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Abstract

Given integers k and m, a graph G on n vertices is said to be (k,m)-
pancyclic if every set of k vertices in G is contained in a cycle of length r
for each integer r ∈ {m,m+ 1, · · · , n}. This property, which generalizes
the notion of a vertex pancyclic graph, provides one way to measure the
prevalence of cycles in a graph. The property was introduced by Faudree,
Gould, Jacobson, and Lesniak (2004). We show that any 2-connected
claw-free P6-free graph is (k, 3k + 4)-pancyclic for every integer k ≥ 1.
We provide an infinite family of graphs that shows this result is best
possible.

1 Introduction

Let G = (V,E) denote a simple graph of order n ≥ 3. We say G is pancyclic
if G contains a cycle of each possible length, from 3 up to n. The notion of vertex
pancyclicity was defined by Bondy [2]. The graph G is vertex pancyclic if every vertex
of G is contained in a cycle of each length, from 3 to n. We consider the property
(k,m)-pancyclicity, defined in 2004 by Faudree et al. [11], which is a generalization
of vertex pancyclicity.

Definition 1.1 (Faudree, Gould, Jacobson, and Lesniak [11]). Given integers k and
m with 0 ≤ k ≤ m ≤ n, a graph G of order n is said to be (k,m)-pancyclic if for
any k-set S ⊆ V and any integer r with m ≤ r ≤ n, there exists a cycle of length r
in G that contains S.

Whenever m > n or k > n, we define (k,m)-pancyclicity to be the same as hamil-
tonicity. Note that (k, n)-pancyclicity represents hamiltonicity, (0, 3)-pancyclicity
represents pancyclicity, and (1, 3)-pancyclicity represents vertex pancyclicity. Note
also that whenever a graph is (k,m)-pancyclic for some k ≥ 1, then it must also be
(k − 1, m)-pancyclic and (k,m+ 1)-pancyclic.
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Implications of Ore-type degree conditions for this type of generalized pancyclicity
have recently been explored [11, 7]. Relationships between hamiltonian type prop-
erties and bounds on the quantity σ2(G) = min{d(x)+ d(y) : xy /∈ E(G)} have been
studied extensively. Ore [13] proved that if σ2(G) ≥ n, then G is hamiltonian. In
1971, Bondy [3] showed that the condition σ2(G) ≥ n+1 guarantees G is pancyclic.
Faudree et al. (2004) showed that this bound ensures much more than pancyclicity.
Their result, which uses the notion of (k,m)-pancyclicity, provides insight into the
prevalence of cycles in such a graph.

Theorem A (Faudree, Gould, Jacobson, and Lesniak [11]). Let G be a graph of
order n ≥ 3. If σ2(G) ≥ n + 1, then G is (k, 2k)-pancyclic for each integer k ≥ 2.

Another technique that has been employed to ensure hamiltonian-type properties
is the forbidding of a subgraph or subgraphs. Given a graph H , we say G is H-free if
G does not containH as an induced subgraph. In this context, H is called a forbidden
subgraph. If F is a family of graphs, we say G is F-free if G is F -free for each F ∈ F.
Many results in hamiltonian theory that make use of forbidden subgraph conditions
involve the star K1,3, also known as the claw (see [9] for a survey that includes results
in this area).

In 2015, it was shown that if only claw-free graphs are considered, we may
lower the σ2(G) bound to n in Theorem A and simultaneously guarantee (k, k + 3)-
pancyclicity as opposed to (k, 2k)-pancyclicity.

Theorem B ([7]). Let G be a claw-free graph of order n ≥ 3. If σ2(G) ≥ n, then G
is (k, k + 3)-pancyclic for each integer k ≥ 1.

1.1 Pairs of Forbidden Subgraphs

For an integer i ≥ 1 let Pi denote a path on i vertices, and for an integer j ≥ 3 let
Cj denote a cycle on j vertices. A number of hamiltonian-type results have been
obtained involving forbidden families of subgraphs, such as the following result due
to Broersma and Veldman [4] in 1990.

Theorem C (Broersma and Veldman [4]). If G is a 2-connected graph that is
{K1,3, P6}-free, then G is hamiltonian.

In fact, it was shown by Faudree et al. in [12] that if such a graph has order
n ≥ 10, then it must be pancyclic.

Theorem D (Faudree, Ryjáček, and Schiermeyer [12]). If G is a 2-connected {K1,3,
P6}-free graph of order n ≥ 10, then G is pancyclic.

Given integers i, j, k ≥ 0, let N(i, j, k) denote the generalized net, or the graph
obtained by taking a triangle and three disjoint paths Pi, Pj, and Pk, and for each
path, joining by an edge an end vertex from the path and a distinct vertex of the
triangle. The net, denoted N , is the graphN(1, 1, 1). The bull, denoted B, represents
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the graph N(1, 1, 0). The wounded, denoted W , is the graph N(2, 1, 0). Also, Zi

denotes the graph N(i, 0, 0).

A characterization of all pairs of subgraphs that, when forbidden, imply hamil-
tonicity in 2-connected graphs of order n ≥ 10 was given in Faudree and Gould [10].
Their result extended an earlier characterization by Bedrossian [1] that used graphs
of small order to eliminate the pair {K1,3, Z3}.
Theorem E (Faudree and Gould [10]). Let R and S be connected graphs (R, S �=
P3) and let G be a 2-connected graph of order n ≥ 10. Then G is {R, S}-free
implies G is hamiltonian if, and only if, R = K1,3 and S is one of the graphs
C3, P4, P5, P6, Z1, Z2, Z3, B,N , or W .

Since (k,m)-pancyclicity implies hamiltonicity, the ten pairs of forbidden sub-
graphs in Theorem E are the only pairs that could ensure (k,m)-pancyclicity for
integers k ≤ m in 2-connected graphs. For each k ≥ 1 and each of the nine pairs
{K1,3, S} where S ∈ {C3, P4, P5, Z1, Z2, Z3, B,N,W}, the smallest integer m such
that any 2-connected {K1,3, S}-free graph is guaranteed to be (k,m)-pancyclic was
given in [6, 8].

Theorem F ([6]). Let G be a 2-connected K1,3-free graph of order n ≥ 10.

(i) If G �= Cn is Z1-free, then G is (1, 3)-pancyclic, (2, 4)-pancyclic, (3, 4)-pan-
cyclic, and (k, k)-pancyclic for k ≥ 4.

