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Abstract

We give a group theoretic construction which yields the Veblen-Young
configuration, the Pappus configuration, and the Reye configuration,
among others. That description allows to find the full group of auto-
morphisms of the configuration in question, and also to determine all
polarities of the Pappus configuration. The Pappus configuration allows
a natural completion which forms the affine plane of order three. We
determine all embeddings of that affine plane into projective Moufang
planes explicitly. Related questions are also studied for the Reye config-
uration.

Introduction

The Pappus configuration is (together with the Desargues configuration) one of the
most important configurations in the foundations of (projective) geometry; it is used
to secure that coordinates from a commutative field can be introduced for a given
projective space. The Reye configuration (see [29], cf. [12, § 22] or the English trans-
lation [13, § 22]) is sometimes vaguely considered as a generalization of the Pappus
configuration. We give group-theoretic descriptions of both configurations that make
this vague impression more precise and also allow to determine the full groups of au-
tomorphisms for these configurations.

1 A general construction

We start with an abstract point of view, the Pappus and Reye configurations will
occur as special cases in Section 3 and in Section 4 below, respectively.

∗ This research was supported by a Visiting Erskine Fellowship from the University of Canterbury.

ISSN: 2202-3518 c©The author(s). Released under the CC BY-ND 4.0 International License



M.J. STROPPEL/AUSTRALAS. J. COMBIN. 72 (2) (2018), 249–272 250

Xid

Xd

Xd2

Yid

Yd

Yd2

Zid

Zd

Zd2

Figure 1: Pappus configuration: two triplets in perspective from three centers.

1.1 Definition. Let ∆ be a group, and let Φ denote the group of automorphisms
of ∆. We use multiplicative notation in ∆, and denote the neutral element of that
group by 1. The application of a homomorphism ϕ to a ∈ ∆ will be written as aϕ.

We form three disjoint copies of the set ∆, and write these as families X :={
Xa

∣∣ a ∈ ∆
}

, Y :=
{
Ya
∣∣ a ∈ ∆

}
, and Z :=

{
Za
∣∣ a ∈ ∆

}
, respectively. The in-

cidence structure R∆ := (P,B,∈) has point set P := X ∪ Y ∪ Z and block set
B :=

{
{Xa, Yb, Zab}

∣∣ a, b ∈ ∆
}

.

The application of maps to points or blocks will be considered as action from the
right, we write Ua.ϕ and B.ϕ := {Xa.ϕ, Yb.ϕ, Zc.ϕ} for U ∈ {X, Y, Z}, for a, b, c ∈ ∆,
and for B = {Xa, Yb, Zc}.

Note that every block B ∈ B contains exactly three points. We may regard the
incidence structure as a picture of two sets (namely X and Y ) that are in perspective
from several centers (namely, every point in Z). This is a well-known interpretation
for both the Pappus and the Reye configuration.

1.2 Definitions. (a) Two bijections τ0 and τ1 of P are defined by Xa.τ0 := Xa−1 ,
Yb.τ0 = Zb, Zc.τ0 = Yc, and Xa.τ1 := Za, Yb.τ1 = Yb−1 , Zc.τ1 = Xc, respectively.
For the sake of symmetry, we abbreviate τ2 := τ0τ1τ0; then Xa.τ2 = Ya−1 ,
Yb.τ2 = Xb−1 , and Zc.τ2 = Zc−1 .

(b) For each (ϕ, k,m, r) ∈ Φ × ∆ × ∆ × ∆ the bijection kϕmr of P is defined by
Xa.

kϕmr := Xk−1aϕm, Yb.
kϕmr = Ym−1bϕr, and Zc.

kϕmr = Zk−1cϕr.

1.3 Lemma. (a) Both τ0 and τ1 are involutory automorphisms of R∆, and Σ :=
〈τ0, τ1〉 ∼= Sym3.

(b) For each (ϕ, k,m, r) ∈ Φ×∆×∆×∆ the map kϕmr is an automorphism of R∆.

(c) Ξ :=
{
kϕmr

∣∣ (ϕ, k,m, r) ∈ Φ×∆×∆×∆
}

is a normal subgroup of Aut(R∆);

the multiplication is given by the formula (kϕmr ) (k
′
ϕ′m

′

r′ ) = kϕ
′
k′(ϕϕ′)m

ϕ′m′

rϕ′r′ .
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(d) For all k,m, r ∈ ∆, the inner automorphism ιm : a 7→ am := m−1am of ∆
gives midmm = 1(ιm)1

1 and (1ιm
1
1) (kid1

r) = mkidmmr.

Thus Ξ =
{

1ϕ1
1

∣∣ ϕ ∈ Φ
}{

kid1
r

∣∣ k, r ∈ ∆
} ∼= Φ n (∆×∆).

(e) The action of the generators τ0 and τ1 of Σ on Ξ is given by (kϕmr )τ0 = mϕkr
and (kϕmr )τ1 = kϕrm, respectively.

Proof: It is straightforward to verify B.τ0 = B = B.τ1 and the relation τ0τ1τ0 =
τ1τ0τ1. Clearly τ0 and τ1 are involutions. We conclude 〈τ0, τ1〉 ∼= Sym3. The remain-
ing assertions are checked by straightforward calculations. 2

1.4 Theorem. Let ∆ and Ψ be groups.

(a) The partition P = X ∪ Y ∪ Z of the point set is invariant under Aut(R∆).

(b) The subgroup Σ := 〈τ0, τ1〉 ∼= Sym3 of Aut(R∆) permutes {X, Y, Z} in the
natural way.

(c) The group Ξ is the kernel of the action of Aut(R∆) on {X, Y, Z}.

(d) We have Aut(R∆) = Σ n Ξ.

(e) The configurations R∆ and RΨ are isomorphic (as incidence structures) if,
and only if, the groups ∆ and Ψ are isomorphic.

(f) The group Aut(R∆) acts transitively on the point set P , and transitively on
the block set B.

Proof: Let U, V ∈ {X, Y, Z}. Then a point of U and a point of V are on a common
block if either they are equal or U 6= V . Thus the partition is invariant under
Aut(R∆). The assertion about Σ is obvious.

Clearly Ξ acts trivially on {X, Y, Z}. Let ξ be an element of the kernel of the action
on {X, Y, Z}. We claim that ξ belongs to Ξ. For U ∈ {X, Y, Z} and a ∈ ∆ there
exists aU ∈ ∆ such that Ua.ξ = UaU . From {Xa, Yb, Zab}.ξ ∈ B we infer aXbY = (ab)Z
for all a, b ∈ ∆. Using kid1

r ∈ Ξ we may assume X1.ξ = X1 and Y1.ξ = Y1; then
1X = 1 = 1Y = 1Z . We obtain aX = aX1Y = (a 1)Z = aZ = (1 a)Z = 1XaY = aY ,
and mapping a to aX is an automorphism ϕ of ∆. Now ξ = 1ϕ1

1 ∈ Ξ, and assertion (c)
is proved.

As Σ acts faithfully on {X, Y, Z} and induces the full permutation group Sym{X,Y,Z},
we have Aut(R∆) = Σ n Ξ.

If R∆ and RΨ are isomorphic we start as in the proof of assertion (c) by the remark
that an isomorphism ξ may be chosen such that X1 and Y1 in R∆ are mapped to
their respective counterparts in RΨ. Then ξ induces a bijection from ∆ onto Ψ, and
we see as above that this map is a group homomorphism.
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The set
{

0id0
r

∣∣ r ∈ ∆
}
⊆ Aut(R∆) forms a transitive subgroup on Y , and the group

generated by
{

0id0
r

∣∣ r ∈ ∆
}
∪Σ is transitive on X ∪Y ∪Z. The subgroup generated

by
{

1idmr
∣∣ m, r ∈ ∆

}
acts transitively on the set of blocks. This completes the proof

of the last assertion (f). 2

1.5 Remarks. Our argument proving invariance of the partition P = X ∪ Y ∪ Z
of the point set as noted in 1.4 (a) actually is the observation that the incidence
structure R∆ is a group divisible design (see [2, p. 45]; we may write “group” instead
of the term “groop” introduced there because ∆ is indeed a group) with parameter
λ = 1, and in fact a transversal design TD[3, |∆|], i.e., the dual of a (|∆|, 3)-net
(cf. [2, p. 51]). In [22] and [19], such nets are called 3-nets realizing the group ∆; this
should not be confused with the notion of 3-net used in [21].

