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Abstract

Given integers k and m, a graph G on n vertices is said to be (k,m)-
pancyclic if every set of k vertices in GG is contained in a cycle of length r
for each integer r € {m,m + 1,--- ,n}. This property, which generalizes
the notion of a vertex pancyclic graph, provides one way to measure the
prevalence of cycles in a graph. The property was introduced by Faudree,
Gould, Jacobson, and Lesniak (2004). We show that any 2-connected
claw-free Py-free graph is (k, 3k + 4)-pancyclic for every integer k > 1.
We provide an infinite family of graphs that shows this result is best
possible.

1 Introduction

Let G = (V, E) denote a simple graph of order n > 3. We say G is pancyclic
if G contains a cycle of each possible length, from 3 up to n. The notion of vertex
pancyclicity was defined by Bondy [2]. The graph G is vertex pancyclic if every vertex
of GG is contained in a cycle of each length, from 3 to n. We consider the property
(k, m)-pancyclicity, defined in 2004 by Faudree et al. [11], which is a generalization
of vertex pancyclicity.

Definition 1.1 (Faudree, Gould, Jacobson, and Lesniak [11]). Given integers k and
m with 0 < k < m < n, a graph G of order n is said to be (k, m)-pancyclic if for
any k-set S C V and any integer r with m < r < n, there exists a cycle of length r
in G that contains S.

Whenever m > n or k > n, we define (k, m)-pancyclicity to be the same as hamil-
tonicity. Note that (k,n)-pancyclicity represents hamiltonicity, (0,3)-pancyclicity
represents pancyclicity, and (1, 3)-pancyclicity represents vertex pancyclicity. Note
also that whenever a graph is (k, m)-pancyclic for some k > 1, then it must also be
(k — 1, m)-pancyclic and (k, m + 1)-pancyclic.
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Implications of Ore-type degree conditions for this type of generalized pancyclicity
have recently been explored [11, 7]. Relationships between hamiltonian type prop-
erties and bounds on the quantity o9(G) = min{d(z) + d(y) : zy ¢ E(G)} have been
studied extensively. Ore [13] proved that if 02(G) > n, then G is hamiltonian. In
1971, Bondy [3] showed that the condition o9(G) > n + 1 guarantees G is pancyclic.
Faudree et al. (2004) showed that this bound ensures much more than pancyclicity.
Their result, which uses the notion of (k, m)-pancyclicity, provides insight into the
prevalence of cycles in such a graph.

Theorem A (Faudree, Gould, Jacobson, and Lesniak [11]). Let G be a graph of
order n > 3. If 09(G) > n+ 1, then G is (k,2k)-pancyclic for each integer k > 2.

Another technique that has been employed to ensure hamiltonian-type properties
is the forbidding of a subgraph or subgraphs. Given a graph H, we say G is H -free if
G does not contain H as an induced subgraph. In this context, H is called a forbidden
subgraph. If ¥ is a family of graphs, we say G is F-free if G is F-free for each ' € F.
Many results in hamiltonian theory that make use of forbidden subgraph conditions
involve the star K 3, also known as the claw (see [9] for a survey that includes results
in this area).

In 2015, it was shown that if only claw-free graphs are considered, we may
lower the o3(G) bound to n in Theorem A and simultancously guarantee (k, k + 3)-
pancyclicity as opposed to (k, 2k)-pancyclicity.

Theorem B ([7]). Let G be a claw-free graph of order n > 3. If 03(G) > n, then G
is (k, k + 3)-pancyclic for each integer k > 1.

1.1 Pairs of Forbidden Subgraphs

For an integer ¢ > 1 let P; denote a path on ¢ vertices, and for an integer 7 > 3 let
C; denote a cycle on j vertices. A number of hamiltonian-type results have been
obtained involving forbidden families of subgraphs, such as the following result due
to Broersma and Veldman [4] in 1990.

Theorem C (Broersma and Veldman [4]). If G is a 2-connected graph that is
{Ki3, Ps}-free, then G is hamiltonian.

In fact, it was shown by Faudree et al. in [12] that if such a graph has order
n > 10, then it must be pancyclic.

Theorem D (Faudree, Ryjacek, and Schiermeyer [12]). If G is a 2-connected { K 3,
Ps}-free graph of order n > 10, then G is pancyclic.

Given integers 4,7,k > 0, let N(i,j, k) denote the generalized net, or the graph
obtained by taking a triangle and three disjoint paths P;, P;, and P, and for each
path, joining by an edge an end vertex from the path and a distinct vertex of the

triangle. The net, denoted N, is the graph N(1,1,1). The bull, denoted B, represents
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the graph N(1,1,0). The wounded, denoted W, is the graph N(2,1,0). Also, Z;
denotes the graph N(i,0,0).

A characterization of all pairs of subgraphs that, when forbidden, imply hamil-
tonicity in 2-connected graphs of order n > 10 was given in Faudree and Gould [10].
Their result extended an earlier characterization by Bedrossian [1] that used graphs
of small order to eliminate the pair {K; 3, Z3}.

Theorem E (Faudree and Gould [10]). Let R and S be connected graphs (R,S #
P3) and let G be a 2-connected graph of order n > 10. Then G is {R,S}-free
implies G is hamiltonian if, and only if, R = Ky;3 and S is one of the graphs
03,P4,P5,P6,Z1,Z2,Z3,B,N, or W.

Since (k, m)-pancyclicity implies hamiltonicity, the ten pairs of forbidden sub-
graphs in Theorem E are the only pairs that could ensure (k,m)-pancyclicity for
integers k < m in 2-connected graphs. For each £ > 1 and each of the nine pairs
{Ki3,S} where S € {Cs, Py, P;5, Zy, Zy, Z3, B, N,W}, the smallest integer m such
that any 2-connected {K 3, S}-free graph is guaranteed to be (k, m)-pancyclic was
given in [6, 8].