(ii) If G is P4-free, then G is (1, 4)-pancyclic and (k, k + 2)-pancyclic for k ≥ 2.

(iii) If G �= Cn is Z2-free, then G is (1, 4)-pancyclic and (k, 3k)-pancyclic for k ≥ 2.

(iv) If G is S-free for some S ∈ {C3, Z3, B,N,W} and k ≥ 0, then G is (k, n)-
pancyclic.

These results are best possible under the given conditions.

Theorem G ([8]). Let G be a 2-connected {K1,3, P5}-free graph on n ≥ 5 vertices.
Then G is (1, 5)-pancyclic and (k, 3k)-pancyclic for k ≥ 2. These results are best
possible under the given conditions.

In this paper, we complete the investigation of (k,m)-pancyclicity implied by
forbidden pairs in 2-connected graphs by extending Theorem D in a natural way. We
explore the prevalence of cycles in 2-connected {K1,3, P6}-free graphs. In particular,
we show that such graphs are guaranteed to be not only pancyclic but, in fact,
(k, 3k + 4)-pancyclic for each integer k ≥ 1. We also provide an example that shows
this result is best possible.
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1.2 Notation

For terms and notation not defined here, we refer the reader to [5]. For a vertex
v ∈ V , we denote by d(v) the degree of v, and by N(v) the neighborhood of v.
Given a subgraph H of G and a vertex v ∈ V , we let NH(v) = N(v) ∩ V (H), and
dH(v) = |NH(v)|. For S ⊆ V , let N(S) = {v ∈ V − S : vh ∈ E(G) for some h ∈ S}.
Given a vertex u and a subgraph H in G such that u /∈ V (H), a (u,H)-path is any
path in G from u to a vertex v ∈ V (H).

Given a path P , we denote by (P ) the set of all internal vertices of P , that is
V (P ) minus the end vertices of P . If the end vertices of P are u and v, we denote by
[P ] the set V (P ) = (P )∪{u, v}. Given a cycle C and a vertex v ∈ V (C), we impose
an orientation on C and let v− (v+) denote the vertex that appears directly before
(after) v on C. We let xCy denote the path from x to y along C in the direction of
the imposed orientation, while xC−y will denote the path from x to y in the opposite
direction along C.

2 Properties of Claw-free, P6-free Graphs

The goal of this paper is to prove the following.

Theorem 2.1. If G is a 2-connected {K1,3, P6}-free graph on n ≥ 7 vertices, then
G is (k, 3k + 4)-pancyclic for all k ≥ 1. This result is best possible under the given
conditions.

We begin with several definitions and lemmas that will establish useful properties
of {K1,3, P6}-free graphs.

Definition 2.1. Given a cycle C and a vertex x ∈ V (G), we say C absorbs x if
there exists a cycle C ′ in G with vertex set V (C)∪{x}. Given X ⊆ V (G), we say C
absorbs X if there exists a cycle C ′ in G with vertex set V (C) ∪X . In this context,
we say C absorbs x (or X) via C ′.

Given cycles C and C ′ with V (C) = V (C ′), note that C absorbs x (or X) if and
only if C ′ absorbs x (or X).

Definition 2.2. Given a cycle C in G, a set of m ≥ 2 vertices {z1, · · · , zm} ⊆
V (G)−V (C) is called a tab of C if z1z2 · · · zm is a path in G and there exist distinct
vertices u, v ∈ V (C) such that NC(z1) = {u} and NC(zm) = {v}. An m-tab of C is
a tab of C with cardinality m.

The following lemma guarantees that any cycle C in G absorbs each of its tabs,
as well as each vertex z ∈ V − V (C) with dC(z) ≥ 2.

Lemma 2.1. Let G be a 2-connected {K1,3, P6}-free graph on n ≥ 8 vertices, and
let C be a cycle in G. If {z1, z2, · · · , zm} ⊆ V − V (C) and there are distinct vertices
u, v ∈ V (C) such that uz1z2 · · · zmv is a path in G, then C absorbs {z1, z2, · · · , zm}.
In particular, we have the following.
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(a) If z /∈ V (C) and dC(z) ≥ 2, then C absorbs z.

(b) If T is a tab of C, then C absorbs T .

Proof. Let C be a cycle of length j. We first observe that it is sufficient to prove
parts (a) and (b). Now if {z1, z2, · · · , zm} is a tab of C, then the result follows from
part (b); otherwise dC(z1) ≥ 2 without loss of generality, and C absorbs z1 by part
(a). Repeating this argument as needed, we see that C absorbs {z1, z2, · · · , zm}.

We now prove parts (a) and (b). We will assume j ≥ 8, because both parts are
easy to verify when 3 ≤ j ≤ 7, using the fact that G is claw-free.

Proof of part (a). Suppose the conclusion of part (a) is false. Since for every cycle
Ĉ with V (Ĉ) = V (C), C absorbs z if and only if Ĉ absorbs z, we may pick distinct
vertices u, v ∈ V (C) ∩N(z) and assume without loss of generality that

|(uCv)| = min{|(aĈb)| : Ĉ is a cycle in G with V (Ĉ) = V (C), and

a, b ∈ V (C) ∩N(z) are distinct}.

Now u and v do not occur consecutively on C, for otherwise part (a) clearly holds.
The path uCv also satisfies N(z) ∩ (uCv) = ∅ by our choice of u and v.

Since G is claw-free, we must have u−u+, v−v+ ∈ E. Now uv− /∈ E, for oth-
erwise C absorbs z via uzvCu−u+Cv−u. This implies v− �= u+. By symme-
try, we have uv+ /∈ E and v+ �= u−. Also uv−− /∈ E, or else C absorbs z via
uzvv−v+Cu−u+Cv−−u. By symmetry, uv++ /∈ E. This implies v−−, v++ /∈ {u+, u−},
and therefore |(uCv)| ≥ 3. Due to the minimality of |(uCv)|, we must have v+, v++ /∈
N(z).

If u has consecutive neighbors w1 and w2 occurring on uCv in that order, then
the cycle Ĉ = vCu−u+Cw1uw2Cv whose vertex set is V (C) contains a path uĈv
which is shorter than uCv, contradicting the minimality of |(uCv)|. Therefore u does
not have consecutive neighbors on uCv.

Let x ∈ (uCv) be the unique vertex such that ux ∈ E and uw /∈ E for all
w ∈ (xCv). Since no two neighbors of u are consecutive on uCv, we have ux− /∈ E. In
particular, this implies x �= u++. Since uv−, uv−− /∈ E, we also have x /∈ {v−, v−−}.
We consider two cases.
Case 1. Suppose x �= u+.