If ∆ is finite then the transversal designs R∆ that we consider here are obtained
from (|∆|, 2)-difference matrices, in a rather trivial special case of the construction
described in [2, VIII, § 3]: labeling the columns of a 2×|∆| matrix D by the elements
of ∆, we use entries d1,j = 1 ∈ ∆ and d2,j = j. Then D is a (|∆|, 2, 1)-difference
matrix over ∆ in the sense of [2, VIII, 3.4], and leads to the transversal design T∆

with point set Y ∪Z and blocks Ba,b = {Yb, Zab}; so T∆ forms a TD[2, |∆|]. (Actually,
this transversal design T∆ is a complete bipartite graph.) The substructure T∆ of
R∆ is invariant under the subgroup Θ :=

{
1id1

r

∣∣ r ∈ ∆
} ∼= ∆ of Aut(R∆), and

that subgroup acts regularly both on Y and on Z. The general extension procedure
described in [2, VIII, 3.8] now just amounts to the (re-)construction of R∆: each
Θ-invariant parallel class in T∆ is of the form Ca :=

{
Ba,b

∣∣ b ∈ ∆
}

with fixed a ∈ ∆,
and one adds the set X of points “at infinity” in such a way that Xa becomes incident
with each member Ba,b of the class Ca. (It appears that this idea dates back to the
very last remark in [14].)

1.6 Definition. Let J = (P,B,∈) and J′ = (P ′,B′,∈) be incidence geometries. A
lineation from J to J′ is a map λ : P → P ′ such that for each B ∈ B there exists
B′ ∈ B′ with

{
pλ
∣∣ p ∈ B} ⊆ B′.

In general, the block B′ will not be unique (for instance, think of a constant
map λ). However, if each block in J has at least two points and there are no
digons (i.e., if two points are joined by a block in J′ then that block is unique)
in J′ then injectivity of λ yields the existence of a unique map β : B → B′ such that{
pλ
∣∣ p ∈ B} ⊆ Bβ holds for each B ∈ B. For each group ∆, there are no digons

in R∆.

A lineation λ from J to J′ is called an embedding if it is injective, has an injective
block map β, and p ∈ B ⇐⇒ pλ ∈ Bβ holds for (p,B) ∈ P × B.

As Aut(R∆) acts transitively on the set B of blocks inR∆ (see 1.4 (f)), the follow-
ing observation suffices to understand injective lineations that are not embeddings:

1.7 Theorem. Let ∆ be a group, let J′ = (P ′,B′,∈) be an incidence geometry with-
out digons, let λ be an injective lineation from R∆ = (P,B,∈) to J′, let β : B → B′
denote the corresponding block map, and let C := {X1, Y1, Z1}.
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Then the set
{
u ∈ ∆

∣∣ Xλ
u ∈ Cβ

}
is a subgroup of ∆, and

{
u ∈ ∆

∣∣ Xλ
u ∈ Cβ

}
={

u ∈ ∆
∣∣ Y λ

u ∈ Cβ
}

=
{
u ∈ ∆

∣∣ Zλ
u ∈ Cβ

}
.

Proof: Consider a ∈
{
u ∈ ∆

∣∣ Xλ
u ∈ Cβ

}
. Then {Xλ

a , Y
λ

1 } ⊆ Cβ yields Cβ =

(Xa∨Y1)β 3 Zλ
a and analogously Y λ

a ∈ (X1∨Za)β. This shows
{
u ∈ ∆

∣∣ Zλ
u ∈ Cβ

}
⊇{

u ∈ ∆
∣∣ Xλ

u ∈ Cβ
}
⊆
{
u ∈ ∆

∣∣ Y λ
u ∈ Cβ

}
. The reverse inclusions follow by analo-

gous arguments, so the three sets coincide.

For a, c ∈
{
u ∈ ∆

∣∣ Xλ
u ∈ Cβ

}
we now find Xλ

a−1 ∈ (Ya ∨ Z1)β = Cβ and Zλ
ac ∈

(Xa ∨ Yc)β = Cβ. This shows that
{
u ∈ ∆

∣∣ Xλ
u ∈ Cβ

}
is a subgroup of ∆. 2

1.8 Corollary. If ∆ is a group of prime order then every injective lineation from
R∆ into an incidence geometry without digons has either constant or injective block
map. In the latter case, the lineation is an embedding.

The assertion of 1.8 does not remain valid if we drop the condition that ∆ has
prime order. See 4.4 below for an injective lineation from RV4

to P2(R) which is not
an embedding.

1.9 Theorem. Let ∆ be any group, let P be a projective space, and let λ : R∆ → P be
an injective lineation. For elements α1, . . . , αn ∈ ∆ and j ≤ n consider the subgroup
∆j := 〈α1, . . . , αj〉. Then the image Rλ

∆n
of R∆n

is contained in a projective subspace
of dimension at most n + 1. In particular, if ∆ is cyclic then Rλ

∆ is contained in
some plane of P.

Proof: Let S be any projective subspace of P with {Xλ
1 , Y

λ
1 , Z

λ
1 } ⊆ S. For U ∈

{X, Y, Z}, consider ΓS,U :=
{
γ ∈ ∆

∣∣ Uλ
γ ∈ S

}
. The collinear sets {Xλ

γ , Y
λ

1 , Z
λ
γ } and

{Xλ
1 , Y

λ
γ , Z

λ
γ } yield ΓS,X = ΓS,Z = ΓS,Y ; we abbreviate ΓS := ΓS,U . Now the blocks

{Xλ
γ , Y

λ
γ−1δ, Z

λ
δ } give (ΓS)−1ΓS = (ΓS,X)−1ΓS,Z ⊆ ΓS,Y = ΓS, and we obtain that ΓS

is a subgroup of ∆.

Let ∆0 = {1} be the trivial subgroup, and let S0 be the subspace generated by
Rλ

∆0
= {Xλ

1 , Y
λ

1 , Z
λ
1 }; this is a line. For j ≥ 0, consider the subspace Sj+1 generated

by Rλ
∆j
∪{Zλ

αj+1
}. As the subgroup ΓSj contains the set ∆j ∪{αj+1}, it contains the

subgroup ∆j+1, and Sj+1 contains Rλ
∆j+1

. Clearly Sj has codimension at most one
in Sj+1, and inductively we obtain dimSn ≤ n+ 1. 2

2 The Veblen-Young configuration RC2

We use a cyclic group C2 = {1, t} of order two for ∆; then Φ is trivial. We obtain the
Veblen-Young configuration (which plays its role in the axioms for projective spaces,
and—under the name “O’Nan configuration”—in the theory of hermitian unitals)
as RC2

, see Figure 2.

From 1.4 (d) we infer that Aut(RC2
) = Σ n Ξ ∼= Sym3 nC2

2
∼= Sym4 has order

6 · 22 = 23 · 3 = 24. This group acts faithfully on the set B of (four) blocks.
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3 The Pappus configuration RC3

We use a cyclic group C3 = 〈d〉 of order three for ∆; then Φ = 〈x 7→ x−1〉 has order
two. From 1.4 (d) we infer

∣∣Aut(RC3
)
∣∣ = 3! · 2 · 32 = 108.

The resulting geometry RC3
is known as the Pappus configuration. See Figure 1

which also exhibits the two sets in perspective from three centers. We can interpret
that figure as a drawing in the euclidean plane such that each one of the two sets
forms a triangle, and so does the set of centers. However, it is also possible to draw
the figure in such a way that the set {Y1, Yd, Yd2} is collinear (see Figure 2).

