching a clique at a vertex.

Theorem 3.1. Suppose that ♦ ∈ {+,++}. If a graph H ∈ Hall♦, and G is obtained
from H by attaching a clique to a vertex v of H, then G ∈ Hall♦. Thus the class of
Hall♦ graphs is closed under attachment of cliques at single vertices.

The proof of this theorem will require a few more lemmas. In what follows, if
S ⊆ V (G), then the subgraph of G induced by S will be denoted by G[S]. If X and
Y are subgraphs of G, then G[X ∪ Y ] stands for G[V (X) ∪ V (Y )].

Lemma 3.2. Suppose K is a clique, L a list assignment to the graph K, and K and
L satisfy Hall’s Condition. Suppose further that H1, H2 are L-tight sub-cliques of K.
Then

i.) H0 = H1 ∩H2 is also L-tight.

ii.) H3 = K[H1 ∪H2] is also L-tight.

Proof. As before, we will use the notation L(U) =
⋃
u∈U

L(u) for U ⊆ V (G). Since H3

is a clique, α(H3(σ, L)) as a function of the symbol σ is the characteristic function
of L(V (H3)). That is,

α(H3(σ, L)) =

{
1, if σ ∈ L(V (H3));
0, otherwise.

Therefore (and this holds for any clique, not just H3),
∑

σ∈C α(H3(σ, L)) =
|L(V (H3))|.

By Hall’s Condition on K and L, and the fact that V (H3) = V (H1)∪ V (H2), we
have: ∑

σ∈C
α(H3(σ, L)) ≥ |V (H3)| = |V (H1) ∪ V (H2)| . (6)

Also,∑
σ∈C

α(H3(σ, L)) = |L(V (H3))| = |L(V (H1) ∪ V (H2))| = |L(V (H1)) ∪ L(V (H2))|

= |L(V (H1))|+ |L(V (H2))| − |L(V (H1)) ∩ L(V (H2))|
≤ |L(V (H1))|+ |L(V (H2))| − |L(V (H1) ∩ V (H2))|
≤ |V (H1)|+ |V (H2)| − |V (H1) ∩ V (H2)| (7)

= |V (H1) ∪ V (H2)| = |V (H3)|
Inequalities (7) hold because, for i = 1, 2,∑

σ∈C
α(Hi(σ, L)) = |L(V (Hi))| (because Hi is a clique)

= |V (Hi)|,
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because Hi is L-tight; and, because K and L satisfy Hall’s Condition,

∑
σ∈C

α(H0(σ, L)) = |L(V (H0))| = |L(V (H1) ∩ V (H2))|

≥ |V (H0)| = |V (H1) ∩ V (H2)|. (8)

From inequalities (6) and (7), we see that both inequalities must be equalities,
and that both H0 and H3 must be L-tight.

Lemma 3.3. If {Sσ : σ ∈ C} is an HC+ (or HC++)-satisfying family for G and
L, then for any induced subgraph H of G, {Sσ ∩ V (H) : σ ∈ C} is also an HC+
(respectively HC++)-satisfying family for H and the restriction of L to V (H).

The proof is straightforward.

Lemma 3.4. Suppose K is a clique with a list assignment L, and K and L satisfy
HC. Suppose that for some color τ , removing τ from L(V (K)) wherever it appears
results in a list assignment which does not satisfy HC with K. Then some subclique
Kτ of K is L-tight. Further, τ ∈ L(V (Kτ )).

Proof. Let L′ be the list assignment obtained from L by removing all occurrences
of τ from the L-lists on K, and let Kτ = H be an induced subgraph, and thus a
subclique, of K such that

∑
σ∈C α(H(σ, L′)) < |V (H)|. It is straightforward to see

that Kτ satisfies the claims of the lemma.

Proof of Theorem 3.1

Suppose that ♦ ∈ {+,++}, and that L is a list assignment to G such that G
and L satisfy HC♦. We will show that G has a proper L-coloring, if H ∈ Hall♦.
Let K̂ ∼= Kn, n ≥ 2, denote the clique attached to H at v. Let {Sσ : σ ∈ C} be an
HC♦ - satisfying family for G and L. By Lemma 3.3, {Sσ ∩ V (H) : σ ∈ C} is an
HC♦ - satisfying family for H and L. (L here is short for L-restricted-to-V (H).)

Because H ∈ Hall♦, there is a proper L-coloring of H . Let K = K̂ − v, and let
P = {τ ∈ C | for some proper L-coloring ψ of H , ψ(v) = τ }. For τ ∈ P, if we
remove τ from all the lists on K, then we may as well assume that the resulting list
assignment on K does not satisfy Hall’s Condition with K; for, if it did, then there
would be a proper L-coloring of K with τ not appearing, which, when put together
with a proper L-coloring ψ of H such that ψ(v) = τ , would give a proper L-coloring
of G, and we would be done. By Lemma 3.4, therefore, we may as well assume that
for each τ ∈ P, there is a subclique Kτ of K such that τ ∈ L(V (Kτ )) and Kτ is
L-tight. Applying Lemma 3.2(ii) |P| - 1 times, we see that KP = K[∪τ∈PKτ ] is an
L-tight subclique of K, and P ⊆ L(V (KP)). Therefore, because {Sσ : σ ∈ C} is
an HC♦ - satisfying family for G and L, we have, for each τ ∈ P, |Sτ ∩ V (KP)| =
α(KP(τ, L)) = 1; recollect that KP is a clique. Therefore, each such Sτ has a vertex
in K. Because Sτ is an independent set of vertices in G, v /∈ Sτ , and this holds for
all τ ∈ P. Define a new list assignment L′ on the graph H as follows:



J. ALLAGAN ET AL. /AUSTRALAS. J. COMBIN. 73 (1) (2019), 42–70 55

L′(u) = L(u) for all u ∈ V (H)\{v}, and L′(v) = L(v)\P. If H and L′ satisfy
HC♦, then, because H ∈ Hall♦, there exists a proper L′-coloring of H . But
because L′(u) = L(u) for all u ∈ V (H)\{v}, a proper L′-coloring of H would also
be a proper L-coloring for H , so the color on v would have to be an element of P.
This is impossible, since P ∩ L′(v) = ∅. Therefore, H and L′ do not satisfy HC♦.
Therefore, either H and L′ do not satisfy HC, or H and L′ do satisfy HC, but there
does not exist an HC♦-satisfying family for H and L′.

Case 1: Suppose that H and L′ do not satisfy HC. Then for some induced sub-
graph H1 of H , it must be that∑

σ∈C
α(H1(σ, L

′)) < |V (H1)| . (9)

Now, L and L′ are the same except at v, and H and L satisfy HC. Therefore,
v ∈ V (H1).
Let H2 = G[H1 ∪KP ]. Note that:

i.) V (H1) ∩ V (KP) = ∅ ;

ii.) if σ ∈ C\P , then α(H1(σ, L
′)) = α(H1(σ, L)) and

α(H2(σ, L)) ≤ α(H1(σ, L)) + α(KP(σ, L)) = α(H1(σ, L
′)) + α(KP(σ, L)); and

iii.) if σ ∈ P then α(H2(σ, L)) ≤ α(H1(σ, L
′)) + 1 = α(H1(σ, L

′)) + α(KP(σ, L)).

Therefore, because G and L satisfy HC, we have

|V (H1)|+ |V (KP)| = |V (H2)| ≤
∑
σ∈C

α(H2(σ, L)) (10)

≤
∑
σ∈C

α(H1(σ, L
′)) +

∑
σ∈C

α(KP(σ, L)) (11)

=
∑
σ∈C

α(H1(σ, L
′)) + |V (KP)| (12)

< |V (H1)|+ |V (KP)| . (13)

Thus, |V (H1)| + |V (KP)| < |V (H1)| + |V (KP)| , a contradiction. This absurd
conclusion allows us to conclude that H and L′ satisfy HC. [The equality in (12)
follows because KP is L-tight. Finally the strict equality in (13) follows from (9)].

Case 2: H and L′ do satisfy HC but there is no HC♦-satisfying family for H
and L′. Therefore, {Sσ ∩ V (H) : σ ∈ C}, which is an HC♦ - satisfying family for
H and L, is not an HC♦-satisfying family for H and L′. Consequently, there is
an L′-tight subgraph T of H such that for some τ ∈ C, |Sτ ∩ V (T )| < α(T (τ, L′)).
Because L(u) = L′(u) for all u ∈ V (H)\{v}, and {Sσ ∩ V (H) : σ ∈ C} is an HC♦
- satisfying family for H and L, it must be that v ∈ V (T ). For a similar reason, it
must be that τ ∈ P. As concluded earlier, for every σ ∈ P, |Sσ ∩ V (KP)| = 1 =
α(KP(σ, L)). Let G1 = G[T ∪KP ].

Claim: G1 is L-tight.
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Proof.

|V (T )|+ |V (KP)| =|V (G1)|
≤
∑
σ∈C

α(G1(σ, L)) (14)

=
∑

σ∈C\P
α(G1(σ, L)) +

∑
σ∈P

α(G1(σ, L))

≤
∑

σ∈C\P
[α(T (σ, L′)) + α(KP(σ, L))]

+
∑
σ∈P

[α(T (σ, L′)) + α(KP(σ, L))] (15)

=
∑
σ∈C

α(T (σ, L′)) +
∑
σ∈C

α(KP(σ, L))

=|V (T )|+ |V (KP)| (16)

=|V (G1)|

The equality in (16) follows from the L-tightness of KP and the L′-tightness of T .
The inequality (14) follows from the fact that G and L satisfy HC. The inequality
(15) follows from :

α(G1(σ, L)) ≤ α(T (σ, L′)) + α(KP(σ, L)), (17)

which holds for all σ ∈ C, but for different reasons depending on whether σ ∈ C\P
or σ ∈ P. If σ ∈ C \ P then G1(σ, L) = T (σ, L′) ∪ KP(σ, L), so (17) follows from
general principles. If σ ∈ P then σ /∈ L′(v) and KP(σ, L) is a non-null clique not
containing v, but in NG(v). If a maximum independent set I of vertices in G1(σ, L)
contains v, then I \ {v} ∪ {u}, for some (any) u ∈ V (KP(σ, L)) is an independent
set in G1(σ, L) with the same number of vertices as I and is the disjoint union of
an independent set in T (σ, L′) with one in KP(σ, L). From this (17) follows. If no
maximum independent set of vertices in G1(σ, L) contains v, then obviously (17)
holds, with equality. This concludes the proof that G1 is L-tight.