Theorem F ([6]). Let G' be a 2-connected K, 3-free graph of order n > 10.

(i) If G # C, is Zi-free, then G is (1,3)-pancyclic, (2,4)-pancyclic, (3,4)-pan-
cyclic, and (k, k)-pancyclic for k > 4.

(ii) If G is Py-free, then G is (1,4)-pancyclic and (k, k + 2)-pancyclic for k > 2.
(iii) If G # C,, is Zy-free, then G is (1,4)-pancyclic and (k, 3k)-pancyclic for k > 2.
() If G is S-free for some S € {C3,Z3, By,N,W} and k > 0, then G is (k,n)-

pancyclic.

These results are best possible under the given conditions.

Theorem G ([8]). Let G be a 2-connected { K, 3, P5}-free graph on n > 5 vertices.
Then G is (1,5)-pancyclic and (k,3k)-pancyclic for k > 2. These results are best
possible under the given conditions.

In this paper, we complete the investigation of (k,m)-pancyclicity implied by
forbidden pairs in 2-connected graphs by extending Theorem D in a natural way. We
explore the prevalence of cycles in 2-connected { K7 3, Ps}-free graphs. In particular,
we show that such graphs are guaranteed to be not only pancyclic but, in fact,
(k, 3k + 4)-pancyclic for each integer £ > 1. We also provide an example that shows
this result is best possible.
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1.2 Notation

For terms and notation not defined here, we refer the reader to [5]. For a vertex
v € V, we denote by d(v) the degree of v, and by N(v) the neighborhood of v.
Given a subgraph H of G and a vertex v € V, we let Ny(v) = N(v) N V(H), and
dy(v) = |Ng(v)|. For S CV,let N(S)={veV —S8:vhe E(G) for some h € S}.
Given a vertex u and a subgraph H in G such that u ¢ V(H), a (u, H)-path is any
path in G from u to a vertex v € V(H).

Given a path P, we denote by (P) the set of all internal vertices of P, that is
V(P) minus the end vertices of P. If the end vertices of P are u and v, we denote by
[P] the set V(P) = (P)U{u,v}. Given a cycle C' and a vertex v € V(C'), we impose
an orientation on C' and let v~ (v") denote the vertex that appears directly before
(after) v on C'. We let xC'y denote the path from z to y along C' in the direction of
the imposed orientation, while zC'~y will denote the path from x to y in the opposite
direction along C'.

2 Properties of Claw-free, Fs-free Graphs

The goal of this paper is to prove the following.

Theorem 2.1. If G is a 2-connected { K3, Ps}-free graph on n > T vertices, then
G is (k,3k + 4)-pancyclic for all k > 1. This result is best possible under the given
conditions.

We begin with several definitions and lemmas that will establish useful properties
of {K 3, Ps}-free graphs.

Definition 2.1. Given a cycle C and a vertex x € V(G), we say C absorbs z if
there exists a cycle C” in G with vertex set V(C)U{x}. Given X C V(G), we say C
absorbs X if there exists a cycle C” in G with vertex set V(C') U X. In this context,
we say C absorbs z (or X) via C".

Given cycles C' and C" with V(C') = V(C"), note that C' absorbs = (or X) if and
only if C" absorbs z (or X).

Definition 2.2. Given a cycle C' in G, a set of m > 2 vertices {z1, -, zn} C
V(G)—=V(C) is called a tab of C'if z129 - - - z,, is a path in G and there exist distinct
vertices u,v € V(C') such that No(z1) = {u} and N¢(z,) = {v}. An m-tab of C is
a tab of C' with cardinality m.

The following lemma guarantees that any cycle C' in G absorbs each of its tabs,
as well as each vertex z € V — V/(C) with do(z) > 2.

Lemma 2.1. Let G be a 2-connected { K 3, Ps}-free graph on n > 8 wvertices, and
let C be a cycle in G. If {z1,22, -+ ,2m} CV —=V(C) and there are distinct vertices
u,v € V(C) such that uzzs - - - z,v is a path in G, then C absorbs {z1, 22, , Zm }-
In particular, we have the following.
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(a) If z ¢ V(C) and dc(z) > 2, then C' absorbs z.
(b) If T is a tab of C, then C absorbs T.

Proof. Let C be a cycle of length j. We first observe that it is sufficient to prove
parts (a) and (b). Now if {z1, 25, -+, 2z, } is a tab of C| then the result follows from
part (b); otherwise de(z1) > 2 without loss of generality, and C' absorbs z; by part
(a). Repeating this argument as needed, we see that C' absorbs {z1, 20, -+ , 2z}

We now prove parts (a) and (b). We will assume j > 8, because both parts are
easy to verify when 3 < 7 < 7, using the fact that G is claw-free.

Proof of part (a). Suppose the conclusion of part (a) is false. Since for every cycle
C with V(C) = V(C), C absorbs z if and only if C' absorbs z, we may pick distinct
vertices u,v € V(C') N N(z) and assume without loss of generality that

|(uCv)| = min{|(aCb)| : C is a cycle in G with V(C) = V(C), and
a,b € V(C)N N(z) are distinct }.

Now u and v do not occur consecutively on C, for otherwise part (a) clearly holds.
The path uCv also satisfies N(z) N (uCv) = () by our choice of u and v.

Since G is claw-free, we must have v u',v vt € E. Now uv™ ¢ E, for oth-
erwise C' absorbs z via uzvCu utCv~ u. This implies v~ # u™. By symme-
try, we have vt ¢ E and vT # w~. Also uwv™~ ¢ E, or else C' absorbs z via
uzvv v Cu~utCv~"u. By symmetry, uv™ ¢ E. This implies v™ ", 0" ¢ {u™, u™},
and therefore |(uCv)| > 3. Due to the minimality of |(uCv)|, we must have v, v*" &
N(z).