X1

Y1

Z1

Xt

Zt Yt

X1 Y1 Z1

Zd Yd2 Xd2

Xd Yd Zd2

Figure 2: The Veblen-Young configuration RC2
, and the Pappus configuration RC3

.

3.1 Example (The Pappus configuration in the affine plane of order three).
Let us “draw” the Pappus configuration in the projective plane P2(F3); i.e. consider
an injective lineation from RC3

to P2(F3). To each point Ua of the configuration we

thus assign some point Ûa = vF3 with v ∈ F3
3 r {(0, 0, 0)} such that the resulting

map from P to the set of one-dimensional subspaces is injective, and each block
is mapped into some two-dimensional subspace. From 1.8 we know that the block
map β will be injective because there is no injection from nine points into a line
of P2(F3). Then 1.7 secures that Ûa will lie on Bβ only if Ua ∈ B.

The group PGL3(F3) acts transitively on the set of quadrangles in P2(F3). There-
fore, we may assume that Ŷd = F3(1, 1, 1), Ŷ1 = F3(1, 1, 0), Ẑ1 = F3(1, 2, 0), and
Ẑd2 = F3(1, 2, 1), see Figure 3. Then X̂d2 = (Ŷ1 ∨ Ẑd2) ∧ (Ŷd ∨ Ẑ1) = F3(1, 0, 2).
From X̂1 ∈ (Ŷ1 ∨ Ẑ1) we infer X̂1 ∈ {F3(1, 0, 0),F3(0, 1, 0)}, but F3(0, 1, 0) also lies
on (Ŷd ∨ Ẑd2), leading to a contradiction. So X̂1 = F3(1, 0, 0). Similarly, we find
X̂d = F3(1, 0, 1). Intersecting suitable lines, we now obtain Ŷd2 = F3(1, 1, 2), and
Ẑd = F3(1, 2, 2). We have thus proved that there is only one way to draw the Pappus
configuration in P2(F3), up to the action of PGL3(F3).

The points of the configuration are just those not on F3(0, 1, 0) + F3(0, 0, 1),
and the blocks are induced by the lines not through F3(0, 0, 1). The stabilizer of
the configuration is thus induced by the stabilizer of a flag in GL3(F3), in fact,

by the group
{(

r x z
0 s y
0 0 t

) ∣∣∣ r, s, t, x, y, z ∈ F3, rst 6= 0
}

. The induced group has order

22 · 33 = 3! · 2 · 32, and coincides with Aut(RC3
); see 1.4 (d). Actually, the induced

group is a Borel subgroup (i.e., a minimal parabolic subgroup) in PGL3(F3).
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Xd2 Yd2 Zd

Xd Yd Zd2

X1 Y1 Z1

1, 0, 2 1, 1, 2 1, 2, 2

1, 0, 1 1, 1, 1 1, 2, 1

1, 0, 0 1, 1, 0 1, 2, 0

Figure 3: The Pappus configuration RC3
(left), and a Pappus configuration drawn

in A2(F3) (right).

We have thus proved the following:

3.2 Theorem. Aut(RC3
) is isomorphic to the stabilizer of a flag in PGL3(F3).

See 5.12 below for an alternative proof of 3.2, using the (unique) resolution of the
transversal design RC3

.

We are going to study embeddings of RC3
into more general projective planes

(see [26] for an approach different from the present one). The class of Moufang
planes is suited well for such a purpose.

3.3 Definition (Coordinates in Moufang planes). Recall that a Moufang plane is a
projective plane P where for each flag (p, L) in P the group of all collineations with
center p and axis L acts transitively on M r {p} for any line M 6= L through p.
(In other words, the plane P is a translation plane with respect to any one of its
lines.) These are the planes that can be coordinatized by alternative fields, see [25,
Sect. 7] or [33, 17.2]. Each alternative field is either a (not necessarily commutative)
field, or an octonion field ([25, Sect. 6] or [33, 17.3]). The distributive laws hold in
an octonion field, but multiplication is not associative. However, any two elements
of an alternative field lie in an associative subalgebra which also contains the inverse
of each of its non-zero elements. That subalgebra is a (not necessarily commutative)
field.

Using a suitable alternative field K, we introduce inhomogeneous coordinates
for P: points are pairs (x, y) ∈ K2 and symbols (s) for points at infinity (with
s ∈ K∪{∞}); lines are sets [s, t] :=

{
(x, sx+ t)

∣∣ x ∈ K
}
∪{(s)} for (s, t) ∈ K2, sets

[c] :=
{

(c, y)
∣∣ y ∈ K

}
∪ {(∞)} for c ∈ K, and the line [∞] :=

{
(s)
∣∣ s ∈ K ∪ {∞}

}
at infinity.

The projective group of P acts transitively on quadrangles ([25, 7.3.14], see
also [18, 2.7]).
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3.4 Lemma. Let P be a Moufang plane, coordinatized over an alternative field K,
and consider an embedding of RC3

into P. Then the points of the configuration are
contained in a pappian subplane which is coordinatized by a commutative subfield
of K.

Proof: For U ∈ {X, Y, Z} and c ∈ 〈d〉, let Ûc denote the point in P assigned to
the point Uc of the configuration RC3

. The points X1, Xd, Y1, Yd are mapped to
the vertices of a quadrangle in P. As the projective group of P acts transitively on
quadrangles, we may assume X̂1 = (0), X̂d = (0, 1), Ŷ1 = (∞), and Ŷd = (1, 0). Then
Ẑd = (X̂1 ∨ Ŷd) ∧ (X̂d ∨ Ŷ1) = [0, 0] ∧ [0] = (0, 0).

Ẑd Ŷd

X̂d

Ẑd2 Ŷd2

X̂d2

Figure 4: Embedding of RC3
in P.

The point Ẑ1 ∈ X̂1 ∨ Ŷ1 = [∞] is of the form Ẑ1 = (u) for some u ∈ K r {0}.
Now X̂d2 ∈ Ŷd ∨ Ẑ1 = [u,−u] gives X̂d2 = (x, ux − u) for some x ∈ K. We find
Ẑd2 = (X̂d2 ∨ Ŷ1) ∧ (X̂d ∨ Ŷd) = [x] ∧ [−1, 1] = (x, 1 − x) and Ŷd2 = (X̂d ∨ Ẑ1) ∧
(X̂1 ∨ Ẑd2) = [u, 1] ∧ [0, 1− x] = (−u−1x, 1− x).

Finally, the condition Ŷd2 ∈ Ẑd∨X̂d2 = [u−ux−1, 0] yields that (u−ux−1)(−u−1x) =
−x + ux−1u−1x equals 1 − x. This means that u and x commute. All coordinates
used are in the commutative subfield generated by u and x in K. 2

3.5 Lemma. Assume that mapping Tc to T̂c gives an embedding of RC3
into a Mou-

fang plane P. Let {U, V,W} = {X, Y, Z}. If each one of the two sets {Û1, Ûd, Ûd2}
and {V̂1, V̂d, V̂d2} is collinear then {Ŵ1, Ŵd, Ŵd2} is collinear, as well, and the em-
bedding of RC3

extends to an embedding of the affine plane A2(F3) of order 3 into P.

Proof: The configuration is contained in a pappian subplane by 3.4. So Pappus’
Theorem applies to the hexagon (Û1, V̂1, Ûd, V̂d, Ûd2 , V̂d2), and gives the collinearity
of {Ẑ1, Ẑd, Ẑd2}.
If {T̂1, T̂d, T̂d2} is collinear for each T ∈ {X, Y, Z} then these three extra blocks turn
the configuration into an incidence geometry isomorphic to A2(F3). Thus we obtain
an embedding of A2(F3) into P from every embedding of the Pappus configuration
such that (at least) two sets {U1, Ud, Ud2} and {V1, Vd, Vd2} become collinear in the
plane. 2
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3.6 Remark. In 3.5 (and in 4.6 below) we consider embeddings of dual 3-nets,
with a collinearity assumption on the images of at least two sets of pairwise non-
connected points. For dual k-nets with k ≥ 4, it has been shown in [20, Thm 5.2]
that collinearity of a single maximal set of pairwise non-connected points already
imposes serious restrictions on the embeddings in question.