Since G is claw-free, we have x−x+ ∈ E. Now xv− /∈ E, for otherwise C absorbs
z via the cycle uzvCu−u+Cx−x+Cv−xu. Similarly xv+ /∈ E since otherwise C
absorbs z via uzvC−x+x−C−u+u−C−v+xu, and xv−− /∈ E or else C absorbs z via
uzvv−v+Cu−u+Cx−x+Cv−−xu. Since xv−− /∈ E, we have x �= v−−−, and thus
uv−−− /∈ E.

Let y ∈ (xCv) be such that xy ∈ E and xw /∈ E for all w ∈ (yCv). Such a vertex
y must exist since xx+ ∈ E. Note that y ∈ (xCv−−). If there is a vertex α ∈ (yCv)
such that yα− ∈ E and yα /∈ E, then {z, u, x, y, α−, α} induces a P6. This implies
yα ∈ E for all α ∈ (yCv). Now yv+ ∈ E, for otherwise {z, u, x, y, v−, v+} induces a
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P6. Then y+v+ ∈ E, or else {y, x, y+, v+} induces a claw. But now C absorbs z via
uzvC−y+v+Cu−u+Cx−x+Cyxu.
Case 2. Suppose x = u+. Thus N(u) ∩ (u+Cv) = ∅.

We have u+v+ /∈ E or else C absorbs z via uzvC−u+v+Cu, and u+v++ /∈ E since
otherwise C absorbs z via uzvv+v−C−u+v++Cu. Let y ∈ N(u+) ∩ (u+Cv) be such
that u+w /∈ E for all w ∈ (yCv).

Suppose (yCv) �⊂ N(y). This implies y /∈ {v−−, v−}. Choose w ∈ (yCv) −
N(y) so that the path yCw is shortest possible. Hence (yCw) ⊂ N(y). But now
{z, u, u+, y, w−, w} induces a P6. Therefore it must be the case that (yCv) ⊂ N(y).

Now yv+ ∈ E, or else y �= v− and {z, u, u+, y, v−, v+} induces a P6. Similarly
yv++ ∈ E or else {z, u, u+, y, v+, v++} induces a P6. Since u+w /∈ E for all w ∈
(yCv) ∪ {v+, v++}, it must be the case that [yCv−] ∪ {v+, v++} induces a clique, in
order to avoid a claw centered at y. Note that v+++ �= u−, for otherwise C absorbs
z via vzuu−u+Cyv++v+y+Cv.

Suppose [v+++Cu−−] �⊂ N(y). Choose w ∈ [v+++Cu−−] − N(y) so that the
path yCw is shortest possible. Hence [v+Cw−] ⊂ N(y). Now if u+γ ∈ E for some
γ ∈ (v++Cw), then C absorbs z via vzuC−γu+Cyγ−C−v+y+Cv. Therefore u+γ /∈ E
for all γ ∈ (v++Cw). Then in order to avoid a claw centered at y, it must be the
case that [yCv−] ∪ [v+Cw−] induces a clique.

Now u+w /∈ E, for otherwise C absorbs z via uzvCw−v−C−u+wCu. Also uw /∈
E, or else C absorbs z via vzuwCu−u+Cv−w−C−v. Similarly uw− /∈ E. Furthermore
zw /∈ E, since otherwise C absorbs z via vzwCv−w−C−v. Similarly zw− /∈ E. But
now {z, u, u+, y, w−, w} induces a P6.

Therefore we must have [v+++Cu−−] ⊂ N(y). However, now C absorbs z via the
cycle vzuu−u+Cyu−−C−v+y+Cv.

Proof of part (b). Let T = {z1, z2, · · · , zm} be a tab of C such that P = z1z2 · · · zm
is a path in G, NC(z1) = {u}, and NC(zm) = {v}. We may clearly follow the same
argument from the proof of part (a), making the following changes. Replace each
occurrence of the phrase “absorbs z” with “absorbs T”; replace each occurrence of
N(z) with N({z1, zm}); replace each occurrence of the path uzv (or vzu) with the
path uPv (or vP−u); for each reference to a set of vertices that induces a P6, replace
z with z1; and near the end of the proof, rather than argue that zw, zw− /∈ E, simply
note that z1w, z1w

− /∈ E because T is a tab of C.

The context for the next few results is as follows. Given a 2-connected {K1,3, P6}-
free graph G, suppose C is a cycle in G and let z ∈ V −V (C). Since G is 2-connected,
we may pick a pair of (z, C)-paths P and Q that are vertex-disjoint except for z,
such that |(P )| + |(Q)| is minimal among all such sums. Let u and v denote the
end vertices of P and Q, respectively, on C. Note that |(P )|, |(Q)| ≤ 3 since G is
P6-free. We now prove Lemmas 2.2, 2.3, 2.4, and 2.5 which will allow us to handle
the different possible values of |(P )| and |(Q)| in such a situation.

Lemma 2.2. Let G be a 2-connected {K1,3, P6}-free graph on n ≥ 8 vertices, and let
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C, z, P , Q, u, and v be as described in the preceding paragraph. If P = uu1u2u3z,
then (V (C)− {v}) ∪ {u1} induces a clique in G, and C absorbs u1.

Proof. Note that V (P ) induces a P5 in G. By the minimality of |(P )| + |(Q)|, we
have xz, xu3, xu2 /∈ E for all x ∈ V (C)− {v}.

Suppose [v+Cu] �⊂ N(u1), and choose w ∈ [v+Cu] so that wu1 /∈ E and the path
wCu is as short as possible. But now u1w

+ ∈ E by the minimality of |(wCu)|, and
{z, u3, u2, u1, w

+, w} induces a P6. Thus [v+Cu] ⊂ N(u1). By symmetry we also
have [uCv−] ⊂ N(u1), and so V (C)− {v} ⊂ N(u1). Avoiding a claw centered at u1,
it must be the case that V (C)− {v} induces a clique in G. Also u1x ∈ E for some
x ∈ {u−, u+}, so C absorbs u1.

Lemma 2.3. Let G be a 2-connected {K1,3, P6}-free graph on n ≥ 8 vertices, and
let C, z, P , Q, u, and v be as previously described. If P = uu1u2z, then either
V (C)− {v} induces a clique in G, or C absorbs u1.