If w has consecutive neighbors w; and ws occurring on uC'v in that order, then
the cycle C' = vCu utCwyuw,Cv whose vertex set is V(C) contains a path uCwv
which is shorter than uC'v, contradicting the minimality of |(uCv)|. Therefore u does
not have consecutive neighbors on uCv.

Let x € (uCv) be the unique vertex such that uz € E and uw ¢ FE for all
w € (xCv). Since no two neighbors of u are consecutive on uCv, we have uz~ ¢ E. In
particular, this implies # # u*". Since uv™,uv™" ¢ E, we also have z ¢ {v™, v~ }.
We consider two cases.
Case 1. Suppose x # u™.

Since G is claw-free, we have x~ 2% € E. Now xzv~ ¢ E, for otherwise C' absorbs
z via the cycle uzvCu~u"Cax~ 2" Cv zu. Similarly vt ¢ FE since otherwise C'
absorbs z via uzvC~ate~C utu " C vtzu, and zv™~ ¢ E or else C' absorbs z via
uzvv v Cu~utCa~ 2" Cv™"au. Since zv™~ ¢ E, we have x # v~~~ and thus

w ¢ E.

Let y € (xCv) be such that xy € F and zw ¢ E for all w € (yCv). Such a vertex
y must exist since za™ € E. Note that y € (zCv~ 7). If there is a vertex a € (yCv)
such that ya~ € E and ya ¢ E, then {z,u,x,y,a”,a} induces a Ps. This implies
ya € E for all a € (yCv). Now yv™ € E, for otherwise {z,u,z,y,v™,v"} induces a
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Ps. Then ytot € E, or else {y,z,y*,v"} induces a claw. But now C absorbs z via
uzvC~yTotCuutCax~x" Cyxu.
Case 2. Suppose x = u*. Thus N(u) N (u*Cv) = (.

We have utovt ¢ E or else C' absorbs z via uzoC~u vt Cu, and utvt™ ¢ E since
otherwise C' absorbs z via uzvvto~C-utv™TCu. Let y € N(u™) N (utCv) be such
that utw ¢ E for all w € (yCv).

Suppose (yCv) ¢ N(y). This implies y ¢ {v~",v~}. Choose w € (yCv) —
N(y) so that the path yCw is shortest possible. Hence (yCw) C N(y). But now
{z,u,u™,y,w™,w} induces a Ps. Therefore it must be the case that (yCv) C N(y).

Now yv™ € E, or else y # v~ and {z,u,u",y,v",v"} induces a FPs. Similarly
yott € E or else {z,u,ut,y,v", 0"} induces a Ps. Since utw ¢ E for all w €
(yCv) U {vt, vt} it must be the case that [yCv~]U {vt, v"*} induces a clique, in
order to avoid a claw centered at y. Note that v™™* # u~, for otherwise C' absorbs
z via vzuu~utCyvTToTytCo.

Suppose [vTTTCu™"] ¢ N(y). Choose w € [vTTTCu~ "] — N(y) so that the
path yCw is shortest possible. Hence [vTCw™] C N(y). Now if uty € E for some
v € (vTTCw), then C absorbs z via vzuC~yutCyy~ C~vtytCuv. Therefore u™y ¢ E
for all v € (v Cw). Then in order to avoid a claw centered at y, it must be the
case that [yCv~| U [v"Cw™] induces a clique.

Now utw ¢ FE, for otherwise C' absorbs z via uzvCw v~ C~uTwCu. Also uw ¢
E, or else C absorbs z via vzuwCu~uCv~w™C~v. Similarly vw™ ¢ E. Furthermore
zw ¢ E, since otherwise C' absorbs z via vzwCv~w~C~v. Similarly zw~ ¢ E. But
now {z,u,u”,y,w ,w} induces a F.

Therefore we must have [v™*+Cu~"] C N(y). However, now C' absorbs z via the
cycle vzuu~utCyu=—C~vtytCu.

Proof of part (b). Let T = {z1, 22, -+, 2} be a tab of C such that P = z129- - 2,
is a path in G, No(z1) = {u}, and No(z,) = {v}. We may clearly follow the same
argument from the proof of part (a), making the following changes. Replace each
occurrence of the phrase “absorbs z” with “absorbs T”; replace each occurrence of
N(z) with N({z1, 2, }); replace each occurrence of the path uzv (or vzu) with the
path uPv (or vP~u); for each reference to a set of vertices that induces a Py, replace
z with z1; and near the end of the proof, rather than argue that zw, zw™ ¢ E, simply
note that zjw, zyzw~ ¢ E because T is a tab of C. ]

The context for the next few results is as follows. Given a 2-connected { K7 3, Ps }-
free graph G, suppose C'is a cycle in G and let z € V —V/(C'). Since G is 2-connected,
we may pick a pair of (z,C)-paths P and @) that are vertex-disjoint except for z,
such that [(P)| + [(Q)| is minimal among all such sums. Let u and v denote the
end vertices of P and @, respectively, on C. Note that |(P)],|(Q)] < 3 since G is
Ps-free. We now prove Lemmas 2.2, 2.3, 2.4, and 2.5 which will allow us to handle
the different possible values of |(P)| and [(Q)| in such a situation.

Lemma 2.2. Let G be a 2-connected { K 3, Py }-free graph on n > 8 vertices, and let



C.B. CRANE / AUSTRALAS. J. COMBIN. 72 (2) (2018), 185-200 191

C, z, P, Q, u, and v be as described in the preceding paragraph. If P = uujususz,
then (V(C) — {v}) U{u1} induces a clique in G, and C" absorbs u;.

Proof. Note that V(P) induces a P5 in G. By the minimality of |(P)| + [(Q)], we
have xz, zuz, zuy ¢ E for all x € V(C) — {v}.