3.7 Theorem. Let P be a Moufang projective plane, coordinatized by an alternative
field K. There exists an embedding of A2(F3) into P if, and only if, there exists a
root u of X2 + X + 1 in K. Inhomogeneous coordinates may then be introduced in
such a way that the points of A2(F3) are the following:

(0, 0), (1, 0), (0, 1), (−u, 1), (1,−u2), (−u,−u2), (0), (u), (∞);

note that u2 = −(1+u) = u−1 is also a root of X2 +X+1. Any two such embeddings
are conjugates under the group of automorphisms of P. If K is associative, then these
embeddings are conjugates even under the projective group PGL3(K).

Proof: The affine plane A2(F3) contains a Pappus configuration. We know from
the proof of 3.4 that, up to a choice of a quadrangle of reference for the coordinates,
the image of that configuration under the embedding consists of the points X̂1 = (0),
X̂d = (0, 1), X̂d2 = (x, ux−u), Ŷ1 = (∞), Ŷd = (1, 0), Ŷd2 = (−u−1x, 1−x), Ẑ1 = (u),
Ẑd = (0, 0), and Ẑd2 = (x, 1− x), where u, x ∈ K commute with each other. For the
following arguments, Figure 5 may be helpful.

( x
ux−u )

(
−u−1x

1−x
)

( 0
0 )

( 0
1 ) ( 1

0 ) ( x
1−x )

(0) (∞) (u)

( −u1 ) ( 1
1+u ) ( 0

0 )

( 0
1 ) ( 1

0 )
( −u

1+u

)
(0) (∞) (u)

Figure 5: Embedding of A2(F3) in P (for the sake of readability, coordinates are
given as columns).

The embedding of the affine plane implies that {Ŵ1, Ŵd, Ŵd2} is collinear for each
W ∈ {X, Y, Z}. From (−u−1x, 1− x) = Ŷd2 ∈ Ŷ1 ∨ Ŷd = [1] we obtain x = −u. Both
X̂d2 ∈ X̂1 ∨ X̂d and Ẑd2 ∈ Ẑ1 ∨ Ẑd now yield u2 + u+ 1 = 0.

If the center of K contains a root of X2 + X + 1 (in particular, if charK = 3 and
thus u = 1) then {u, u2} is the set of all roots of X2 + X + 1 in K. We also
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observe u2 = u−1. The affine collineation interchanging (x, y) with (y, x) extends to
a projective collineation mapping (0, 0), (1, 0), (0, 1), (−u, 1), (1,−u2), (−u,−u2),
(0), (u), (∞) to (0, 0), (0, 1), (1, 0), (1,−u), (−u2, 1), (−u2,−u), (∞), (u2), (0),
respectively. This amounts to interchanging the roles of u and u2.

Now assume that K is associative but u is not contained in the center of K. Then
X2 +X+1 is the minimal polynomial of both u and u2 over the center of K, and it is
known (see [7, 3.4.5]) that all roots of this polynomial are conjugates in K. For any
other root v of X2 + X + 1 in K, there exists therefore a semilinear bijection (with
inner companion) of K3 inducing a projective collineation mapping (0, 0), (1, 0),
(0, 1), (−u, 1), (1,−u2), (−u,−u2), (0), (u), (∞) to (0, 0), (1, 0), (0, 1), (−v, 1),
(1,−v2), (−v,−v2), (0), (v), (∞), respectively.

It remains to handle the non-associative case. Then K is an octonion field. We give
the argument for a slightly more general case, namely the case where K is a non-
commutative non-split composition algebra. Then K is a quaternion or an octonion
field. We claim that any two roots of X2 −X + 1 in K are in the same orbit under
the group of all automorphisms of K considered as an algebra over its center. This is
a well-known fact for quaternion fields (see [5, 5.1], or use [7, 3.4.5] again as above).
In an octonion field, we use Artin’s result (that any two elements lie in an associative
subfield, see [32, Prop. 1.5.2]), the observation that this subfield is (contained in) a
quaternion subalgebra (cf. [17, 1.4]), and the fact that every inner automorphism of
a quaternion subalgebra extends to an algebra automorphism of the octonion field
(see [5, 5.3]). It remains to note that the stabilizer of a quadrangle in the projective
group of the projective plane over K induces the group of all linear automorphisms
of K. 2

3.8 Remarks. The existence of embeddings of A2(F3) into P2(C) is a well known
fact; the nine points of A2(F3) form the set of inflection points of a nonsingular
cubic (see [8, Thm. 2, Thm. 3]). Actually, the group structure of the elliptic curve
associated with a cubic curve over a commutative field K yields embeddings (of the
dual) of R∆ into the plane over K whenever ∆ is isomorphic to a subgroup of the
additive or the multiplicative group of (K,+), see [34, Prop. 5.6]. Alternative ways
to embed R∆ for such subgroups are given in 5.10 and 5.14 below.

More generally, for finite groups ∆ the embeddings of the dual of R∆ (i.e., of
(3, |∆|)-nets realizing the group ∆, cf. 1.5) into pappian projective planes have been
studied in [22] and [19]: if 4 ≤ |∆| <∞ and the characteristic of the field coordina-
tizing that plane is 0 or greater1 than |∆| then ∆ is cyclic, or a direct product of two
cyclic groups, or dihedral, or a quaternion group of order 8, or isomorphic to one of
the groups Alt4, Sym4, Alt5. According to a computer-aided search reported in [22],
the latter three cases do not occur in characteristic 0. Embeddings of R∆ for any
dihedral group ∆ have been constructed in [24, Sect. 6.2].

The construction of the embedding in 3.7 was inspired by [16, Thm. 3.4], cf.
also [6] and [22]. In the latter paper, it is also noted that any set of nine points in a

1 Some lower bound on the characteristic is needed; see 5.10 below for examples.
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projective plane such that any line joining two of these points contains a third one
is either contained in a line, or forms a subgeometry isomorphic to A2(F3); cf. 1.8.

For desarguesian planes, our result 3.7 is known, see [23, Thm. 2] for the finite
case and [30] and [4] for embeddings into possibly infinite desarguesian planes. In the
latter paper, it is also proved that every embedding of a finite affine plane of order
r ≥ 4 into a (not necessarily finite) desarguesian plane extends to an embedding of
the projective closure of the affine plane. In particular, such an embedding entails
an embedding of coordinatizing fields. There is also a version [15] for embeddings of
the configuration obtained by deleting a point and all lines through it from A2(F3).

3.9 Remark. In 3.1, we have given an embedding of the Pappus configuration
into the (Moufang) plane P2(F3); the Pappus configuration uses all points off the
line F3(0, 1, 0) + F3(0, 0, 1). That embedding extends to an embedding of A2(F3)
into P2(F3) which is the embedding in 3.7 for P = P2(F3). See also 5.10.

4 The Reye configuration RV4
and the configuration RC4

We use the elementary abelian group V4 = {1, a, b, ab} of order four for ∆, then Φ
is isomorphic to Sym3. Explicitly, we may identify V4 with the (normal) subgroup
{id, (0, 1)(2, 3), (0, 2)(1, 3), (0, 3)(1, 2)} of Sym4, then Φ is induced by the subgroup
〈(1, 2), (1, 3)〉 ∼= Sym3 of Sym4. A realization of RV4

in the projective completion of
euclidean three-space (or of the euclidean plane) is shown in Figure 6.

X1

Xa

Xb

Xab

Y1

Ya

Yb

Yab

Za

Zb
Zab

Z1

Figure 6: Spatial (or planar) embedding of Reye’s configuration; Za, Zb, and Zab lie
at infinity.
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The configuration RV4
is named to honor Theodor Reye, who studied it in [29],

cf. [28]. Reye himself in [29] attributes the configuration to Poncelet’s book of
1822. See [27, No. 633, p. 401 f] for a reprint of the second edition from 1865, or
http://books.google.de/books?id=82ISAAAAIAAJ for the first edition.