Because G1 is L-tight and {Sσ : σ ∈ C} is an HC♦-satisfying family for G and L,

α(G1(τ, L)) = |Sτ ∩ V (G1)| . (18)

On the other hand,

|Sτ ∩ V (G1)| = |Sτ ∩ V (T )|+ |Sτ ∩ V (KP)| < α(T (τ, L′)) + 1 (19)

= α(G1(τ, L)) (20)

The inequality (19) follows from the assumption about Sτ and T , the L-tightness
of the clique KP , and the fact that τ ∈ P. To see equality (20), suppose that A
is a maximum independent set of vertices in G1(τ, L). If v /∈ A, then A ∩ V (T )
is a maximum independent set of vertices in T (τ, L′) and |A ∩ V (KP)| = 1, so
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α(G1(τ, L)) = |A∩V (T )|+|A∩V (KP)| = α(T (τ, L′))+1. If v ∈ A, then |A∩V (KP)|
= ∅, and |A\{v}| ≤ α(T (τ, L′). Replacing A with B ∪ {w}, where B is a maximum
independent set of vertices i in T (τ, L′) and w is a vertex of KP with τ ∈ L(w), gives
us a maximum independent set of vertices in G1(τ, L) not containing v, so, again,
(20) holds.

The contradiction arrived at in (18), (19), and (20) establishes that {Sσ ∩V (H) :
σ ∈ C} is an HC♦ - satisfying family for H and L after all. Therefore, H is properly
L′ colorable, so H is properly L-colorable with v receiving a color not in P, which
contradicts the definition of P. Thus G is HC♦, after all.

We end this section with two results that bear on the minimal forbidden-induced-
subgraph characterizations of the classes Hall+ and Hall++.

Proposition 3.1. All cycles on 4 or more vertices are Hall+.

Proof. Suppose n ≥ 4 and G ∼= Cn is a cycle on n vertices. Suppose that L is a list
assignment to G such that G and L satisfy HC+. We aim to show that there is a
proper L-coloring of G. Let {Sσ; σ ∈ C} be an HC+ - satisfying family for G and
L. Since h(G) = 2 [12], and G and L satisfy HC, we can assume that some list is a
singleton. Let L(v) = {σ} and let u and w be the vertices on either side of v, on the
cycle G.

P = G−uv is a path on n vertices. Because P is a subgraph of G, and G satisfies
HC with L, P and L satisfy HC. Because the blocks of P are its edges, P ∈ Hall,
by Theorem 1.3. Therefore there is a proper L-coloring of P .

If, for such a coloring, u is colored with something other than σ, then the coloring
is also a proper L-coloring of G. Therefore, we may as well assume that u is colored
with σ in every proper L-coloring of P .

Let L′ : V (G) → C be defined by L′(x) = L(x) for all x ∈ V (G)\{u}, and L′(u)
= L(u)\{σ}. Since P ∈ Hall and there is no proper L′-coloring of P , it must be
that P and L′ do not satisfy Hall’s Condition. So, there is an induced subgraph H

of P such that
∑
τ∈C

α(H(τ, L′)) < |V (H)|. Since

|V (H)| ≤
∑
τ∈C

α(H(τ, L)) (21)

≤ 1 +
∑
τ∈C

α(H(τ, L′)) (22)

≤ |V (H)|, (23)

and L = L′ except at u, it follows that u ∈ V (H), H is L-tight, and u is in every
maximum independent set of vertices in H(σ, L). Because H is L-tight and {Sμ :
μ ∈ C} is an HC+-satisfying family for G and L, |Sσ∩V (H)| = α(H(σ, L)). That is,
Sσ ∩ V (H) is a maximum independent set of vertices in H(σ, L). Therefore, u ∈ Sσ.

But v alone is also an L-tight subgraph of G, and L(v) = {σ}, so v ∈ Sσ. This
cannot be, because u and v are adjacent in G and Sσ is an independent set of vertices



J. ALLAGAN ET AL. /AUSTRALAS. J. COMBIN. 73 (1) (2019), 42–70 58

in G. This contradiction establishes that G is properly L-colorable, after all. L was
arbitrary, so G ∈ Hall+.

Corollary 3.1. Hall � Hall+.

Proof. By either Theorem 1.3 or Theorem 2.3, and the proposition preceding, for
n ≥ 4 Cn ∈ Hall + \Hall.

x

y

w
z

Figure 3: θ(1, 2, 2)

The graphK4-minus-an-edge is also known as θ(1, 2, 2). It is known that θ(1, 2, 2)
has Hall number h = 2 [12].

Proposition 3.2. θ(1, 2, 2) ∈ Hall+.

Proof. Let G = θ(1, 2, 2), with vertices labeled as in Figure 3. Suppose L is a list
assignment to G such that G and L satisfy HC+. We aim to see that there is a
proper L-coloring of G. Let the collection {Sσ : σ ∈ C} be an HC+ - satisfying family
for G and L. Since G and L satisfy HC and h(G) = 2 [12], we may as well suppose
that L(v) = {σ} for some vertex v ∈ V (G) and σ ∈ C. Since {v} is a trivial L-tight
subgraph, we have v ∈ Sσ. There are essentially two cases to consider: v = w and
v = x.

Case 1: L(x) = {σ}
Let H = G[{w, y, z}]. Since H and L satisfy HC (because G and L do) and

H ∼= K3, by Theorem 1.3, H is properly L-colorable. We may assume that for every
proper L-coloring of H , either w or z is colored σ. Therefore, if L′ is defined on H by
L′(y) = L(y) and L′(v) = L(v)\{σ} if v ∈ {w, z}, thenH is not properly L′-colorable,
and so H and L′ do not satisfy HC: there must be an induced subgraph T of H such

that |
⋃

v∈V (T )

L′(v)| =
∑
μ∈C

α(T (μ, L′)) < |V (T )|. As in similar circumstances in the

proof of Proposition 3.1, it follows that T is L-tight. Also, ∅ �= V (T (σ, L)) ⊆ {w, z}.
But then Sσ must contain one of w, z, which cannot be, because the independent set
Sσ contains v = x.