Suppose [vTCu] ¢ N(uy), and choose w € [vTCu] so that wu; ¢ E and the path
wCu is as short as possible. But now uyw™ € E by the minimality of |(wCw)|, and
{z,u3, ug, u1, wt, w} induces a Ps. Thus [vTCu] C N(uy). By symmetry we also
have [uCv~] C N(u1), and so V(C) — {v} C N(u;). Avoiding a claw centered at u,
it must be the case that V(C) — {v} induces a clique in G. Also u;z € E for some
z € {u",ut}, so C absorbs u;. O

Lemma 2.3. Let G be a 2-connected { K3, Ps}-free graph on n > 8 wvertices, and
let C, z, P, Q, u, and v be as previously described. If P = uujusz, then either
V(C) — {v} induces a clique in G, or C' absorbs u,.

Proof. Suppose C' does not absorb u;. Now by the minimality of |(P)| + |(Q)], we
have zz,zuy ¢ E for all z € V(C) — {v}. Also zuy ¢ E for all z € V(C) — {u}, for
otherwise C' absorbs u; by Lemma 2.1.

Clearly uz € E for all z € (vCu), for otherwise there exists a vertex w € (vCu)
satisfying uw ¢ E and uwt € E, which implies that w # v~ and {z, ug, uy, u, w™, w}
induces a Ps. By symmetry ux € E for all x € (uCv), and so uxr € E for all
z € V(C)—{u,v}. Avoiding a claw centered at u, it must be the case that V(C')—{v}
induces a clique in G. U

Lemma 2.4. Let G be a 2-connected { K3, Ps}-free graph on n > 8 wvertices, and
let C, z, P, Q, u, and v be as previously described. If |(P)| = 2, then there is no
induced Ps that occurs consecutively on C.

Proof. Let X denote a path xizox314705 = £1Cx5 on C that is an induced Ps. Let
P = wujusz, and let Ng(v) = v’. We begin with the following claim.

Claim 2.1. [f there exists a vertex y € V(C) such that yuy € E or yz € E, then
y =v and Ng(v') = {v}.

Proof. By the minimality of |(P)|+|(Q)], we have az, aus ¢ E for alla € V(C)—{v},
so such a vertex y must equal v. Let )’ denote the induced path from z to v" on Q.
Now suppose there exists a vertex w € Ng(v') — {v}. If vuy € E, then the pair of
paths {zusv, Qw} contradicts the minimality of |(P)| + [(Q)|. If vz € E, then the
pair of paths {zv, Q'w} contradicts the minimality of |(P)|+|(Q)|. So in either case,
we must have No(v') — {v} = 0, and thus Ng(v') = {v}. This completes the proof
of the claim. O

We now consider two cases corresponding to whether or not u; has a neighbor
on X.

Case 1. Suppose uix € E for some z € V(X).
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If there exists a vertex y € V(X) such that yuy € F or yz € E, then y = v
and N¢(v') = {v} by Claim 2.1. If v € {9, 23,24}, then the set {v,v',v7 0"}
induces a claw centered at v. Hence v = x5 without loss of generality. But this is a
contradiction, since now the path zyxsx324250" is an induced Ps. Therefore we must
have yuy,yz ¢ E for all y € V(X). We now consider three possibilities.

Suppose uix; € E. Then for each w € {x3, 14,25} we have wu; ¢ FE, since
otherwise {uy, us, x1, w} induces a claw centered at w;. Thus ujze € E, or else the
set {x5, T4, w3, To, 1, uq } induces a Ps. But now {5, x4, x3, x9, u1, us} induces a F.
Therefore w1, uizs ¢ E without loss of generality.

Suppose u1zy € E. Then for each w € {4, 25} we have wu; ¢ E, or else
{uy,us, 9, w} induces a claw centered at w;. Hence uyzs € E, since otherwise
{5, x4, 23, T3, us,us} induces a Fg. But now {ws,x4,x3,uy,us, 2} induces a Fg.
Therefore w9, uzy ¢ E without loss of generality.

Thus we must have uyx3 € E. But now the path x;zex3uus2 is an induced Fs.
Case 2. Suppose uix ¢ F for all z € V(X).

We have u ¢ V(X). Without loss of generality, we may assume v ¢ (z3Cu). Now
for each y € (x3Cu), since y # v, we must have yz, yus ¢ E by Claim 2.1. We must
also have x3z,x3us ¢ E, or else Claim 2.1 implies N¢(v') = {x3}, and thus the set
{3,V 29,24} induces a claw centered at z3.

Let w € [zdCu| be the unique vertex such that wu; € E and au; ¢ E for all
a € (x5Cw). Now if wa ¢ E for some a € [x3Cw™~], then there must exist a vertex
B € [r4Cw™] such that wf € FE and wfB~ ¢ E. But this implies that the path
zusuqwPBH~ is an induced P, since uja ¢ E for all a € V(X) U (z5Cw).

Hence we must have wa € F for all a € [x3Cw™]|. But now {w, uy, x5, x3} induces
a claw centered at w. O

We will need the following definition for Lemma 2.5.

Definition 2.3. Given a cycle C' and a set X C ‘{(C’), we say X is skippable with
respect to C'if for all Y C X, there exists a cycle C' in G with V(C) =V(C) - Y.

Lemma 2.5. Let G be a 2-connected { K 3, Ps}-free graph onn > 8 vertices. Let C,
z, P, Q, u, and v be as previously described, and let S C V(C) be such that |S| > 1
and |[V(C)| > |S|+ 2. If V(C) — {v} induces a clique in G, then there exists a cycle
C" and a set X C V(C)— S such that C absorbs V(P)UV(Q) via C’", X is skippable
with respect to C', and:

(1) If|(P)] =3 or [(Q)] = 3, then [X| > [V(C)| = |S] - 2.
(i) I I(P) Q)] <2, then |X| > [V(C)] - [S] = 3.

Proof. Let S C V(C) satisty |V (C)| > |S|+2 > 3, and suppose V(C') — {v} induces

a clique in G.