Proof. Suppose C does not absorb u1. Now by the minimality of |(P )| + |(Q)|, we
have xz, xu2 /∈ E for all x ∈ V (C)− {v}. Also xu1 /∈ E for all x ∈ V (C)− {u}, for
otherwise C absorbs u1 by Lemma 2.1.

Clearly ux ∈ E for all x ∈ (vCu), for otherwise there exists a vertex w ∈ (vCu)
satisfying uw /∈ E and uw+ ∈ E, which implies that w �= u− and {z, u2, u1, u, w

+, w}
induces a P6. By symmetry ux ∈ E for all x ∈ (uCv), and so ux ∈ E for all
x ∈ V (C)−{u, v}. Avoiding a claw centered at u, it must be the case that V (C)−{v}
induces a clique in G.

Lemma 2.4. Let G be a 2-connected {K1,3, P6}-free graph on n ≥ 8 vertices, and
let C, z, P , Q, u, and v be as previously described. If |(P )| = 2, then there is no
induced P5 that occurs consecutively on C.

Proof. Let X denote a path x1x2x3x4x5 = x1Cx5 on C that is an induced P5. Let
P = uu1u2z, and let NQ(v) = v′. We begin with the following claim.

Claim 2.1. If there exists a vertex y ∈ V (C) such that yu2 ∈ E or yz ∈ E, then
y = v and NC(v

′) = {v}.

Proof. By the minimality of |(P )|+|(Q)|, we have az, au2 /∈ E for all a ∈ V (C)−{v},
so such a vertex y must equal v. Let Q′ denote the induced path from z to v′ on Q.
Now suppose there exists a vertex w ∈ NC(v

′) − {v}. If vu2 ∈ E, then the pair of
paths {zu2v,Q

′w} contradicts the minimality of |(P )| + |(Q)|. If vz ∈ E, then the
pair of paths {zv,Q′w} contradicts the minimality of |(P )|+ |(Q)|. So in either case,
we must have NC(v

′) − {v} = ∅, and thus NC(v
′) = {v}. This completes the proof

of the claim.

We now consider two cases corresponding to whether or not u1 has a neighbor
on X.

Case 1. Suppose u1x ∈ E for some x ∈ V (X).
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If there exists a vertex y ∈ V (X) such that yu2 ∈ E or yz ∈ E, then y = v
and NC(v

′) = {v} by Claim 2.1. If v ∈ {x2, x3, x4}, then the set {v, v′, v−, v+}
induces a claw centered at v. Hence v = x5 without loss of generality. But this is a
contradiction, since now the path x1x2x3x4x5v

′ is an induced P6. Therefore we must
have yu2, yz /∈ E for all y ∈ V (X). We now consider three possibilities.

Suppose u1x1 ∈ E. Then for each w ∈ {x3, x4, x5} we have wu1 /∈ E, since
otherwise {u1, u2, x1, w} induces a claw centered at u1. Thus u1x2 ∈ E, or else the
set {x5, x4, x3, x2, x1, u1} induces a P6. But now {x5, x4, x3, x2, u1, u2} induces a P6.
Therefore u1x1, u1x5 /∈ E without loss of generality.

Suppose u1x2 ∈ E. Then for each w ∈ {x4, x5} we have wu1 /∈ E, or else
{u1, u2, x2, w} induces a claw centered at u1. Hence u1x3 ∈ E, since otherwise
{x5, x4, x3, x2, u1, u2} induces a P6. But now {x5, x4, x3, u1, u2, z} induces a P6.
Therefore u1x2, u1x4 /∈ E without loss of generality.

Thus we must have u1x3 ∈ E. But now the path x1x2x3u1u2z is an induced P6.

Case 2. Suppose u1x /∈ E for all x ∈ V (X).

We have u /∈ V (X). Without loss of generality, we may assume v /∈ (x3Cu). Now
for each y ∈ (x3Cu), since y �= v, we must have yz, yu2 /∈ E by Claim 2.1. We must
also have x3z, x3u2 /∈ E, or else Claim 2.1 implies NC(v

′) = {x3}, and thus the set
{x3, v

′, x2, x4} induces a claw centered at x3.

Let w ∈ [x+
5 Cu] be the unique vertex such that wu1 ∈ E and au1 /∈ E for all

a ∈ (x5Cw). Now if wα /∈ E for some α ∈ [x3Cw−], then there must exist a vertex
β ∈ [x4Cw−] such that wβ ∈ E and wβ− /∈ E. But this implies that the path
zu2u1wββ

− is an induced P6, since u1a /∈ E for all a ∈ V (X) ∪ (x5Cw).

Hence we must have wα ∈ E for all α ∈ [x3Cw−]. But now {w, u1, x5, x3} induces
a claw centered at w.

We will need the following definition for Lemma 2.5.

Definition 2.3. Given a cycle C and a set X ⊂ V (C), we say X is skippable with
respect to C if for all Y ⊆ X, there exists a cycle Ĉ in G with V (Ĉ) = V (C)− Y .

Lemma 2.5. Let G be a 2-connected {K1,3, P6}-free graph on n ≥ 8 vertices. Let C,
z, P , Q, u, and v be as previously described, and let S ⊂ V (C) be such that |S| ≥ 1
and |V (C)| ≥ |S|+ 2. If V (C)−{v} induces a clique in G, then there exists a cycle
C ′ and a set X ⊂ V (C)−S such that C absorbs V (P )∪V (Q) via C ′, X is skippable
with respect to C ′, and:

(i) If |(P )| = 3 or |(Q)| = 3, then |X| ≥ |V (C)| − |S| − 2.

(ii) If |(P )|, |(Q)| ≤ 2, then |X| ≥ |V (C)| − |S| − 3.

Proof. Let S ⊂ V (C) satisfy |V (C)| ≥ |S|+2 ≥ 3, and suppose V (C)−{v} induces
a clique in G.

Proof of part (i). Assume P = uu1u2u3z without loss of generality. By Lemma 2.2,
(V (C)− {v}) ∪ {u1} induces a clique in G.
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Suppose {v−, v, v+}∩S = ∅. Then there exists a vertex s ∈ S−{v−, v, v+}. Note
that u1s, v

−s ∈ E. Let C ′ = vCs−s+Cv−su1PzQv. Then X = V (C ′)− (S ∪ (P ) ∪
[Q] ∪ {v, v+, s}) is skippable with respect to C ′ and |X| ≥ |V (C)| − |S| − 2.