Case 2: L(w) = {σ}
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By case 1, we may suppose that |L(v)| ≥ 2 for v ∈ {x, y}. Further, if, say,
|L(x)| ≥ 3, then a proper L-coloring of G may be obtained by taking a proper
L-coloring of H = G[{w, y, z}] and then coloring x with an element of L(x) other
than the colors on w and z. So, we may assume that 2 = |L(x)| = |L(y)|. If
σ /∈ L(x) then, again, G can be properly colored as suggested above, because in
every proper L-coloring of H , w will be colored σ, and L(x) contains two elements
different from σ. Therefore, we may assume that L(x) = {σ, a} and L(y) = {σ, b}
for some a, b ∈ C\{σ}, not necessarily distinct. If L(z) contains anything other than
σ, a, b, then, clearly, there is a proper L-coloring of G. Therefore, we may assume
that L(z) ⊆ {σ, a, b}. Then G itself is L-tight. Since the only maximum independent
set of vertices in G(σ, L) is {x, y}, it follows that x, y ∈ Sσ, which cannot be, because
the independent set Sσ contains v = w.

The next example shows that attaching two Hall+ graphs at one vertex does not
necessarily result in a Hall+ graph.

Example 3.1. The graph G and list assignment L in Figure 4 satisfy HC+ (there
are no non-null L-tight subgraphs of G) and yet G cannot be properly L-colored.

{a, c} {a, d}

{a, b}
{c, d}

{b, c}

{a, b}

{b, d}

v

G :

Figure 4: Hall+ graphs attached at a vertex, resulting in a graph which is not Hall+

4 Hall* and Hall** Graphs

The main result in this section will be similar to that of Theorem 3.1.

Theorem 4.1. Suppose that ♦ ∈ {∗, ∗∗}. If H ∈ Hall♦, and G is obtained from H

by attaching a clique K̂ to H at a vertex v of H, then G ∈ Hall♦.

Proof: Let K = K̂ − v ∼= Kn−1, for some n ≥ 2 and suppose L is a list assignment
on G such that G and L satisfy HC*. We show that there is a proper L-coloring of
G. Suppose not.

Since H is an induced subgraph of G, and G and L satisfy HC*, it must be that
H and L restricted to V (H) will satisfy HC*. Since H ∈ Hall*, it follows that there
is a proper L-coloring of H . However, because there is no proper L-coloring of G, for
every proper L-coloring of H , if the color on the vertex v is removed from the lists



J. ALLAGAN ET AL. /AUSTRALAS. J. COMBIN. 73 (1) (2019), 42–70 60

on V (K), then K and the new list assignment do not satisfy HC. Let P = {τ ∈ C |
for some proper L-coloring ψ of H , ψ(v) = τ}. We see from Lemma 3.4 that for
every symbol σ ∈ P, there is an L-tight subclique of the clique K with σ appearing
on its lists. Hence there is an L-tight complete subgraph KP of K with all colors of
P on its lists, by Lemma 3.2. Now we define a new list assignment L′ on H : L′(v)
= L(v)\P, and L′(u) = L(u) for all u ∈ V (H − v). Then it must be that H and L′

do not satisfy HC* because there is no proper L′-coloring of H (but they do satisfy
Hall’s Condition by the argument given in the proof of Theorem 3.1). Therefore,
there is some induced subgraph H ′ of H and some L′-tight subgraph T ′ of H ′ such
that ∑

σ∈C
α(H ′(σ, L′) | T ′(σ, L′)) < |V (H ′)| . (24)

The vertex v must belong to H ′ since L′ = L on the graph H − v and H and L
satisfy HC*.

With v ∈ V (H ′) and T ′ ⊆ H ′, two cases arise: v ∈ V (T ′) and v �∈ V (T ′).

G :

H

K̂
v

T ′

H ′

Figure 5: Hall* graph H ⊃ H ′ ⊃ T ′, and clique K̂

Let H ′′ = G[V (H ′) ∪ V (KP)] be the subgraph induced by the disjoint union of
V (H ′) and V (KP) and let T ′′ = G[V (T ′) ∪ V (KP)] be the subgraph induced by the
disjoint union of V (T ′) and V (KP). We have the following two claims:

Claim 1: T ′′ is L-tight;

Claim 2:
∑

σ∈C α(H
′′(σ, L) | T ′′(σ, L)) < |V (H ′′)| .

If both claims hold, the hypothesis that G and L satisfy HC* is contradicted;
hence, the claim of Theorem 4.1 concerning Hall* is true, if both claims hold.

Remark 4.1. It is easy to see that if each component of a graph G and a list
assignment L satisfy HC, then G and L will satisfy HC. Moreover, if each component
is L-tight, then so too is the whole graph.