Proof of part (i). Assume P = uujusuzz without loss of generality. By Lemma 2.2,
(V(C) = {v})U{u1} induces a clique in G.
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Suppose {v™,v,v7} NS = (). Then there exists a vertex s € S—{v™,v,v"}. Note
that uys,v™s € E. Let C' = vCs™ stCv~su1 PzQu. Then X = V(C") — (SU (P)U
[Q] U {v,vt, s}) is skippable with respect to C" and |X| > |[V(C)| — |S] — 2.

So let {v=,v,vt} NS # (). If uw and v occur consecutively on C, say u = v~ then
let " = vCv~ PzQu. Now X = V(C")— (SUV(P)UV(Q)U{v,vt,v™}) is skippable
with respect to C” and | X| > |V/(C)| — |S| — 2.

Thus we may assume u and v do not occur consecutively on C. If v € Sorv*™ € S,
consider C" = vCu~utCv~uPzQu. Then X = V(C")—(SUV(P)UV(Q)U{v,v", u})
is skippable with respect to C" and |X| > |[V(C)| = |S| —2. If v~ € S, let C" =
vQzPuvtCu~utCv. Then X = V(C")— (SUV(P)UV(Q)U{u,v,v}) is skippable
with respect to C” and | X| > |V/(C)| — |S| — 2.

Proof of part (ii). Suppose |(P)|, |(Q)| < 2. If u and v occur consecutively on C, say
u = v, then let C" = vCuPzQu. Otherwise, let ¢’ = vCu u"Cv uPzQu. Then
X =V(C) = (SUV(P)UuV(Q) U {v,v",u}) is skippable with respect to ¢’ and
(X = [V(O) = [5] =3 B

Now if (' is a cycle of length | > 3k + 3 that contains a k-set S C V and has a
2-tab T', Lemmas 2.6 and 2.7 will allow us to effectively hop over a vertex in V(C')—S
to obtain a new cycle of length [ — 1 which then absorbs the tab 7. The end result
is a cycle of length [ + 1 that contains S.

Lemma 2.6. Let G be a 2-connected { K, 3, Ps}-free graph on n > 8 vertices. Let C
be a cycle in G with |V (C)| > 6, and let x1xox30405 = 11Cx5 be a path contained on
C. Let {z1, 2z} be a 2-tab of C with No(z1) = {u} and N¢(z) = {v}, and suppose
one of the following two conditions holds:

(i) w,v & {1, 29,23, T4, x5 };
(i1) u € {x1, x5} and v ¢ {x9,x3,24}.

Then there exists a cycle C in G and a vertex x € {wy, 23,24} such that V(C’) =

(V(O) —{z}) U {2, 2}

Proof. Suppose the conclusion of the lemma is false. Note that each of the conditions
(i) and (ii) implies u,v ¢ {x9,x3,24}. Thus xix3, xoxy, v325 ¢ E, for otherwise
we may hop over a vertex x € {wy, 3,24} to obtain the cycle C' = x~2tCua~
which has {z1, 22} as a tab, and then apply Lemma 2.1 to obtain a cycle C' with
V(€)= V(C) U {1, 2}

First suppose condition (i) holds. Without loss of generality we may assume
v ¢ (x5Cu). Let y € [x;Cu~] be the unique vertex such that yu € E and au ¢ E for
all a € (21 Cy).

Suppose y = x1. Then uxs ¢ E, or else {u, z1, 21,23} induces a claw centered
at u. Therefore uzry € FE, since otherwise {29, 21, u, 1, z9, 23} induces a Fs. But
now uzy € E, or {29, 21, u, X9, x3, x4} induces a Ps. This is a contradiction since now
{u, 21, 9, x4} induces a claw.
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Suppose y = x3. Then uzy ¢ E, or {u, 21, x9, 4} induces a claw. Thus uzz € E,
or else {29, 21, u, X9, x3, 24} induces a Ps. However, now uxs € E since {29, 21, u, x3,
x4, 25} cannot induce a Ps. This is a contradiction as {u, 21, x3, 5} now induces a
claw.

Therefore, it must be the case that y € [z3Cu~]. Now if there is a vertex f €
[2oCy~| such that y8 € E and y5~ ¢ E, then {29, 21, u,y, 3, 5~} induces a Ps. Thus
there is no such vertex, which implies that [xz;Cy~| C N(y). But since ua ¢ E
for all @ € [x1Cy~], then avoiding a claw centered at y, it must be the case that
[21Cy| induces a clique in G. This is a contradiction, since clearly we may now hop
over some vertex = € {9, 3,24}, and then apply Lemma 2.1 to obtain the desired
cycle C.

Now suppose condition (ii) holds. Assume u = z; without loss of generality. Then
we must have 124 € E, since otherwise {2y, 21, x1, 22, x3, 24} induces a Ps. But this
yields a contradiction, as {1, 21, Z2, £4} now induces a claw centered at z. O

We now use Lemma 2.6 to prove the following.

Lemma 2.7. Let G be a 2-connected {K; 3, Ps}-free graph on n > 8 vertices. Let
S C V satisfy |S| =k > 1, and suppose there exists a cycle C' in G with |V (C)| >

A

3k +3 and S C V(C). If {z1, 22} is a 2-tab of C, then there exists a cycle C in G

~

and a vertex x € V(C) — S such that V(C) = (V(C) — {z}) U{z1, 22}

Proof. Let No(z1) = u and Ng(z2) = v. Since S C V(C) and |V(C)| > 3|S| + 3,
then by the Pigeonhole Principle at least one of the following two statements holds:

(A) There exist distinct ordered pairs (wq, w), (wa, wh), (ws, wh) € S x S such that
(w;Cw) C V(C) = S and |(w;Cw})| = 3 for each j € {1,2,3}.

(B) There exists a path y;1y2y3y4ys = y1Cys on C such that y; € S and s, y3, Y4, Us

¢s.