X1

Xb

Xb2

Xb3

Y1

Yb2

Yb3

Z1

Zb

Zb2

Zb3

Yb

Figure 7: A planar embedding of RC4
.

4.1 Remarks. We have |Aut(RV4
)| = | Sym4× Sym4 | but Aut(RV4

) is not isomor-
phic to Sym4× Sym4. In order to see this, consider an automorphism ϕ of order 3
in Φ. Then 1ϕ1

1 is an element of order 3 in Aut(RV4
); we have Ui.

1ϕ1
1 = Uiϕ for

each U ∈ {X, Y, Z} and each i ∈ V4. From 1.4 (d) and 1.3 (c), (d) we infer that the
centralizer of 1ϕ1

1 in Aut(RV4
) is generated by {1ϕ1

1, τ0, τ1}, and has order 18.

In Sym4× Sym4, every element of order 3 is a conjugate of an element of the set
{(δ, 1), (δ, δ), (1, δ)}, where δ = (1, 2, 3). The corresponding centralizers have order
72, 9, and 72, respectively.

Apart from the elementary abelian groups (isomorphic to V4), there is one more
isomorphism type of groups of order 4; the cyclic ones. We have Aut(C4) ∼= C2 and
obtain |Aut(RC4

)| = 26 · 3 = 192 from 1.4. Figure 7 shows an embedding of RC4

in the euclidean plane, and thus in the real projective plane. From 1.4 (e) we know
that the configurations RV4

and RC4
are not isomorphic.

4.2 Remark. The automorphism group of the real projective plane does not contain
any subgroups isomorphic to C4×C4. Therefore, it is impossible to produce an em-
bedding ofRC4

in that plane in such a way that the subgroup
{
kidmr

∣∣ k, r,m ∈ ∆
}

=

http://books.google.de/books?id=82ISAAAAIAAJ
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{
sid1

t

∣∣ s, t ∈ ∆
} ∼= ∆ × ∆ = C4×C4 of Aut(RC4

) extends to a group of automor-
phisms of the plane. As every embedding of RC4

in a projective space is planar
(see 1.9), this observation yields that there is no embedding of RC4

in any real pro-
jective space such that

{
kid1

r

∣∣ k, r ∈ ∆
} ∼= ∆ ×∆ of Aut(RC4

) extends to a group
of automorphisms of that projective space.

X1

Y1

Z1

Xa

Za
Ya

X1

Y1

Z1

Xb

Zb

Zb2Yb

Figure 8: A Veblen-Young configuration in both RV4
and RC4

(left, with a =
(0, 2)(1, 3) = (0, 1, 2, 3)2), and a “failed” (non-closing) configuration in RC4

(right,
with b = (0, 1, 2, 3)).

4.3 Remark. Note that Aut(RV4
) is transitive on the set

{
(p,B) ∈ P × B

∣∣ p ∈ B}
of flags, and the stabilizer of the flag (X1, {X1, Y1, Z1}) still acts transitively on{
B ∈ B

∣∣ Y1 /∈ B 3 X1

}
. Thus we can see from Figure 8 that the configurations RV4

and RC4
are not isomorphic: for each a ∈ V4 r{1} the set {X1, Y1, Z1, Xa, Ya, Za}

forms a Veblen-Young configuration in RV4
but {X1, Y1, Z1, Xi, Yi, Zi} forms such

a configuration in RC4
only if i is the involution in C4. This alternative to an

application of 1.4 (e) is still based on our knowledge of Aut(R∆). Since RV4
has a

non-planar embedding in euclidean three-space (see Figure 6), our result 1.9 gives a
geometric reason.

4.4 Examples. We have promised an example of an injective lineation which is not
an embedding. Here it is (actually, we get two birds with one stone): Let X̂b, Ŷb,
X̂ab, Ŷab be the vertices of a rectangle in the euclidean plane, choose a point Ẑb not
lying on any line joining two of these four points, and let Ẑab be the image of Ẑb
under the half turn around the midpoint of the rectangle (see Figure 9). The lines

X̂b Ŷb

X̂abŶab

Ẑb

Ẑab

Figure 9: Constructing an injective lineation from RV4
(or RC4

) into P2(R).

X̂b∨ Ŷb and X̂ab∨ Ŷab are parallel, so they meet in a point at infinity which we call Ẑ1.
Analogously, the lines X̂ab ∨ Ŷb and X̂b ∨ Ŷab meet in a point named Ẑab2 , the lines
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X̂b ∨ Ẑb and X̂ab ∨ Ẑab meet in a point Ŷ1, the lines X̂b ∨ Ẑab and X̂ab ∨ Ẑb meet in a
point Ŷa, the lines Ŷb ∨ Ẑb and Ŷab ∨ Ẑab meet in a point X̂1, and the lines Ŷb ∨ Ẑab
and Ŷab ∨ Ẑb meet in a point X̂a, respectively.

We have constructed an injective lineation from R∆ into P2(R) if the group ∆
is generated by commuting non-trivial elements a and b 6= a such that a−1 = a and
b2 ∈ {1, a}. The groups V4 (generated by commuting involutions a, b) and C4 (gen-
erated by b, with a := b2) both satisfy these requirements. This lineation is not an
embedding because {X1, Y1, Z1}β = {X1, Ya, Za}β = {Xa, Y1, Za}β = {Xa, Ya, Z1}β
is the line at infinity.

4.5 Theorem. Consider any group Φ and a projective space P. If P has dimension
two, assume that P is a Moufang plane. Assume that mapping Tc to T̂c gives an
embedding of RΦ into P, and that there are U ∈ {X, Y, Z} and a non-cyclic sub-
group {1, a, b, ab} of order four in Φ such that the image of RΦ is not contained
in the subspace H generated by {Û1, Ûa, Ûb, Ûab}. Then the projective space P has
characteristic two (i.e., each of its elations has order two).

Proof: Without loss of generality, we may assume U = Z. It suffices to consider
the case where Φ = {1, a, b, ab} ∼= V4. Let H denote the subspace spanned by
{Û1, Ûa, Ûb, Ûab}. Then H is a hyperplane in the subspace S generated by H and X̂1,
and S contains the image of RΦ under the embedding. We take an affine point of
view, with H at infinity. Then {X̂1, X̂a, X̂b, X̂ab} ∪ {Ŷ1, Ŷa, Ŷb, Ŷab} consists of the
vertices of a parallelogram or a parallelepiped because Ẑa, Ẑb, and Ẑab lie at infinity,
cf. Fig. 6. The fact that Ẑ1 also lies at infinity means that the parallelogram with
vertices X̂1, X̂a, Ŷ1, Ŷa has parallel diagonals, and P has characteristic two. 2

4.6 Theorem. Assume that mapping Tc to T̂c gives an embedding of RV4
into a

Moufang plane P. Let {U, V,W} = {X, Y, Z} and V4 = {1, a, b, ab}. If each one of
the two sets {Û1, Ûa, Ûb, Ûab} and {V̂1, V̂a, V̂b, V̂ab} is collinear then P is coordinatized
by an alternative field K of characteristic two, and there are t ∈ K r {0} and e ∈
Kr{0}, f ∈ Kr{0, e} such that with a suitable choice of inhomogeneous coordinates
we have

X̂1 = (e, 0), X̂a = (f, 0), X̂b = (e+ f, 0), X̂ab = (0, 0),

Ŷ1 = (e, t), Ŷa = (f, t), Ŷb = (e+ f, t), Ŷab = (0, t),

Ẑ1 = (∞), Ẑa = ((e+ f)−1) , Ẑb = (f−1) , Ẑab = (e−1) .

In particular, the set {Ŵ1, Ŵa, Ŵb, Ŵab} is collinear, as well.

If P is desarguesian, we may assume t = 1 = e.