Proof of Claim 1:

If v �∈ V (T ′), then L′ = L on T ′ and so T ′′ must also be L-tight as the disjoint
union of two L-tight subgraphs. Now suppose v ∈ V (T ′). If σ �∈ P , then

α(T ′′(σ, L)) ≤ α(T ′(σ, L)) + α(KP(σ, L)) = α(T ′(σ, L′)) + α(KP(σ, L)). (25)
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Suppose σ ∈ P and let U be a maximum independent set of vertices of T ′′(σ, L).
If v /∈ U , then

|U | = α(T ′′(σ, L)) = α(T ′(σ, L′)) + 1

= α(T ′(σ, L′)) + α(KP(σ, L)). (26)

If v ∈ U , then V (KP) ∩ U = ∅; since U\{v} is an independent set of vertices in
T ′(σ, L′), we have

α(T ′′(σ, L)) = |U | ≤ α(T ′(σ, L′)) + 1

= α(T ′(σ, L′)) + α(KP(σ, L)). (27)

Putting together equations (25), (26), and (27), we have that if v ∈ V (T ′), then for
all σ ∈ C,

α(T ′′(σ, L)) ≤ α(T ′(σ, L′)) + α(KP(σ, L)). (28)

Note that (28) holds, with equality, when v /∈ V (T ′), for all σ ∈ C.
Finally, because Hall’s Condition is satisfied by H and L′, and by G and L, we have

|V (T ′′)| ≤
∑
σ∈C

α(T ′′(σ, L)) (29)

≤
∑
σ∈C

α(T ′(σ, L′)) +
∑
σ∈C

α(KP(σ, L)) (30)

= |V (T ′)|+ |V (KP)| (31)

= |V (T ′′)| . (32)

where (31) holds because T ′ is L′-tight and KP is L-tight, and (32) holds because
V (T ′′) is the disjoint union of V (T ′) and V (KP). Thus T ′′ is L-tight. Note that by
(29) - (32) and previous remarks, (28) holds with equality whether v ∈ V (T ′) or not,
for all σ ∈ C.
Proof of Claim 2:

It is easy to see that if σ ∈ C\L(KP), then

α(H ′′(σ, L) | T ′′(σ, L)) = α(H ′(σ, L′) | T ′(σ, L′)). (33)

We claim that if σ ∈ L(KP), then

α(H ′′(σ, L) | T ′′(σ, L)) ≤ α(H ′(σ, L′) | T ′(σ, L′)) + 1

= α(H ′(σ, L′) | T ′(σ, L′)) + α(KP(σ, L)). (34)

Let U be a maximum independent set of vertices in T ′′(σ, L), letW be an independent
set of vertices in H ′′(σ, L) containing U , such that |W | = α(H ′′(σ, L) | T ′′(σ, L)). By
a previous remark about (28) holding with equality,

|U | = α(T ′′(σ, L)) = α(T ′(σ, L′)) + α(KP(σ, L)). (35)
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[In fact, (35) holds for all σ ∈ C, not just σ ∈ L(KP).] If v ∈ U , then neither U
nor W contains vertices of KP , so U ⊆W ⊆ V (H ′(σ, L)). We have α(KP(σ, L)) = 1
because σ ∈ L(KP). Therefore, letting U1 = U\{v} ⊆ V (T ′(σ, L′)), by (35) we
see that |U | = |U1| + 1 = α(T ′(σ, L′)) + 1, which implies that U1 is a maximum
independent set of vertices in T ′(σ, L′). Since W1 = W\{v} is an independent set
of vertices in H ′(σ, L′), it follows that |W | = α(H ′′(σ, L) | T ′′(σ, L)) = |W1| + 1
≤ α(H ′(σ, L′))|(T ′(σ, L′)) + 1, which establishes (34) when v ∈ U .

Now suppose that v /∈ U . Since σ ∈ L(KP) and U is a maximum independent set
in T ′′(σ, L) = G[V (T ′(σ, L))∪V (KP(σ, L))], it must be that U = U1∪{x}, where U1

is an independent set of vertices in T ′(σ, L)−v = T ′(σ, L′)−v and x ∈ V (KP(σ, L)).
Because W is independent and x ∈ U ⊆ W , v /∈ W = W1 ∪ {x}, where W1 is an
independent set of vertices of H ′(σ, L)− v = H ′(σ, L′)− v, and U1 ⊆ W1. If |U1| =
α(T ′(σ, L′)), then we would have, as above,

|W | = α(H ′′(σ, L) | T ′′(σ, L)) = |W1|+ 1 ≤ α(H ′(σ, L′) | T ′(σ, L′)) + 1,
once again establishing (34), and the proof of (34) would be finished. But by (35),
which holds whether or not v ∈ V (T ′), |U | = |U1|+1 = α(T ′(σ, L′))+α(KP(σ, L)) =
α(T ′(σ, L′)) + 1, so (34) is established.

The proof of Claim 2, and thereby the proof of the assertion of Theorem 4.1 for
Hall*, is concluded as follows.

∑
σ∈C α(H

′′(σ, L) | T ′′(σ, L))

=
∑

σ∈C\L(KP )

α(H ′′(σ, L) | T ′′(σ, L)) +
∑

σ∈L(KP )

α(H ′′(σ, L) | T ′′(σ, L)) (36)

≤
∑

σ∈C\L(KP )

α(H ′(σ, L′) | T ′(σ, L′)) +
∑

σ∈L(KP )

α(H ′(σ, L′) | T ′(σ, L′))

+
∑

σ∈L(KP )

1

=
∑
σ∈C

α(H ′(σ, L′) | T ′(σ, L′)) + |L(KP)|

< |V (H ′)|+ |V (KP)| (37)

= |V (H ′′)| .
Inequality (37) follows from (33) and (34); (37) follows from the assumption about
H ′ and the L-tightness of the clique KP .

The proof of the theorem’s claim for Hall∗∗ follows the preceding proof for
Hall∗ until the very end. Here is a recapitulation of the main points.

1. Suppose L is a list assignment to G such that G and L satisfy HC∗∗. We
proceed towards a contradiction from the assumption that there is no proper
L-coloring of G.