First suppose (A) holds, and thus k& > 3. Let P, = wCw}, P, = wyCw}, and
Py = w3Cwi. Note that (P;) N (P;) = (0 for all i # j since the ordered pairs from
(A) are distinct. Now if u,v ¢ V(P;) for some j € {1,2,3}, then condition (i) of
Lemma 2.6 applies since P; = ij'w;- is a path on 5 vertices, and we are done by
Lemma 2.6.

Thus suppose for cach j € {1,2,3}, we have {u,v} N V(P;) # (. This is only
possible if w or v is an end vertex of P; for some j € {1,2,3}. Without loss of
generality, assume u = w;. Now v € (w;Cw}), since otherwise condition (ii) of
Lemma 2.6 applies using the path w;Cw], and we are done by Lemma 2.6. But this
is a contradiction, since now u,v ¢ V(P;) for some j € {2,3}.

Now suppose (B) holds. If w,v ¢ [y1Cys], then condition (i) of Lemma 2.6 applies
and we are done by Lemma 2.6. Thus we may assume u € [y;Cys] without loss of
generality. Let yg = y7 and y; = y2 7. We consider four cases.
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Case 1. Suppose that v € {y1,12}. Then vt u™ ut™ ¢ S. We must have v €
{u,u™ uT} or else condition (ii) of Lemma 2.6 applies using the path uCu™ ]
and we are done. If v = u™", then uz;29vCu is the desired cycle. If v = u™tF,
then v"v™ € E in order to avoid a claw centered at v. But now uzyzevv vTCu
is the desired cycle. Lastly, suppose v = w'. Now assume vott vTo™t ¢ E
for otherwise the result clearly holds. Then we must have vo™t € E, or else
{z1, 29, v, 0T, 0T T} induces a Ps. This is a contradiction since now {v, zy, v,
v} induces a claw centered at v. Thus we may assume u, v & {y1,ya}.

Case 2. Let u = y3. We have v # y5 or else y3z120y5Cy3 is the desired cycle. Now
v # yg, for otherwise ysy; € E in order to avoid a claw centered at yg, and then
y32122Y6Ysy7Cys is the desired cycle. So we have v € {y1, y2, Y3, Us, Ys } -

Suppose v # y4. Then ysys, yays ¢ E, or else there clearly exists a cycle C' with
V(C") = V(C) —{y} for some y € {ys4,ys}, and we are done by Lemma 2.1 since
{21, 22} is a tab of C’. But now y3ys € E since {29, 21, Y3, Y4, Y5, Y6} cannot induce a
Ps, and so {ys, 21, Y41, Y} induces a claw centered at ys.

Therefore we must have v = y4. Now ysys ¢ E or else the result clearly holds.
Suppose yg ¢ S. Assume ysy; ¢ E since otherwise the result certainly holds. But
now yuy7 € E, or else {21, 22, Y4, Us, Ys, y7} induces a Py. This is a contradiction since
{Y4, 22, Y5, y7} induces a claw.

Now suppose yg € S, and thus k > 2. Since |V (C)| > 3|S| + 3, by the Pigeonhole
Principle there must exist a path zjxex3z425 = x1Cx5 such that z3 € S — {y;} and
Tg, 3,24 € V(C) — S. But then [y2Cys] N [21Cx5] = 0, and so u,v ¢ [x1Cx5]. This
fulfills condition (i) of Lemma 2.6, and we are done by Lemma 2.6. Hence we may
assume u, v # 3.

Case 3. Assume u = y;. We know v & {y1,90,y3,y1}. Also y1ys, yoys ¢ E, since
otherwise we may hop over y, or y3 first, and then apply Lemma 2.1 to obtain the
desired cycle. But now y,ys € E since the set {22, 21, Y4, Y3, y2,y1} cannot induce a
Ps. This is a contradiction because now {y4, 21, ys, y1 } induces a claw centered at y,.
Therefore we assume u, v # ys.

Case 4. Suppose u = ys. From the previous cases, we have v ¢ {y2, 3,4}
Now condition (ii) of Lemma 2.6 applies using the path y;Cys, and we are done
by Lemma 2.6. O

Whenever a k-set S is contained in a cycle of length m with 3k+3 <m <n—1,
the next lemma guarantees that S is contained in a cycle of length m + 1.

Lemma 2.8. Let G be a 2-connected { K, 3, Ps}-free graph on n > 8 vertices. If a
set S CV of k > 1 vertices is contained in an m-cycle C where 3k +3 <m <n—1,
then S is also contained in an (m + 1)-cycle.

Proof. Pick a vertex v € V — V(C) such that yu € E for some u € V(C). As G is
2-connected, we may pick a path @ from v to V(C) — {u} that is shortest possible.
Let v denote the end vertex of () on C.
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We may assume there does not exist a vertex in V—V(C') that the cycle C' absorbs,
since otherwise the result holds. Therefore by Lemmas 2.1 and 2.2, |(Q)| ¢ {0, 3}.

Suppose ) = vvvy7y. Since C' does not absorb vy, Lemma 2.3 implies V(C') —{u}
induces a clique. By Lemma 2.5, there exists a cycle C' and a set X C V(C) — S
such that C' absorbs V(Q) via C’, X is skippable with respect to C’, and |X| >
V()| —|S|—3> (3k+3) —k —3 > 2. Since ' contains S and has length m + 3,
the result holds.

Now suppose ) = vvyy. Since C' does not absorb vy, Lemma 2.1 implies that
dc(vy) = 1, and thus {7, v} is a 2-tab of C'. But now we may apply Lemma 2.7 to
obtain a cycle of length m + 1 that contains S. U

3 Proof of Theorem 2.1

We nearly have all the tools in place to prove the main result. Let G be a 2-connected
{Ki3, Bs}-free graph. If n = 7, the result clearly holds since G is hamiltonian and
3k +4 > 7. Therefore we assume n > 8. First we will use an inductive proof to show
that if £ > 1 and n > 3k + 4, then any k-set is contained in a (3k + 4)-cycle. The
following claim provides the base case for the proof.