So let {v−, v, v+}∩S �= ∅. If u and v occur consecutively on C, say u = v−, then
let C ′ = vCv−PzQv. Now X = V (C ′)− (S∪V (P )∪V (Q)∪{v, v+, v−}) is skippable
with respect to C ′ and |X| ≥ |V (C)| − |S| − 2.

Thus we may assume u and v do not occur consecutively on C. If v ∈ S or v+ ∈ S,
consider C ′ = vCu−u+Cv−uPzQv. Then X = V (C ′)−(S∪V (P )∪V (Q)∪{v, v+, u})
is skippable with respect to C ′ and |X| ≥ |V (C)| − |S| − 2. If v− ∈ S, let C ′ =
vQzPuv+Cu−u+Cv. Then X = V (C ′)− (S ∪V (P )∪V (Q)∪{u, v−, v}) is skippable
with respect to C ′ and |X| ≥ |V (C)| − |S| − 2.

Proof of part (ii). Suppose |(P )|, |(Q)| ≤ 2. If u and v occur consecutively on C, say
u = v−, then let C ′ = vCuPzQv. Otherwise, let C ′ = vCu−u+Cv−uPzQv. Then
X = V (C ′) − (S ∪ V (P ) ∪ V (Q) ∪ {v, v+, u}) is skippable with respect to C ′ and
|X| ≥ |V (C)| − |S| − 3.

Now if C is a cycle of length l ≥ 3k + 3 that contains a k-set S ⊂ V and has a
2-tab T , Lemmas 2.6 and 2.7 will allow us to effectively hop over a vertex in V (C)−S
to obtain a new cycle of length l − 1 which then absorbs the tab T . The end result
is a cycle of length l + 1 that contains S.

Lemma 2.6. Let G be a 2-connected {K1,3, P6}-free graph on n ≥ 8 vertices. Let C
be a cycle in G with |V (C)| ≥ 6, and let x1x2x3x4x5 = x1Cx5 be a path contained on
C. Let {z1, z2} be a 2-tab of C with NC(z1) = {u} and NC(z2) = {v}, and suppose
one of the following two conditions holds:

(i) u, v /∈ {x1, x2, x3, x4, x5};
(ii) u ∈ {x1, x5} and v /∈ {x2, x3, x4}.

Then there exists a cycle Ĉ in G and a vertex x ∈ {x2, x3, x4} such that V (Ĉ) =
(V (C)− {x}) ∪ {z1, z2}.

Proof. Suppose the conclusion of the lemma is false. Note that each of the conditions
(i) and (ii) implies u, v /∈ {x2, x3, x4}. Thus x1x3, x2x4, x3x5 /∈ E, for otherwise
we may hop over a vertex x ∈ {x2, x3, x4} to obtain the cycle C ′ = x−x+Cx−

which has {z1, z2} as a tab, and then apply Lemma 2.1 to obtain a cycle Ĉ with
V (Ĉ) = V (C ′) ∪ {z1, z2}.

First suppose condition (i) holds. Without loss of generality we may assume
v /∈ (x5Cu). Let y ∈ [x1Cu−] be the unique vertex such that yu ∈ E and au /∈ E for
all a ∈ (x−

1 Cy).

Suppose y = x1. Then ux3 /∈ E, or else {u, z1, x1, x3} induces a claw centered
at u. Therefore ux2 ∈ E, since otherwise {z2, z1, u, x1, x2, x3} induces a P6. But
now ux4 ∈ E, or {z2, z1, u, x2, x3, x4} induces a P6. This is a contradiction since now
{u, z1, x2, x4} induces a claw.
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Suppose y = x2. Then ux4 /∈ E, or {u, z1, x2, x4} induces a claw. Thus ux3 ∈ E,
or else {z2, z1, u, x2, x3, x4} induces a P6. However, now ux5 ∈ E since {z2, z1, u, x3,
x4, x5} cannot induce a P6. This is a contradiction as {u, z1, x3, x5} now induces a
claw.

Therefore, it must be the case that y ∈ [x3Cu−]. Now if there is a vertex β ∈
[x2Cy−] such that yβ ∈ E and yβ− /∈ E, then {z2, z1, u, y, β, β−} induces a P6. Thus
there is no such vertex, which implies that [x1Cy−] ⊂ N(y). But since ua /∈ E
for all a ∈ [x1Cy−], then avoiding a claw centered at y, it must be the case that
[x1Cy] induces a clique in G. This is a contradiction, since clearly we may now hop
over some vertex x ∈ {x2, x3, x4}, and then apply Lemma 2.1 to obtain the desired
cycle Ĉ.

Now suppose condition (ii) holds. Assume u = x1 without loss of generality. Then
we must have x1x4 ∈ E, since otherwise {z2, z1, x1, x2, x3, x4} induces a P6. But this
yields a contradiction, as {x1, z1, x2, x4} now induces a claw centered at x1.

We now use Lemma 2.6 to prove the following.

Lemma 2.7. Let G be a 2-connected {K1,3, P6}-free graph on n ≥ 8 vertices. Let
S ⊂ V satisfy |S| = k ≥ 1, and suppose there exists a cycle C in G with |V (C)| ≥
3k + 3 and S ⊂ V (C). If {z1, z2} is a 2-tab of C, then there exists a cycle Ĉ in G
and a vertex x ∈ V (C)− S such that V (Ĉ) = (V (C)− {x}) ∪ {z1, z2}.

Proof. Let NC(z1) = u and NC(z2) = v. Since S ⊂ V (C) and |V (C)| ≥ 3|S| + 3,
then by the Pigeonhole Principle at least one of the following two statements holds:

(A) There exist distinct ordered pairs (w1, w
′
1), (w2, w

′
2), (w3, w

′
3) ∈ S × S such that

(wjCw′
j) ⊂ V (C)− S and |(wjCw′

j)| = 3 for each j ∈ {1, 2, 3}.
(B) There exists a path y1y2y3y4y5 = y1Cy5 on C such that y1 ∈ S and y2, y3, y4, y5

/∈ S.

First suppose (A) holds, and thus k ≥ 3. Let P1 = w1Cw′
1, P2 = w2Cw′

2, and
P3 = w3Cw′

3. Note that (Pi) ∩ (Pj) = ∅ for all i �= j since the ordered pairs from
(A) are distinct. Now if u, v /∈ V (Pj) for some j ∈ {1, 2, 3}, then condition (i) of
Lemma 2.6 applies since Pj = wjCw′

j is a path on 5 vertices, and we are done by
Lemma 2.6.