2. Since H and L (restricted to V (H)) satisfy HC∗∗ and H is Hall∗∗, by as-
sumption, there is a proper L-coloring of H . Let P = {τ ∈ C| for some proper
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L-coloring ψ of H , ψ(v) = τ}.
3. For each τ ∈ P, K is not properly (L\{τ})-colorable, so, by Lemma 3.4, there is

an L-tight subclique Kτ of K with τ ∈ L(Kτ ). Applying Lemma 3.2 repeatedly

we see that KP = K[
⋃
τ∈P

V (Kτ )] is L-tight and P ⊆ L(V (KP)).

4. Let L′ be defined on H (or on G!) by L′ = L except at v : L′(v) = L(v)\P.
As in the proof of Theorem 4.1 so far, H and L′ satisfy HC. Since they
cannot possibly satisfy HC∗∗, there must exist an induced subgraph H ′ of H ,
containing v, such that∑

σ∈C
min
˜T�H′

α(H ′(σ, L′)|T̃ (σ, L′)) < |V (H ′)|, (38)

in which the minimum is taken over L′-tight subgraphs T̃ of H ′.

5. Let H ′′ = G[V (H ′)∪ V (KP)] and for each L′-tight subgraph T̃ of H ′, let T̃ ′ =
G[V (T̃ ) ∪ V (KP)]. As in an earlier part of this proof, each T̃ ′ is L-tight, and

α(T̃ ′(σ, L)) = α(T̃ ′(σ, L′)) + α(KP(σ, L)) (39)

for each σ ∈ C.
6. From (39) and by arguments advanced in the earlier proof of Theorem 4.1 for

Hall∗, we obtain that for every L′-tight subgraph T̃ of H ′, if σ ∈ C\L(KP) then

α(H ′′(σ, L)|T̃ ′(σ, L)) = α(H ′(σ, L′)|T̃ (σ, L′)), (40)

and if σ ∈ L(KP) then

α(H ′′(σ, L)|T̃ ′(σ, L)) ≤ α(H ′(σ, L′)|T̃ (σ, L′)) + 1. (41)

Then∑
σ∈C

min
T�H′′

α(H ′′(σ, L)|T (σ, L)) ≤
∑
σ∈C

min
˜T�H′

α(H ′′(σ, L)|T̃ ′(σ, L))

≤
∑

σ∈C\L(KP )

min
˜T�H′

α(H ′(σ, L′)|T̃ (σ, L′))

+
∑

σ∈L(KP )

min
˜T�H′

[α(H ′(σ, L′)|T̃ (σ, L′)) + 1]

=
∑
σ∈C

min
˜T�H′

α(H ′(σ, L′)|T̃ (σ, L′)) + |L(KP)|

< |V (H ′)|+ |V (KP)|
= |V (H ′′)| , (42)

contradicting the assumption that G and L satisfy HC∗∗.
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Proposition 4.1. Every cycle of order at least 4 is Hall∗.
Proof. Suppose that n ≥ 4 and L is a list assignment to G ∼= Cn such that G and
L satisfy HC∗, and, for every σ ∈ C, G(σ, L) is connected. By Corollary 2.1, to
prove the proposition it suffices to prove that G has a proper L-coloring. Since
HC∗ =⇒ HC, by Theorem 1.3 every subpath P of G is properly L-colorable.

Since the Hall number of G ∼= Cn is h(G) = 2 [12], we may assume that for some
v ∈ V (G) and σ ∈ C, L(v) = {σ}. Let u be one of v’s neighbors in G, and let
P = G−uv ∼= Pn, a path on n vertices. Since P is a subgraph of G, P and L satisfy
HC. By Theorem 1.3, P is properly L-colorable. Since in every proper L-coloring
of any subgraph of G containing v, v must be colored σ, it must be that in every
proper L-coloring of P , u is colored σ; otherwise, we could get a proper L-coloring
of G from some proper L-coloring of P , and we would be done.

Let L′ be defined on V (P ) = V (G) by L′(u) = L(u)\{σ} and L′(w) = L(w) for
all w ∈ V (G)\{u}. Since σ /∈ L′(u), P is not properly L′-colorable; if it were, then
P would be properly L-colorable with u not colored σ. By Theorem 1.3, again, it
must be that P and L′ do not satisfy HC. Therefore, for some induced subgraph H
of P , ∑

μ∈C
α(H(μ, L′)) < |V (H)| ≤

∑
μ∈C

α(H(μ, L)). (43)

Since H(μ, L) = H(μ, L′) for all μ ∈ C\{σ}, and H(σ, L) and H(σ, L′) differ by
at most one vertex, u, from (43) we can conclude that

(i) H is L-tight, (ii) u ∈ V (H), and (iii) u is a member of every maximum
independent set of vertices of H(σ, L).

Since (because G and L satisfy HC) every component of an L-tight induced
subgraph of P is L-tight, we can replace H by its component containing u; (i), (ii),
(iii) still hold, and we have the luxury of picturing H as a subpath of P containing u.

Case 1: v ∈ V (H). Then G = H ∪ uv. Since G(σ, L) is connected and u is in
every maximum independent set of vertices in H(σ, L) = P (σ, L), it must be either
that

(a) G(σ, L) = G = H ∪ uv and H(σ, L) = P ∼= Pn, n odd, or

(b) G(σ, L) = Pk∪uv∪Pr, where Pk and Pr are disjoint paths on k and r vertices,
respectively, k + r < n, k odd, u ∈ V (Pk), v ∈ V (Pr).