Claim 3.1. FEvery vertexr u € V is contained in a cycle of length 7.

Proof. Suppose u € V' is not contained in a 7-cycle. A cycle that contains u and has
shortest possible length, I, must satisfy | € {3,4,5,6} since G is Ps-free. Therefore
we may pick a cycle C' of length m € {3,4,5,6} that contains u.

Since G is connected and n > 8, we may choose w € V —V/(C) such that wx € F
for some x € V(C). As G is 2-connected, we may pick a path @ from w to V(C)—{z}
that is shortest possible. Let y denote the end vertex of @) on C'. We may assume
without loss of generality that y # 2=. We will consider four cases corresponding to
the possible values of m.

Case 1. Suppose m = 6. Then by Lemma 2.8, u is contained in a 7-cycle.

Case 2. Suppose m = 5. By Case 1, we may assume u is not contained in a 6-cycle.
Thus de(v) < 1 for all v ¢ V(C') by Lemma 2.1, and [(Q)| # 3 by Lemma 2.2. If
|(@Q)] = 1 then {w} U (Q) is a 2-tab of C', and C absorbs {w} U (Q) by Lemma 2.1.

This is a contradiction, since now w is contained in a 7-cycle.

Suppose @ = yy1yow. Without loss of generality we may assume y # x~ . Since
de(y1) = 1, Lemma 2.3 implies V(C') — {z} induces a clique. If v € {x,y,x~, 27"},
then yyyowxax~xz~ "y is a 7-cycle which contains w. If u ¢ {x,y,x, 27"}, then
Yy yowrr—uy is a 7-cycle.

Case 3. Suppose m = 4. By Cases 1 and 2, u is not contained in a 6-cycle or
a b-cycle. Hence de(v) < 1 for all v ¢ V(C) by Lemma 2.1, and |(Q)| # 3 by
Lemma 2.2. If |(Q)| = 1, then clearly u is contained in a 6-cycle if y = 2™, and a
5-cycle if y = at. If |(Q)] = 2, then clearly u is contained in a 7-cycle if y = x|
and a 6-cycle if y = 21+,
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Case 4. Suppose m = 3. By the previous three cases, u is not contained in a 6-cycle,
a b-cycle, or a 4-cycle. Therefore do(v) < 1 for all v ¢ V(C) by Lemma 2.1, and

|(Q)] # 3 by Lemma 2.2. If [(Q)] = 1, then u is contained in a 5-cycle. If |(Q)] = 2,
then w is contained in a 6-cycle. This completes the proof of Claim 3.1. O

Now let S C V be such that |S| =k —1 > 1, and suppose there is a cycle C' in
G of length 3(k — 1) +4 = 3k + 1 such that S C V(C). Let z € V — S. Assuming
n > 3k 4+ 4, we will show there exists a cycle C” of length 3k 4+ 4 in G such that
SU{z} C V(C"). We begin by proving two claims.

Claim 3.2. There exists a cycle C of length L in G such that L € {3k + 1,3k +
2,3k + 3,3k +4} and SU{z} C V(C).

Proof. If z € V(C), Claim 3.2 clearly holds. Suppose z ¢ V(C). Since G is 2-
connected, we may pick a pair of (z,C)-paths P and @ that are vertex-disjoint
except for z, such that |(P)| + [(®)| is minimal among all such sums. Let u and v
denote the end vertices of P and @, respectively, on C. Note that |(P)],|(Q)] < 3
since G is Pg-free. Assume [(P)| < |(Q)| without loss of generality.

If P = wujugusz, then V(C) — {v} induces a clique in G by Lemma 2.2. By
Lemma 2.5, there exists a cycle C" and a set X C V(C) — S such that C' absorbs
V(P)UV(Q) via C’, X is skippable with respect to C’, and | X| > |[V(C)|—|S|—2 =
(B3k+1) —(k—1) —2 =2k > 4. Hence Claim 3.2 clearly holds with L = 3k + 4.
Thus we may assume [(P)| < |(Q)] < 2 without loss of generality.

Now C absorbs V(P) U V(Q) by Lemma 2.1. Therefore if the ordered pair
(I(P)],1(Q)]) € {(0,0),(0,1),(0,2),(1,1)}, then Claim 3.2 holds with L € {3k +
2,3k + 3,3k + 4}.

Therefore we assume [(Q)| = 2 and |(P)| € {1,2}. Since |V(C)| = 3|S| + 4, then
by the Pigeonhole Principle there exists a path zyxezsxsrs = x1Cx5 on C such that
r1 € S and z9, 23,24 ¢ S. By Lemma 2.4, 21Cx5 cannot be an induced Ps. This

implies that there exists a cycle C,, such that V(C,) = V(C)— X for some nonempty
set X C {xq,x3,24}. Note that S C V(C,) and |V (C,)| € {3k — 2,3k — 1, 3k}.

Pick a pair of (z,C,)-paths {P,, Q,} that are vertex-disjoint except for z, such
that |(Pr)| + [(Q.)| is minimal among all such sums. Let u, and v, denote the end
vertices of P, and @), respectively, on C,. Now |(P,) U (Q,)U{z} > |(P)U(Q)U
{z}| > 4 by the minimality of |(P)| + [(Q)].

Suppose V(C,) — {v,} induces a clique. By Lemma 2.5, there exists a cycle
C! and a set Z C V(C,) — S such that C, absorbs V(P,) U V(Q,) via C. and
Z is skippable with respect to C’. Suppose |(P,)| = 3 or |(Q.)] = 3. Then by
Lemma 2.5, |Z| > |V(C,)| — |S| — 2. If [V(C,)| = 3k, then |Z| > 3 and Claim 3.2
holds with L = 3k + 4. If |[V(C,)| = 3k — 1, then |Z| > 2 and Claim 3.2 holds with
L e {3k + 3,3k +4}. It |V(C,)| = 3k — 2, then |Z| > 1 and Claim 3.2 holds with
L e {3k+2,3k+ 3,3k +4}.