Proof: Without loss of generality, we assume U = X and V = Y . Transitivity
properties of the little projective group of P allow to assume {X1, Xa, Xb, Xab} ⊆
K × {0} and {Y1, Ya, Yb, Yab} ⊆ K × {t}, with suitable t ∈ K r {0}. We then have
xj, yj ∈ K such that

X̂1 = (x1, 0), X̂a = (xa, 0), X̂b = (xb, 0), X̂ab = (xab, 0),

Ŷ1 = (x1, t), Ŷa = (xa, t), Ŷb = (xb, t), Ŷab = (xab, t).
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Note that this implies Ẑ1 = (∞), and that the point Ẑa is the intersection of the
lines [t(xa − x1)−1,−(t(xa − x1)−1)x1] and [t(x1 − xa)−1,−(t(x1 − xa)−1xa].

From 4.5 we know charK = 2, so Ẑa = ((x1 +xa)
−1) lies on the line [∞]. Applying an

elation with that axis and center Ẑ1 we may assume xab = 0, and then compute Ẑa =
(X̂b ∨ Ŷab) ∧ (X̂ab ∨ Ŷb) = (t(xb)

−1). This gives xb = x1 + xa. Further computations
yield Ẑb = (t(xa)

−1), and Ẑab = (t(x1)−1). Every choice of e := x1 ∈ K r {0}
and f := xa ∈ K r {0, e} gives an embedding. If P is desarguesian, we apply the
collineation (x, y) 7→ (e−1x, t−1y) to achieve t = 1 = e. 2

4.7 Remark. The embedding indicated by Figure 6 shows that the collinearity
assumptions in 4.6 cannot be relaxed.

5 Some parallelisms, and some embeddings

Considering RV4
and RC4

as transversal designs (cf. 1.5) sheds more light on these
remarkable configurations. Clearly these two are the only possible class regular
transversal designs TD[3, 4]. Extending the difference matrix for RV4

by two more
rows leads to embeddings of RV4

into the dual of the affine plane A2(F4), which is
a TD[5, 4]. We have given such an embedding in 4.6; see also 5.10 below. From 5.2
below, we infer that there is no transversal design TD[4, 4] extending RC4

.

5.1 Definition. A parallel class of an incidence structure J = (P,B,∈) is a set
E ⊆ B of blocks such that each point in P belongs to exactly one member of E
(i.e., a partition E of P into blocks). If there exists a partition of B such that each
member of that partition is a parallel class then that partition is called a parallelism
or a resolution of J, and J is called resolvable if such a resolution exists.

5.2 Proposition. The configurations RC2
and RC4

do not have any parallel classes.

Proof: This is obvious for RC2
, so consider C4 = {1, b, b2, b3}. If there ex-

ists any parallel class, then there exist one containing the block {X1, Y1, Z1} be-
cause Aut(RC4

) acts transitively on the set of blocks (cf. 1.4 (f)). For the fol-
lowing argument, see also Figure 7. If the blocks {X1, Y1, Z1}, {Xb, Yu, Zbu} and
{Xb2 , Yv, Zb2v} are in a parallel class then u /∈ {1, b3} and v /∈ {1, u, b2, b3u}. This
implies that (u, v) = (bj, b3) holds for some j ∈ {1, 2}. In any case, the remaining
set {Xb3 , Yb3−j , Zb−j} does not form a block, and we do not have a parallel class. 2

5.3 Theorem. If ∆ admits an automorphism α such that x 7→ x−1xα is a bijec-
tion (in particular, if ∆ is a finite group admitting a fixed-point-free automorphism)
then R∆ is resolvable.

Proof: Assume that α ∈ Aut(∆) has the required property. The blocks Bm :=
{X1, Y1, Z1}.1idmmα = {Xm, Ym−1mα , Zmα} with m ∈ ∆ form a parallel class E because
both α and the map m 7→ m−1mα are bijections of ∆ onto itself. Applying the
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subgroup
{

1id1
r

∣∣ r ∈ ∆
}

of Aut(R∆) we obtain that
{
E .1id1

r

∣∣ r ∈ ∆
}

is a resolution

ofR∆; in fact, an arbitrary block {Xa, Yb, Zab} is obtained as Bm.
1id1

r with the unique
pair (m, r) = (a, (aα)−1ab). 2

5.4 Remarks. The set Γα :=
{

1idmmα
∣∣ m ∈ ∆

}
forms a subgroup of Aut(R∆), and

that subgroup Γα acts regularly on X, on Y , and on Z, respectively. An application
of the construction described in [2, VIII, § 3] now yields an extension of R∆ to a
transversal design; that extension coincides with the one obtained from the resolution
in 5.3.

We note that Γα stabilizes the parallel class E , and acts transitively on E . By con-
struction, the group

{
1idmr

∣∣ m, r ∈ ∆
}

acts transitively on the set
{
E .1id1

r

∣∣ r ∈ ∆
}

of parallel classes.

A finite abelian group admits a fixed-point-free automorphism precisely if its Sy-
low 2-subgroup admits such an automorphism. A finite abelian 2-group is of the form∏e

j=1 C
dj
2j

with non-negative integers dj, and admits a fixed-point-free automorphism
precisely if dj 6= 1 for each j (cf. [10, Thm. 4.2]). See [9] for a classification of certain
infinite (namely, direct products of cyclic) abelian groups admitting a fixed-point-free
automorphism of prime order.

If ∆ is abelian then the next result is a special case of 5.3 because squaring is an
automorphism in the abelian case.

5.5 Theorem. If the squaring map a 7→ a2 is a bijection of ∆ then R∆ is resolvable.

Proof: The blocks Ba := {Xa, Ya, Za2} with a ∈ ∆ form a parallel class E . As in the
proof of 5.3 we apply the elements of

{
1id1

r

∣∣ r ∈ ∆
}

and obtain the parallel classes

E .1id1
r =

{
{Xa, Yar, Za2r}

∣∣ a ∈ ∆
}

for r ∈ ∆. An arbitrary block {Xa, Yb, Zab} lies
in precisely one of these classes; namely the one with r = a−1b. Thus we see that{
E .1id1

r

∣∣ r ∈ ∆
}

is a resolution of R∆. 2

5.6 Corollary. The configuration R∆ is resolvable whenever ∆ is a finite group of
odd order.

5.7 Remark. In the proofs of 5.3 and of 5.5, the subgroup
{

1id1
r

∣∣ r ∈ ∆
}

has
been chosen somewhat arbitrarily in Aut(R∆). E.g., we could have used the group{
kid1

1

∣∣ k ∈ ∆
}

instead. As the two subgroups are conjugates under τ2 ∈ Aut(R∆),
this will also result in a resolution of R∆. That resolution coincides with the one
constructed in 5.3 or in 5.5, respectively, precisely if ∆ is commutative.

The next result is also a special case of 5.3 (using the fixed-point-free automor-
phism x 7→ xu with u ∈ Kr {0,−1}). However, we shall use the explicit description
of the resolution in 5.10 below.

5.8 Theorem. If ∆ is isomorphic to the additive group of a field with more than
two elements (in particular, if ∆ is a finite elementary abelian group with |∆| > 2)
then R∆ is resolvable.
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Proof: We identify ∆ with the additive group of the field K in question. In
particular, we use additive notation in this proof.

For each u ∈ K r {0,−1}, and any s, t ∈ K with s 6= t, the blocks Bu
s :=

{Xs, Yus, Z(1+u)s} and Bu
t := {Xt, Yut, Z(1+u)t} have no point in common. So Eu :={

Bu
s

∣∣ s ∈ K
}

forms a parallel class in R(K,+).

Now fix u ∈ K r {0,−1}, and consider v ∈ K. The automorphism 0id0
v fixes

each point Xa, maps Yb to Yb+v, and maps Zc to Zc+v. So the orbit Eu.0id0
v ={

{Xs, Yus+v, Z(1+u)s+v}
∣∣ s ∈ K

}
is another parallel class in R(K,+). An arbitrary

block {Xa, Yb, Za+b} lies in precisely one of these classes; namely the one with
v = b − ua. So the orbit of Eu under the subgroup

{
0id0

v

∣∣ v ∈ K
}

of Aut(R(K,+))
forms a resolution of R(K,+). 2

5.9 Corollary. The Pappus configuration RC3
and the Reye configuration RV4

are
resolvable.