In subcase (a), α(G(μ, L)) ≤ α(H(μ, L)) for all μ ∈ C\{σ} and α(G(σ, L)) =
α(Cn) =

n−1
2

= n+1
2

− 1 = α(Pn)− 1 = α(H(σ, L))− 1, so

|V (G)| = |V (H)| =
∑
μ∈C

α(H(μ, L)) ≥
∑
μ∈C

α(G(μ, L)) + 1

≥ |V (G)|+ 1.

The last inequality is implied by the fact that G and L satisfy HC. The equality
|V (H)| = ∑

μ∈C α(H(μ, L)) holds because H is L-tight.

The contradiction previously derived takes care of subcase (a) of Case 1.



J. ALLAGAN ET AL. /AUSTRALAS. J. COMBIN. 73 (1) (2019), 42–70 65

In subcase (b), let T = v ∼= K1, an L-tight subgraph of G. For all μ ∈ C\{σ},
α(G(μ, L)|T (μ, L)) = α(G(μ, L)) = α(H(μ, L)), because T (μ, L) = Γ, the null

graph and because v /∈ V (G(μ, L)); for μ = σ, we have

α(G(σ, L)|T (σ, L)) = α(H(σ, L))− 1. Then,

|V (G)| = |V (H)| =
∑
μ∈C

α(H(μ, L)) =
∑
μ∈C

α(G(μ, L)|T (μ, L)) + 1

≥ |V (G)|+ 1.

This time, the contradiction is derived using the L-tightness ofH and the assumption
that G and L satisfy HC*.

Case 2: v /∈ V (H). In this case, H is an L-tight induced subgraph of G, and thus
of H ′ = G[V (H) ∪ {v}]. Again, taking T = v, we have

α(H ′(μ, L)|T (μ, L)) = α(H(μ, L)), μ ∈ C\{σ},

and
α(H ′(σ, L)|T (σ, L)) ≤ α(H(σ, L)).

Therefore,

|V (H ′)| ≤
∑
μ∈C

α(H ′(σ, L)|T (σ, L))

≤
∑
μ∈C

α(H(σ, L)) = |V (H)| = |V (H ′)| − 1.

This last contradiction establishes that if G and L satisfy HC* then there must be a
proper L-coloring of G.

Corollary 4.1. Hall � Hall∗.

Proof. By either Theorem 1.3 or Theorem 2.3, and the preceding proposition, for
n ≥ 4 Cn ∈ Hall + \Hall.
Proposition 4.2. θ(1, 2, 2) ∈ Hall∗.

Proof. Let the vertices of G = θ(1, 2, 2) be labeled as in Figure 3, and let L be a
list assignment to G such that G and L satisfy HC∗. To prove the proposition, it
suffices to show that G must have a proper L-coloring. Since h(G) = 2 [12], and G
and L satisfy HC, we may as well suppose that |L(v)| = 1 for some v ∈ V (G).

Case 1: L(x) = {σ}.
Let H = G[{w, y, z}]. As in the proof of Proposition 3.2, the assumption that

there is no proper L-coloring of G implies that H has an L-tight subclique T such
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that ∅ �= V (T (σ, L)) ⊆ {w, z}. Let H ′ = G[V (T ) ∪ {x}], and let x denote the graph
consisting of the single vertex x. Then x is an L-tight subgraph of H ′. But∑

μ∈C
α(H ′(μ, L) | x(μ, L)) = 1 +

∑
μ∈C\{σ}

α(T (μ, L))

= 1 + |V (T )| − 1

= |V (T )|
< |V (H ′)|,

using the fact that T is an L-tight clique with ∅ �= V (T (σ, L)) ⊆ {w, z}.
Case 2: L(w) = {σ}.
As in the proof of Proposition 3.2, from the assumption that G and L satisfy

HC∗, and thus HC, and that there is no proper L-coloring of G, and that |L(x)|,
|L(y)| ≥ 2, from case 1, we can assume that for some a, b ∈ C\{σ}, not necessarily
distinct, we have L(x) = {a, σ}, L(y) = {b, σ}, and L(z) ⊆ {a, b, σ}. But then,∑
μ∈C

α(G(μ, L) | w(μ, L)) = 3 < 4 = |V (G)|, contradicting the assumption that G

and L satisfy HC∗.

5 Sudoku-Hall Condition (SHC)

Suppose the pair (G,L) satisfies Hall’s Condition. A list-reducing pair in G, with
respect to L, is a pair (H,U) such that

(i) H is an L-tight clique in G, and

(ii) U ⊆ V (G)\V (H) for all u ∈ U and σ ∈ L(u)∩L(V (H)), V (H(σ, L)) ⊆ NG(u).

If (H,U) is a list-reducing pair, the reduced list assignment resulting from (H,U) is
the function L′ : V (G) → C defined by

L′(u) =
{
L(u), if u /∈ U
L(u)\L(V (H)) if u ∈ U.

We say that (G,L) satisfies the (simplified) Sudoku-Hall condition if and only
if G, L satisfy Hall’s condition and for every sequence (H1, U1, L1), . . . , (Ht, Ut, Lt),
t ≥ 1, in which (Hi, Ui) is a list-reducing pair in G, with respect to Li−1 (L0 = L),
and Li is the reduced list assignment on G resulting from (Hi, Ui) (with L replaced by
Li−1 in the definition of reduced list assignment), (G,Lt) satisfies Hall’s Condition.