If |(P)],](Qs)] <2, then by Lemma 2.5, |Z| > |V(C,)|—|S|—3. If [V(C,)| = 3k,
then |Z| > 2 and Claim 3.2 holds with L = 3k+4. If |V (C,)| = 3k—1, then Claim 3.2
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holds with L € {3k + 3,3k + 4}. If |V(C,)| = 3k — 2, then Claim 3.2 holds with
L e {3k+2 3k +3).

Therefore we assume neither V(C,) — {v,} nor V(C,) — {u,} induces a clique.
By Lemma 2.2, we have |(P,)], [(Q.)] < 2. Without loss of generality, this implies
(Qz)] = 2 and [(P:)] € {1,2}.

By Lemma 2.1, the cycle C, absorbs V(P,) U V(Q,). Thus if |(P,)] = 1 and
|(Q:)| = 2, then Claim 3.2 holds with L € {3k + 2,3k + 3,3k + 4}.

So suppose |(P,)| =2 = |(Q.)|. If [V(C,)| € {3k—2,3k—1}, then by Lemma 2.1,
Claim 3.2 holds with L € {3k + 3,3k + 4}.

Thus we assume |V (C,)| = 3k = 3|S|+3. By the Pigeonhole Principle there exists
a path y192y3y4y5 = y1Crys on C, such that y; € S and yo,y3,y4 ¢ S. Lemma 2.4
implies y;C,ys cannot be an induced Ps. Therefore there exists a cycle C, such that
V(Cy) = V(Cy) =Y for some set Y C {ya2, y3,ya} with Y # (). Note that S C V(C,)
and |V (Cy)| € {3k — 3,3k — 2,3k — 1}.

Pick a pair of (z,Cy)-paths {P,, Q,} that are vertex-disjoint except for z, such
that [(P,)| + |(Q,)| is minimal among all such sums. Let u, and v, denote the end
vertices of P, and @), respectively, on C,. Now |(P,) U(Q,) U{z}| > [(P;) U (Q.) U
{z}| = 5 by the minimality of |(P,)| + |(Q:)].

Suppose |(P,)| = 3 or |(Q,)| = 3. Then without loss of generality, V(C,) — {v,}
induces a clique in GG by Lemma 2.2. By Lemma 2.5, there exists a cycle Cj and a
set Z C V(Cy) — S such that C, absorbs V(P,) UV(Q,) via C}, Z is skippable with
respect to Cy, and |Z| > |V(C,)| — S| — 2. Tf [V(C,)| = 3k — 1, then [Z]| > 2 and
Claim 3.2 holds with L = 3k +4. If |V(C,)| = 3k — 2, then |Z]| > 1 and Claim 3.2
holds with L € {3k + 3,3k + 4}. If |V(C,)| = 3k — 3, then Claim 3.2 holds with
L e {3k+2,3k+ 3,3k +4}.

So assume |(P,)| =2 = [(Q,)|. Since C, absorbs V(P,) UV (Q,) by Lemma 2.1,
Claim 3.2 then holds with L € {3k + 2,3k + 3,3k + 4}. O

Claim 3.3. If L € {3k + 1,3k + 2} and n > 3k + 3, then S U {z} is contained in a
(3k + 3)-cycle or a (3k + 4)-cycle.

Proof. Pick a vertex v € V — V(C) such that yu € E for some u € V(C). Now pick
a path Q from v to V(C) — {u} that is shortest possible.

Case 1. Suppose L = 3k +2. If |(Q)| € {0,1}, then the result holds since C' absorbs
V(Q) by Lemma 2.1. If Q = vviv9vs7, then C' absorbs v, by Lemma 2.2 and the

result holds.

Suppose Q = vvivyy. Assume C does not absorb vy, since the result holds

~

otherwise. By Lemma 2.3, V(C') — {u} induces a clique. Hence Lemma 2.5 implies
there exists a cycle Cy and a set X C V(C) — (S U {z}) such that C' absorbs V(Q)
via Cy, X is skippable with respect to Cy, and |X| > [V(C)| — |SU{z}| — 3 =
(3k +2) —k — 3 > 3. Since C; contains S U {z} and has length 3k + 5, the result
clearly holds in this case.

Case 2. Suppose L = 3k+1. If |(Q)| € {1,2}, then the result holds since C' absorbs
V(Q) by Lemma 2.1.
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If Q = vy or Q = vvvav37y, then C absorbs v or v; by Lemma 2.1 or Lemma 2.2,
respectively, yielding a cycle of length 3k + 2 which contains S U {z}. We may now
repeat the argument from Case 1, and Claim 3.3 holds. O

Claim 3.2 and Claim 3.3 together imply that the k-set S U {z} is contained in
a (3k + 3)-cycle or a (3k + 4)-cycle, assuming n > 3k + 3. If S U {z} is contained
in a non-hamiltonian (3% + 3)-cycle, then Lemma 2.8 allows us to obtain a cycle of
length 3k + 4 that contains S U {z}.

Hence by induction, we have shown that any set S of £ > 1 vertices is contained
in a (3k + 4)-cycle whenever n > 3k + 4. Furthermore, Lemma 2.8 guarantees that
S is contained in a cycle of length m whenever 3k + 4 < m < n. Therefore G is
(k, 3k 4+ 4)-pancyclic.

To see that this result is best possible, consider the graph H given in Figure 1,
which is a 2-connected, {K 3, Ps}-free graph. It is easy to observe that H is not
(k,3k + 3)-pancyclic, since the set {y1,y2, -+ ,yr} is not contained in a cycle of
length 3k + 3. O

Figure 1: The set {y1, 2, ,yx} is not contained in a (3k + 3)-cycle.
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