Thus suppose for each j ∈ {1, 2, 3}, we have {u, v} ∩ V (Pj) �= ∅. This is only
possible if u or v is an end vertex of Pj for some j ∈ {1, 2, 3}. Without loss of
generality, assume u = w1. Now v ∈ (w1Cw′

1), since otherwise condition (ii) of
Lemma 2.6 applies using the path w1Cw′

1, and we are done by Lemma 2.6. But this
is a contradiction, since now u, v /∈ V (Pj) for some j ∈ {2, 3}.

Now suppose (B) holds. If u, v /∈ [y1Cy5], then condition (i) of Lemma 2.6 applies
and we are done by Lemma 2.6. Thus we may assume u ∈ [y1Cy5] without loss of
generality. Let y6 = y+5 and y7 = y++

5 . We consider four cases.
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Case 1. Suppose that u ∈ {y1, y2}. Then u+, u++, u+++ /∈ S. We must have v ∈
{u+, u++, u+++} or else condition (ii) of Lemma 2.6 applies using the path uCu++++,
and we are done. If v = u++, then uz1z2vCu is the desired cycle. If v = u+++,
then v−v+ ∈ E in order to avoid a claw centered at v. But now uz1z2vv

−v+Cu
is the desired cycle. Lastly, suppose v = u+. Now assume vv++, v+v+++ /∈ E,
for otherwise the result clearly holds. Then we must have vv+++ ∈ E, or else
{z1, z2, v, v+, v++, v+++} induces a P6. This is a contradiction since now {v, z2, v+,
v+++} induces a claw centered at v. Thus we may assume u, v /∈ {y1, y2}.
Case 2. Let u = y3. We have v �= y5 or else y3z1z2y5Cy3 is the desired cycle. Now
v �= y6, for otherwise y5y7 ∈ E in order to avoid a claw centered at y6, and then
y3z1z2y6y5y7Cy3 is the desired cycle. So we have v /∈ {y1, y2, y3, y5, y6}.

Suppose v �= y4. Then y3y5, y4y6 /∈ E, or else there clearly exists a cycle C ′ with
V (C ′) = V (C) − {y} for some y ∈ {y4, y5}, and we are done by Lemma 2.1 since
{z1, z2} is a tab of C ′. But now y3y6 ∈ E since {z2, z1, y3, y4, y5, y6} cannot induce a
P6, and so {y3, z1, y4, y6} induces a claw centered at y3.

Therefore we must have v = y4. Now y4y6 /∈ E or else the result clearly holds.
Suppose y6 /∈ S. Assume y5y7 /∈ E since otherwise the result certainly holds. But
now y4y7 ∈ E, or else {z1, z2, y4, y5, y6, y7} induces a P6. This is a contradiction since
{y4, z2, y5, y7} induces a claw.

Now suppose y6 ∈ S, and thus k ≥ 2. Since |V (C)| ≥ 3|S|+3, by the Pigeonhole
Principle there must exist a path x1x2x3x4x5 = x1Cx5 such that x1 ∈ S − {y1} and
x2, x3, x4 ∈ V (C)− S. But then [y2Cy5] ∩ [x1Cx5] = ∅, and so u, v /∈ [x1Cx5]. This
fulfills condition (i) of Lemma 2.6, and we are done by Lemma 2.6. Hence we may
assume u, v �= y3.

Case 3. Assume u = y4. We know v /∈ {y1, y2, y3, y4}. Also y1y3, y2y4 /∈ E, since
otherwise we may hop over y2 or y3 first, and then apply Lemma 2.1 to obtain the
desired cycle. But now y1y4 ∈ E since the set {z2, z1, y4, y3, y2, y1} cannot induce a
P6. This is a contradiction because now {y4, z1, y3, y1} induces a claw centered at y4.
Therefore we assume u, v �= y4.

Case 4. Suppose u = y5. From the previous cases, we have v /∈ {y2, y3, y4}.
Now condition (ii) of Lemma 2.6 applies using the path y1Cy5, and we are done
by Lemma 2.6.

Whenever a k-set S is contained in a cycle of length m with 3k+3 ≤ m ≤ n− 1,
the next lemma guarantees that S is contained in a cycle of length m+ 1.

Lemma 2.8. Let G be a 2-connected {K1,3, P6}-free graph on n ≥ 8 vertices. If a
set S ⊂ V of k ≥ 1 vertices is contained in an m-cycle C where 3k+3 ≤ m ≤ n− 1,
then S is also contained in an (m+ 1)-cycle.

Proof. Pick a vertex γ ∈ V − V (C) such that γu ∈ E for some u ∈ V (C). As G is
2-connected, we may pick a path Q from γ to V (C)− {u} that is shortest possible.
Let v denote the end vertex of Q on C.
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Wemay assume there does not exist a vertex in V−V (C) that the cycle C absorbs,
since otherwise the result holds. Therefore by Lemmas 2.1 and 2.2, |(Q)| /∈ {0, 3}.

Suppose Q = vv1v2γ. Since C does not absorb v1, Lemma 2.3 implies V (C)−{u}
induces a clique. By Lemma 2.5, there exists a cycle C ′ and a set X ⊂ V (C) − S
such that C absorbs V (Q) via C ′, X is skippable with respect to C ′, and |X| ≥
|V (C)| − |S| − 3 ≥ (3k + 3)− k − 3 ≥ 2. Since C ′ contains S and has length m+ 3,
the result holds.

Now suppose Q = vv1γ. Since C does not absorb v1, Lemma 2.1 implies that
dC(v1) = 1, and thus {γ, v1} is a 2-tab of C. But now we may apply Lemma 2.7 to
obtain a cycle of length m+ 1 that contains S.

3 Proof of Theorem 2.1

We nearly have all the tools in place to prove the main result. Let G be a 2-connected
{K1,3, P6}-free graph. If n = 7, the result clearly holds since G is hamiltonian and
3k+4 ≥ 7. Therefore we assume n ≥ 8. First we will use an inductive proof to show
that if k ≥ 1 and n ≥ 3k + 4, then any k-set is contained in a (3k + 4)-cycle. The
following claim provides the base case for the proof.

Claim 3.1. Every vertex u ∈ V is contained in a cycle of length 7.