A generalized list-reducing pair (H,U) in G, with respect to L, consists of an
L-tight subgraph H of G, not necessarily a clique, and a set U ⊆ V (G)\V (H), such
that for each u ∈ U and σ ∈ L(u)∩L(V (H)), if S is a maximum independent set of
vertices in H(σ, L), then S ∩ NG(u) �= ∅. The reduced list assignment L′ resulting



J. ALLAGAN ET AL. /AUSTRALAS. J. COMBIN. 73 (1) (2019), 42–70 67

from such a pair (H,U) is defined as before: L′(v) = L(v) for all v ∈ V (G)\U , and
L′(u) = L(u)\L(V (H)) for all u ∈ U . The definition of the generalized Sudoku-Hall
Condition, a condition to be satisfied, or not, by the pair (G,L), is as given above.

We leave it to the reader to see that the simplified Sudoku-Hall Condition is
implied by the generalized Sudoku-Hall Condition, and that the latter is, and thus
both are, necessary for the existence of a proper L-coloring of G. We define the
family of (generalized) Sudoku-Hall graphs, denoted (G)SH, to be the collection of
those graphs G such that, for all list assignments L to G, if G and L satisfy the
(generalized) Sudoku-Hall condition then there is a proper L-coloring of G.

As admitted in Section 2, we know very little about the families SH and GSH.
It is clear from the proof of Theorem 2.2 that each family is closed under taking
induced subgraphs; in the proof of that theorem, let the colors used to extend the
list assignment to H to a list assignment to G be disjoint from L(H), so that no
sequence of list reductions will create Lt-tight subgraphs that are not subgraphs
of H .

We strongly suspect that both families are closed under clique-attachment-at-
one-vertex. We wonder if the graph of order 81 that underlies the usual Sudoku
puzzles is itself Sudoku-Hall.

6 Open Questions

1. The main results of this paper show that for ♦ ∈ {+,++, ∗, ∗∗}, the family
of Hall♦ graphs shares with the family of Hall graphs the properties of being
closed under the operations of

(a) taking an induced subgraph and
(b) attaching a clique at a vertex.

Does the same hold for (c) contracting an edge?

2. For ♦ ∈ {+,++, ∗, ∗∗}, we know that the family Hall♦ has a forbidden-
induced-subgraphs characterization, but we do not know if that characteriza-
tion is worth pursuing. The graphs which are vertex-critical with respect to
the property of not being Hall are Cn, n ≥ 4, and θ(1, 2, 2); perhaps the set
of graphs which are vertex-critical with respect to the property of not being
Hall♦ is not so neatly described.

Sometimes a problem is illuminated by attempts on a harder problem. We can
define the Hall♦ number h♦ as the Hall number h was defined: for a finite
simple graph G, h♦(G) is the smallest positive integer m such that there is a
proper L-coloring of G whenever |L(v)| ≥ m for all v ∈ V (G) and G and L
satisfy HC♦. With this definition, Hall♦ = {G | h♦(G) = 1}. Hard as this
collection may be to describe, we can, with a bow to [6], ask for more: give a
forbidden-induced-subgraph characterization of {G | h♦(G) ≤ 2}.

3. For ♦ ∈ {+, ∗}, is Hall♦ properly contained in Hall♦♦?
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4. Is Hall + \ Hall∗ non-empty? What about Hall ∗ \ Hall+?

5. The questions in 4 can be attacked by seeking an intelligible description of
all the graphs in Hall ∗ ∩ Hall+, a family of graphs which has a forbidden-
induced-subgraph characterization.

6. Here is a class of list-coloring problems of some interest:

For some m ≥ χ(G), some of the vertices of G are ”precolored” with single col-
ors from {1, . . . , m} so that no two vertices bearing the same color are adjacent;
and then the problem is to extend this precoloring to a proper coloring of G
with the colors {1, . . . , m}. The precoloring defines a list assignment to G: The
precolored vertices are assigned lists of length 1 and each uncolored vertex v is
assigned L(v) = {1, . . . , m} \ {colors appearing on precolored vertices adjacent
to v in G}.
Clearly the question of the existence of a proper extension of the precoloring
to an m-coloring of G is the same as the question of the existence of a proper
L-coloring of G. Hall’s condition and its refinements are necessary conditions
for the existence of such an L-coloring. Notice that each precolored vertex is,
by itself, an L-tight subgraph of G.

The completion of partial latin squares is an important subclass of these
completion-of-proper-precoloring problems. The underlying graph is, for some
n, the line graph of Kn,n, which is also the Cartesian Product of Kn with itself,
Kn�Kn, and the color set is {1, . . . , n}. One of the co-authors of this paper,
Matt Cropper, asked some time ago (around 2000) if it might be the case that
the satisfying of Hall’s Condition by Kn�Kn and the list assignment induced
upon it by a partial latin square would be sufficient for the partial latin square
to be completable to a latin square. This question led to [2], [7], and [14].
In [2] it was shown that the answer to Cropper’s question is no (this result
was due entirely to John Goldwasser), but that several well-known theorems
on completing latin squares, including those in [1] and [15], were equivalent to
statements of the following form: If the filled-in (precolored) cells of a partial
latin square (or a partial commutative latin square—the underlying graph is a
bit different for these) lie in such-and-such a formation, then Hall’s Condition
suffices for the existence of a completion of the partial latin square to a latin
square. In [7] and [14] more results of this form are proved, but these are new,
not restatements of earlier theorems.

It is quite surprising that Cropper’s question was not asked much earlier,
in view of the fact that the first formulation of Hall’s Condition, in [10], arose
from a reformulation (due to Hilton) of Ryser’s famous theorem on partial latin
squares. This reformulation was of the form mentioned above.

We can now revive Cropper’s question: Are any of the refinements of Hall’s
Condition defined in this paper sufficient conditions for the completability of
a partial latin square?
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