5.10 Examples. Let K be any (not necessarily commutative) field, and consider the
group (K,+), written additively. Using homogeneous coordinates, we embed R(K,+)

into the projective plane P2(K) over K, as follows.

Points are one-dimensional subspaces of the left vector space K3 of rows, and lines
are kernels of linear forms, given as columns (x, y, z)ᵀ obtained by transposition of
non-zero elements in K3. For a, b, c ∈ K, put X̂a := K(1, a, 0), Ŷb := K(1,−b, 1), and
Zc := K(0,−c, 1). In fact, for B = {Xa, Yb, Za+b} ∈ B, the line B̂ := ker(−a, 1, a+b)ᵀ

of the plane contains {X̂a, Ŷb, Ẑa+b}. This embedding shows that the lower bound
on the characteristic in the (non-)embeddability results of [19] (see 3.8) cannot be
dispensed with completely. Note that this embedding of R(K,+) entails an embedding

of R∆ for each subgroup ∆ ≤ (K,+) because R∆ is a substructure of R(K,+).

Each one of the sets
{
X̂a

∣∣ a ∈ K
}

,
{
Ŷb
∣∣ b ∈ K

}
, and

{
Ẑc
∣∣ c ∈ K

}
is collinear;

they are contained in the lines X̂ := ker(0, 0, 1)ᵀ, Ŷ := ker(−1, 0, 1)ᵀ, and Ẑ :=
ker(1, 0, 0)ᵀ, respectively2. Note also that each member of

{
kidmr

∣∣ k,m, r ∈ K
}
≤

Aut(R(K,+)) extends to an automorphism of the projective plane over K. The el-

ements of
{

0id0
v

∣∣ v ∈ K
}

are restrictions of elations with axis ker(0, 0, 1)ᵀ, those

of
{
vid0

0

∣∣ v ∈ K
}

are restrictions of elations with axis ker(−1, 0, 1)ᵀ, and those of{
0idv0

∣∣ v ∈ K
}

are restrictions of elations with axis ker(1, 0, 0)ᵀ; the center is K(0,1,0),
in any case.

If |K| = 2 then the image ofR(K,+) has all points of the plane except for K(0, 1, 0),

and the lines B̂ with B ∈ B are just those lines of the plane that do not pass
through K(0, 1, 0); the remaining lines are X̂, Ŷ , and Ẑ.

Now assume |K| > 2, and choose u ∈ K r {0,−1}. We use the parallel class
Eu :=

{
Bu
s

∣∣ s ∈ K
}

introduced in the proof of 5.8. For each v ∈ K, the line set{
B̂
∣∣ B ∈ Eu.0id0

v

}
is confluent; each member of that set passes through the point

2 The union X̂∪ Ŷ ∪Ẑ is a degenerate cubic. As such, it does not carry a natural group structure
(as opposed to the elliptic curve obtained in the non-degenerate case).
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K(1 + u,−v, 1). So the parallel classes obtained in 5.8 are induced by “ideal” points
on the line ker(−1, 0, 1+u)ᵀ; each point on that line is used as an ideal point, except
for the point K(0, 1, 0). Different choices of u ∈ Kr {0,−1} lead to different sets of
points to be added. The point K(0, 1, 0) is the only point that does not occur either as
Ûa with U ∈ {X, Y, Z} and a ∈ K or as an ideal point for some u ∈ Kr{0,−1}; and
every line of the projective plane apart from those through K(0, 1, 0) is of the form B̂
with B ∈ B. In other words, we reconstruct the dual affine plane over K from R(K,+)

and the parallelism considered here. In general, however, only a part of Aut(R(K,+))

can be seen in this embedding (cf. 5.11 below); e.g., we see only the subgroup of
Φ = Aut(K,+) that is generated by field automorphisms and multiplications by
field elements.

If charK = 3, we use u = 1 and obtain the embeddings of the Pappus configu-
ration R(F3,+) and the affine plane of order 3 that have been discussed in 3.7, up to
projective equivalence.

If K is a field of characteristic 3 and we embed the Pappus configuration RC3

into P2(K) as in 5.10, every automorphism of R(F3,+) extends to a collineation

of P2(K) (cf. 3.2). We put this observation into a general context:

5.11 Theorem. Let K be a commutative field of finite degree over its prime field.
Assume that R(K,+) is embedded into P2(K), as in 5.10. Then the stabilizer of the

point set X̂ ∪ Ŷ ∪ Ẑ in the group of all collineations of P2(K) induces the full group
Aut(R(K,+)) if, and only if, either K is a prime field or |K| = 4.

Proof: We use Aut(R∆) ∼= Sym3 n(Aut(∆)n∆2), see 1.4 (d) together with 1.3 (d).
If ∆ is the additive group of a field K of finite degree d := dimFK over its prime
field F ∈ {Q} ∪

{
Fp
∣∣ p prime

}
then Aut(∆) ∼= GLd(F). That group is solvable

exactly if either d = 1 (and K = F) or |K| ∈ {4, 9}; in fact, Aut(Fp,+) = F×p ∼= Cp−1

and Aut(Q,+) = Q× (cf. [31, 31.10]) are abelian, while Aut(F4,+) ∼= GL2(F2) and
Aut(F9,+) ∼= GL2(F3) are solvable, but GLd(F) has the simple subquotient PSLd(F)
in all other cases.

The stabilizer Ψ of X̂ ∪ Ŷ ∪ Ẑ in the group of all collineations of P2(K) induces the
full symmetric group on this set of three lines through the point K(0, 1, 0), and the
kernel of the action on this set induces a group isomorphic to the automorphism
group Aut(K) of the field K on the pencil of lines through K(0, 1, 0). The kernel of
the action on that pencil is a semidirect product K× nK2.

Each simple subquotient of Ψ is, therefore, isomorphic to a subquotient of Aut(K).
As we assume the degree d to be finite, we find that every simple subquotient of Ψ
is a subquotient of Symd, and thus finite. If F = Q and d > 1 then Aut(K,+)
has an infinite simple subquotient (namely, PSLd(Q)). If F is finite then Aut(F) is
cyclic, and Ψ is a solvable subgroup of Aut(R(K,+)). It remains to study the cases

where |K| = p2 ∈ {4, 9}. We then have |Ψ| = 12(p2 − 1)p4, while |Aut(R
C2
p
)| =

6 · |GL2(Fp)| · p4 = 6(p2 − 1)(p − 1)p5. These orders coincide if p = 2 but they are
different if p = 3. 2
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5.12 Remark. The Pappus configuration RC3
has exactly one resolution (namely,

the one discussed in 5.10, for u = 1). Adding a point for each parallel class, we obtain
a unique extension to the dual of A2(F3). This gives an alternative proof of 3.2.

5.13 Remark. As in the proof of 5.8, we see that the orbit of the set Fu :={
{Xs, Ysu, Zs(1+u)}

∣∣ s ∈ K
}

under the subgroup
{

0id0
v

∣∣ v ∈ K
}

of Aut(R(K,+)) forms
a resolution of R(K,+). If K is not commutative, this resolution may differ from the
one constructed in the proof of 5.8; in fact, the embedding in 5.10 will not map the
parallel class Fu to a set of confluent lines unless u lies in the center of K.

5.14 Examples. For any (not necessarily commutative) field K, we consider a
subgroup ∆ of the multiplicative group K× = K r {0}, and embed the structure
R∆ into the projective plane over K, as follows. For a ∈ ∆, let X̂a := K(a, 1, 0),
Ŷb := K(1, 0, b), and Ẑc := K(0, 1,−c). The image of the block Ba,b = {Xa, Yb, Zab} is

then contained in the line B̂a,b = ker(−b, ab, 1)ᵀ. Each set U ∈ {X, Y, Z} is mapped

into a line Û ; we have X̂ = ker(0, 0, 1)ᵀ, Ŷ = ker(0, 1, 0)ᵀ, and Ẑ = ker(1, 0, 0)ᵀ.