Proof. Suppose u ∈ V is not contained in a 7-cycle. A cycle that contains u and has
shortest possible length, l, must satisfy l ∈ {3, 4, 5, 6} since G is P6-free. Therefore
we may pick a cycle C of length m ∈ {3, 4, 5, 6} that contains u.

Since G is connected and n ≥ 8, we may choose w ∈ V −V (C) such that wx ∈ E
for some x ∈ V (C). As G is 2-connected, we may pick a path Q from w to V (C)−{x}
that is shortest possible. Let y denote the end vertex of Q on C. We may assume
without loss of generality that y �= x−. We will consider four cases corresponding to
the possible values of m.

Case 1. Suppose m = 6. Then by Lemma 2.8, u is contained in a 7-cycle.

Case 2. Suppose m = 5. By Case 1, we may assume u is not contained in a 6-cycle.
Thus dC(v) ≤ 1 for all v /∈ V (C) by Lemma 2.1, and |(Q)| �= 3 by Lemma 2.2. If
|(Q)| = 1 then {w} ∪ (Q) is a 2-tab of C, and C absorbs {w} ∪ (Q) by Lemma 2.1.
This is a contradiction, since now u is contained in a 7-cycle.

Suppose Q = yy1y2w. Without loss of generality we may assume y �= x−−. Since
dC(y1) = 1, Lemma 2.3 implies V (C)− {x} induces a clique. If u ∈ {x, y, x−, x−−},
then yy1y2wxx

−x−−y is a 7-cycle which contains u. If u /∈ {x, y, x−, x−−}, then
yy1y2wxx

−uy is a 7-cycle.

Case 3. Suppose m = 4. By Cases 1 and 2, u is not contained in a 6-cycle or
a 5-cycle. Hence dC(v) ≤ 1 for all v /∈ V (C) by Lemma 2.1, and |(Q)| �= 3 by
Lemma 2.2. If |(Q)| = 1, then clearly u is contained in a 6-cycle if y = x+, and a
5-cycle if y = x++. If |(Q)| = 2, then clearly u is contained in a 7-cycle if y = x+,
and a 6-cycle if y = x++.
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Case 4. Suppose m = 3. By the previous three cases, u is not contained in a 6-cycle,
a 5-cycle, or a 4-cycle. Therefore dC(v) ≤ 1 for all v /∈ V (C) by Lemma 2.1, and
|(Q)| �= 3 by Lemma 2.2. If |(Q)| = 1, then u is contained in a 5-cycle. If |(Q)| = 2,
then u is contained in a 6-cycle. This completes the proof of Claim 3.1.

Now let S ⊂ V be such that |S| = k − 1 ≥ 1, and suppose there is a cycle C in
G of length 3(k − 1) + 4 = 3k + 1 such that S ⊂ V (C). Let z ∈ V − S. Assuming
n ≥ 3k + 4, we will show there exists a cycle C ′ of length 3k + 4 in G such that
S ∪ {z} ⊂ V (C ′). We begin by proving two claims.

Claim 3.2. There exists a cycle Ĉ of length L in G such that L ∈ {3k + 1, 3k +
2, 3k + 3, 3k + 4} and S ∪ {z} ⊂ V (Ĉ).

Proof. If z ∈ V (C), Claim 3.2 clearly holds. Suppose z /∈ V (C). Since G is 2-
connected, we may pick a pair of (z, C)-paths P and Q that are vertex-disjoint
except for z, such that |(P )| + |(Q)| is minimal among all such sums. Let u and v
denote the end vertices of P and Q, respectively, on C. Note that |(P )|, |(Q)| ≤ 3
since G is P6-free. Assume |(P )| ≤ |(Q)| without loss of generality.

If P = uu1u2u3z, then V (C) − {v} induces a clique in G by Lemma 2.2. By
Lemma 2.5, there exists a cycle C ′ and a set X ⊂ V (C) − S such that C absorbs
V (P )∪V (Q) via C ′, X is skippable with respect to C ′, and |X| ≥ |V (C)|−|S|−2 =
(3k + 1) − (k − 1) − 2 = 2k ≥ 4. Hence Claim 3.2 clearly holds with L = 3k + 4.
Thus we may assume |(P )| ≤ |(Q)| ≤ 2 without loss of generality.

Now C absorbs V (P ) ∪ V (Q) by Lemma 2.1. Therefore if the ordered pair
(|(P )|, |(Q)|) ∈ {(0, 0), (0, 1), (0, 2), (1, 1)}, then Claim 3.2 holds with L ∈ {3k +
2, 3k + 3, 3k + 4}.

Therefore we assume |(Q)| = 2 and |(P )| ∈ {1, 2}. Since |V (C)| = 3|S|+ 4, then
by the Pigeonhole Principle there exists a path x1x2x3x4x5 = x1Cx5 on C such that
x1 ∈ S and x2, x3, x4 /∈ S. By Lemma 2.4, x1Cx5 cannot be an induced P5. This
implies that there exists a cycle Cx such that V (Cx) = V (C)−X for some nonempty
set X ⊆ {x2, x3, x4}. Note that S ⊂ V (Cx) and |V (Cx)| ∈ {3k − 2, 3k − 1, 3k}.

Pick a pair of (z, Cx)-paths {Px, Qx} that are vertex-disjoint except for z, such
that |(Px)| + |(Qx)| is minimal among all such sums. Let ux and vx denote the end
vertices of Px and Qx, respectively, on Cx. Now |(Px) ∪ (Qx) ∪ {z}| ≥ |(P ) ∪ (Q) ∪
{z}| ≥ 4 by the minimality of |(P )|+ |(Q)|.

Suppose V (Cx) − {vx} induces a clique. By Lemma 2.5, there exists a cycle
C ′

x and a set Z ⊂ V (Cx) − S such that Cx absorbs V (Px) ∪ V (Qx) via C ′
x and

Z is skippable with respect to C ′
x. Suppose |(Px)| = 3 or |(Qx)| = 3. Then by

Lemma 2.5, |Z| ≥ |V (Cx)| − |S| − 2. If |V (Cx)| = 3k, then |Z| ≥ 3 and Claim 3.2
holds with L = 3k + 4. If |V (Cx)| = 3k − 1, then |Z| ≥ 2 and Claim 3.2 holds with
L ∈ {3k + 3, 3k + 4}. If |V (Cx)| = 3k − 2, then |Z| ≥ 1 and Claim 3.2 holds with
L ∈ {3k + 2, 3k + 3, 3k + 4}.

If |(Px)|, |(Qx)| ≤ 2, then by Lemma 2.5, |Z| ≥ |V (Cx)|−|S|−3. If |V (Cx)| = 3k,
then |Z| ≥ 2 and Claim 3.2 holds with L = 3k+4. If |V (Cx)| = 3k−1, then Claim 3.2
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holds with L ∈ {3k + 3, 3k + 4}. If |V (Cx)| = 3k − 2, then Claim 3.2 holds with
L ∈ {3k + 2, 3k + 3}.

Therefore we assume neither V (Cx) − {vx} nor V (Cx) − {ux} induces a clique.
By Lemma 2.2, we have |(Px)|, |(Qx)| ≤ 2. Without loss of generality, this implies
|(Qx)| = 2 and |(Px)| ∈ {1, 2}.

By Lemma 2.1, the cycle Cx absorbs V (Px) ∪ V (Qx). Thus if |(Px)| = 1 and
|(Qx)| = 2, then Claim 3.2 holds with L ∈ {3k + 2, 3k + 3, 3k + 4}.

So suppose |(Px)| = 2 = |(Qx)|. If |V (Cx)| ∈ {3k−2, 3k−1}, then by Lemma 2.1,
Claim 3.2 holds with L ∈ {3k + 3, 3k + 4}.

Thus we assume |V (Cx)| = 3k = 3|S|+3. By the Pigeonhole Principle there exists
a path y1y2y3y4y5 = y1Cxy5 on Cx such that y1 ∈ S and y2, y3, y4 /∈ S. Lemma 2.4
implies y1Cxy5 cannot be an induced P5. Therefore there exists a cycle Cy such that
V (Cy) = V (Cx)− Y for some set Y ⊆ {y2, y3, y4} with Y �= ∅. Note that S ⊂ V (Cy)
and |V (Cy)| ∈ {3k − 3, 3k − 2, 3k − 1}.

Pick a pair of (z, Cy)-paths {Py, Qy} that are vertex-disjoint except for z, such
that |(Py)| + |(Qy)| is minimal among all such sums. Let uy and vy denote the end
vertices of Py and Qy, respectively, on Cy. Now |(Py)∪ (Qy)∪ {z}| ≥ |(Px) ∪ (Qx)∪
{z}| = 5 by the minimality of |(Px)|+ |(Qx)|.

Suppose |(Py)| = 3 or |(Qy)| = 3. Then without loss of generality, V (Cy)− {vy}
induces a clique in G by Lemma 2.2. By Lemma 2.5, there exists a cycle C ′

y and a
set Z ⊂ V (Cy)− S such that Cy absorbs V (Py)∪ V (Qy) via C ′

y, Z is skippable with
respect to C ′

y, and |Z| ≥ |V (Cy)| − |S| − 2. If |V (Cy)| = 3k − 1, then |Z| ≥ 2 and
Claim 3.2 holds with L = 3k + 4. If |V (Cy)| = 3k − 2, then |Z| ≥ 1 and Claim 3.2
holds with L ∈ {3k + 3, 3k + 4}. If |V (Cy)| = 3k − 3, then Claim 3.2 holds with
L ∈ {3k + 2, 3k + 3, 3k + 4}.

So assume |(Py)| = 2 = |(Qy)|. Since Cy absorbs V (Py) ∪ V (Qy) by Lemma 2.1,
Claim 3.2 then holds with L ∈ {3k + 2, 3k + 3, 3k + 4}.
Claim 3.3. If L ∈ {3k + 1, 3k + 2} and n ≥ 3k + 3, then S ∪ {z} is contained in a
(3k + 3)-cycle or a (3k + 4)-cycle.

Proof. Pick a vertex γ ∈ V − V (Ĉ) such that γu ∈ E for some u ∈ V (Ĉ). Now pick
a path Q from γ to V (Ĉ)− {u} that is shortest possible.
Case 1. Suppose L = 3k+2. If |(Q)| ∈ {0, 1}, then the result holds since Ĉ absorbs
V (Q) by Lemma 2.1. If Q = vv1v2v3γ, then Ĉ absorbs v1 by Lemma 2.2 and the
result holds.

Suppose Q = vv1v2γ. Assume Ĉ does not absorb v1, since the result holds
otherwise. By Lemma 2.3, V (Ĉ) − {u} induces a clique. Hence Lemma 2.5 implies
there exists a cycle Ĉ1 and a set X ⊂ V (Ĉ)− (S ∪ {z}) such that Ĉ absorbs V (Q)
via Ĉ1, X is skippable with respect to Ĉ1, and |X| ≥ |V (Ĉ)| − |S ∪ {z}| − 3 =
(3k + 2) − k − 3 ≥ 3. Since Ĉ1 contains S ∪ {z} and has length 3k + 5, the result
clearly holds in this case.
Case 2. Suppose L = 3k+1. If |(Q)| ∈ {1, 2}, then the result holds since Ĉ absorbs
V (Q) by Lemma 2.1.



C.B. CRANE/AUSTRALAS. J. COMBIN. 72 (2) (2018), 185–200 199

If Q = vγ or Q = vv1v2v3γ, then Ĉ absorbs γ or v1 by Lemma 2.1 or Lemma 2.2,
respectively, yielding a cycle of length 3k + 2 which contains S ∪ {z}. We may now
repeat the argument from Case 1, and Claim 3.3 holds.

Claim 3.2 and Claim 3.3 together imply that the k-set S ∪ {z} is contained in
a (3k + 3)-cycle or a (3k + 4)-cycle, assuming n ≥ 3k + 3. If S ∪ {z} is contained
in a non-hamiltonian (3k + 3)-cycle, then Lemma 2.8 allows us to obtain a cycle of
length 3k + 4 that contains S ∪ {z}.

Hence by induction, we have shown that any set S of k ≥ 1 vertices is contained
in a (3k + 4)-cycle whenever n ≥ 3k + 4. Furthermore, Lemma 2.8 guarantees that
S is contained in a cycle of length m whenever 3k + 4 ≤ m ≤ n. Therefore G is
(k, 3k + 4)-pancyclic.

To see that this result is best possible, consider the graph H given in Figure 1,
which is a 2-connected, {K1,3, P6}-free graph. It is easy to observe that H is not
(k, 3k + 3)-pancyclic, since the set {y1, y2, · · · , yk} is not contained in a cycle of
length 3k + 3.
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Figure 1: The set {y1, y2, · · · , yk} is not contained in a (3k + 3)-cycle.
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