Note that the action of the subgroup
{
kidmr

∣∣ k,m, r ∈ ∆
}

extends to an action

by collineations of the projective plane; the extension of kidmr is induced by the
linear map (x, y, z) 7→ (xm, yk, zr). Extensions of the automorphisms τ0, τ1, and
τ2 (see 1.3) are induced by (x, y, z) 7→ (y, x,−z), by (x, y, z) 7→ (z,−y, x), and by
(x, y, z) 7→ (−x,−z,−y), respectively.

This construction can also be found (for the special case of a commutative field K
of characteristic 0, and then a finite cyclic group ∆) in [19, Prop. 6]. The involutory
homologies in [19, Prop. 7] are conjugates of the extension of our automorphism τ0.

5.15 Remark. Every finite subgroup of the multiplicative group of a commutative
field K is cyclic, and this extends to the case of non-commutative fields of positive
characteristic, see [11, Thm. 6]. If ∆ is a finite subgroup of the multiplicative group
of a non-commutative field K of characteristic 0 then the Sylow p-subgroups of ∆ are
cyclic for each odd prime p, and the Sylow 2-subgroup is either cyclic or a generalized
quaternion group; see [1, Thm. 2]. Finite groups with only cyclic Sylow subgroups
have been determined by Zassenhaus [35, Satz 5], see [1, Lemma 1]; here we have
metacyclic groups satisfying an additional arithmetic constraint, and of course cyclic
groups. If the Sylow 2-subgroups of ∆ are generalized quaternion groups but all
other Sylow subgroups are cyclic then [1] gives a complete and explicit classification.
In particular, two-fold coverings of dihedral groups, of Alt4, of Sym4 and of Alt5 (i.e.,
the binary dihedral, tetrahedral, octahedral, and icosahedral groups which occur as
subgroups of the multiplicative group of the quaternion field over the real numbers)
play an essential role; the group ∆ is a direct product of one of these binary groups
and some suitable group with all Sylow subgroups cyclic.

5.16 Remark. Note that 5.14 yields embeddings of the Pappus configuration RC3

into the projective plane P2(F4), and of RC4
into P2(F5). Any embedding of RC3

obtained in 5.14 extends to an embedding of the affine plane A2(F3) of order 3 because
each one of the sets X, Y , and Z is mapped into a line. See 3.7, and note that K×
contains a group of order 3 precisely if K contains a root u 6= 1 of X2 +X + 1. The
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parallel classes E1.0id0
v from the proof of 5.8 will not become confluent under the

embedding in 5.14. In fact, if they were confluent, the present embedding of A2(F3)
would extend to an embedding of P2(F3) into P2(K), and lead to an embedding of the
field F3 into K. Such an embedding is impossible because the multiplicative group
of a field of characteristic 3 will never contain a group of order 3.

6 Remarks on 124163 configurations and their automorphisms

An incidence structure is called a ps bt configuration if it has p points and b blocks
such that s blocks pass through each point and t points are on each block, and there
are no digons (i.e., if two points are joined by a block then that block is unique). A
ps configuration is a ps bt configuration with ps = bt.

The Pappus configuration is a 93 configuration, and there are three isomorphism
types of such configurations (cf. [12, § 17] or [13, § 17]). Only two of them admit an
automorphism group transitive on the set of points (see [12, p. 96] or [13, p. 109]).

The Reye configuration is a 124 163 configuration. In [3] the results of a computer
search are used to show that only three isomorphism types of 124 163 configurations
admit an automorphism group transitive on the set of points. Those configurations
have automorphism groups of order 12, 192, and 576, respectively. The latter two
types are the configurations RC4

and RV4
, respectively.

7 Incidence graphs and dualities

For any incidence structure (with points and blocks), the incidence graph has as
vertex set the disjoint union of the set of points with the set of blocks, a subset
{x, y} of that vertex set forms an edge precisely if either (x, y) or (y, x) is a flag. By
its very construction, every incidence graph is bi-partite; we will draw the points as
white vertices, and the blocks as black ones.

The incidence graph of the Pappus configuration RC3
is shown in Figure 10;

incidence graphs of the Reye configuration RV4
and the configuration RC4

, respec-
tively, are shown in Figure 11. Note that only three edges are changed when passing
from the incidence graph of RV4

to that of RC4
; the changed edges are marked in

Figure 11.

An abstract automorphism of the incidence graph of an incidence geometry in-
duces an automorphism of that structure if, and only if, it preserves the sets of points
and the set of blocks, respectively (i.e., if it preserves the colors white and black in
the vertex set). If an automorphism swaps the colors then it induces a duality of the
incidence structure (swapping points and lines and reversing incidence).

7.1 Theorem. The incidence structure R∆ admits a duality precisely if ∆ ∼= C3. In
that case, one even has polarities (i.e., dualities that are involutions). In particular,
there exist 22 · 33 = 108 many dualities of the Pappus configuration RC3

. Among
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these dualities, we have 18 polarities. The polarities of RC3
form a single conjugacy

class under Aut(RC3
).

Proof: Every block has three points, but the cardinality of the line pencil BX1 ={
{X1, Yb, Zb}

∣∣ b ∈ ∆
}

equals the cardinality of ∆. So the existence of a duality
implies ∆ ∼= C3. In order to verify that RC3

does admit polarities, it remains to
look at Figure 10 which clearly exhibits (involutory) automorphisms of the incidence
graph of the Pappus configuration that swap the colors.

X1

Xd2

Xd

Y1

Yd2

Yd

Z1

Zd

Zd2

Figure 10: Incidence graph of the Pappus configuration.

We also give a polarity π explicitly in terms of the embedding of RC3
into P2(F3),

as described in 3.1. Interchanging subspaces of F3
3 with their orthogonal spaces with

respect to the quadratic form q(x, y, z) := y2 − xz gives a polarity of the projective
plane, and π maps the point p∞ := F3(0, 0, 1) to the line L∞ := F3(0, 1, 0)+F3(0, 0, 1).
Therefore, the embedding given in 3.1 is invariant under π, and we may regard π

as a polarity of RC3
. Using

(
0 0 1
0 1 0
1 0 0

)
as a Gram matrix for q and the fact (see 3.1)

that Aut(RC3
) is induced by the group

{(
r x z
0 s y
0 0 t

) ∣∣∣ r, s, t, x, y, z ∈ F3, rst 6= 0
}

, it is

easy to see that the centralizer of π is induced by
{(

r x rx
0 s −rsx
0 0 r

) ∣∣∣ r, s, x ∈ F3, rs 6= 0
}

.

Therefore, the conjugacy class of π under Aut(RC3
) contains 18 elements.

The number of dualities of RC3
equals the number

∣∣Aut(RC3
)
∣∣ = 22 · 33 = 108

of automorphisms, cf. 1.4 (d). In fact, if δ is any duality of RC3
then π−1δ is an

automorphism, and extends to an automorphism α of P2(F3) by 3.1. Now δ = πα is
(induced by) a duality of P2(F3). We obtain that every polarity of RC3

is induced
by a polarity of P2(F3) having (π∞, L∞) as one of its absolute flags. Every such
polarity has three more absolute flags, say (pj, Lj) with j ∈ {0, 1, 2}. The four
absolute points form a non-degenerate conic (that is, a quadrangle) in P2(F3). We
infer that the points p0, p1, p2 lie in RC3

, and they are not collinear but pairwise
collinear. There are just 18 such sets of points in RC3

, and (together with the
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absolute point p∞ at infinity) any such set determines the respective polarity. We
obtain that the polarities of RC3

are just those in the conjugacy class of π. 2

Y0

X1

Y2

X3

X0

Y1

X2

Y3

Z0

Z3

Z2

Z1

Y0

X1

Y2

X3

X0

Y1

X2

Y3

Z0

Z3

Z2

Z1

Figure 11: Incidence graphs of the Reye configuration RV4
(left) and the configura-

tion RC4
(right).
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