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Abstract

We introduce non-decreasing Motzkin paths similar to non-decreasing
Dyck paths. Some generating functions on several variables are con-
structed to count several aspects of non-decreasing Motzkin paths. In
particular, we use those formal power series to count the number of non-
decreasing Motzkin paths according to length, the area under a path,
prefixes, and the number of paths with a fixed number of peaks.

1 Introduction

In 1997 Barcucci et al. [2] introduced the concept of non-decreasing Dyck paths.
Several authors have been interested in this topic [2, 3, 6, 7, 10, 13, 19]. For ex-
ample, Deutsch and Prodinger [10] gave a bijection between these paths and di-
rected column-convex polyominoes. In 2002 Vella [19] found that the number of
non-decreasing Dyck paths is equal to the number of {132, 3241}-avoiding permu-
tations. A recent study about non-decreasing Dyck paths was given in [6, 7] where
several statistics about them were studied.

Motzkin paths are paths in the first quadrant of the xy-plane having North-East
steps, Horizontal steps, and South-East steps. These paths start at the origin, end
on the x-axis, and do not cross the x-axis (see for example [17]). Here we generalize
the concept of non-decreasing Dyck paths to Motzkin paths. Some aspects of non-
decreasing Motzkin paths are counted using the symbolic method [11]. For example,
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the generating functions given using the symbolic method count: the number of
paths, the number of paths with a fixed number of peaks, the area under the path,
and the number of prefixes (using Riordan arrays). Additionally, we use coloring
and horizontal steps to generalize our non-decreasing Motzkin paths. Varying the
definition of non-decreasing Motzkin paths we find some connections between those
paths and other combinatorial objects.

2 Preliminaries and Examples

A word in the letters X, Z and Y with as many X’s as Y ’s and in which no initial
segment has more Y ’s than X’s is a Motzkin word. For example, XZZXZYXY Y
and XXZZYXY Y XY Z are Motzkin words, but ZXXYXY Y Y XZZ is not. Who-
ever is familiar with Dyck words may realize a Motzkin word is like a Dyck word but
with the letter Z spread around. The length of a Motzkin word with exactly n X ′s
and m Z ′s is 2n+m.

A path P of length 2n + m is a (2n + m + 1)-tuple of points in Z≥0 × Z≥0. A
step in a path P = (p0, p1, . . . , pm) is a pair of two consecutive points (pi, pi+1) for
i ∈ {0, . . . , m− 1}. A North-East step has the form (pi, pi+1) = ((i, j), (i+1, j+1)).
Similarly, a South-East step has the form (pi, pi+1) = ((i, j), (i + 1, j − 1)) and a
Horizontal step has the form (pi, pi+1) = ((i, j), (i+1, j)). The altitude of pi = (i, j),
denoted by alt(pi), is the component j. We identify a path P = (p0, p1, . . . , pm)
with its broken-line graph obtained by joining pi to pi+1 with a line segment for
i ∈ {0, . . . , m− 1}.

Each Motzkin word L gives rise to a path (Motzkin path) PL having only North-
East steps, Horizontal steps and South-East steps. Indeed, X corresponds to a North-
East step, Z corresponds to horizontal steps and Y corresponds to a South-East
step. For instance, the Motzkin word ZX4ZY 4Z2X2Y 2X2Y 2ZX3Y 2X3Y ZXY 4 cor-
responds to the Motzkin path depicted in Figure 1. A Motzkin path of length 2n+m
starts at the origin (p0 = (0, 0)), ends on the x-axis (p2n+m = (2n+m, 0)), and does
not cross the x-axis. It is easy to see that the correspondence L �→ PL is a bijection
between the collection of all Motzkin words and the collection of all Motzkin paths.

A pyramid of height h > 0 is a sub-path of the form XhY h with h maximal. A
truncated pyramid of height h is a sub-path of the form XhZmY h where h,m > 0
with h maximal. The valleys and peaks of a Motzkin path P are the local minima
and local maxima of P . (A peak is a sub-path of the form XY and a valley is a sub-
path of the form Y X.) A left valley is preceded by a South-East step and followed
by a Horizontal step (is a subword of the form Y Z). A right valley is preceded by a
Horizontal step and followed by a North-East step (is a subword of the form ZX).

We say that a Motzkin path P is non-decreasing if the y-coordinates of all valleys,
left valleys, and the right valleys of the path P form a non-decreasing sequence. That
is, if v1, . . . , vt are all valley points, left valley points, and right valley points of a
Motzkin path P , then P is non-decreasing if

alt(v1) ≤ alt(v2) ≤ · · · ≤ alt(vt).
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In Figure 1 we show an example of a non-decreasing Motzkin path of length 36. Let
us denote by NM the set of all non-decreasing Motzkin paths. In the following
sections we study several statistics over the set NM.

Figure 1: Non-decreasing Motzkin path of length 36.

3 Some Enumerations of Non-Decreasing Motzkin Paths

In this section we use the symbolic method, with the factorization given in Figure 2,
to construct two generating functions. From those generating functions we obtain the
number of non-decreasing Motzkin paths and the number of non-decreasing Motzkin
paths with exactly s peaks. The area under a path P is the sum of the altitudes of
P . In Section 3.1 we give a generating function that counts the area under a path
P .

�(P ) the length of P ; h(P ) the number of horizontal steps of P ;
p(P ) the number of peaks of P ; r(P ) the number of North-East steps of P ;
a(P ) the area of P .

Table 1: Parameters.

Let P be a non-decreasing Motzkin path. Using some parameters given in Table
1 we define the generating function:

F (x, y, z, q) :=
∑

P∈NM
x�(P )yh(P )zr(P )qp(P ).

Theorem 3.1. The generating function F (x, y, z, q) is given by

F (x, y, z, q) =
x(1− xy)(xzq + y)(1− x2z)

1− 2xy + x2y2 − (2 + q)x2z + (2 + q)x3yz − x4y2z + x4z2 − x5yz2
.

Proof. We use T ′ to mean a non-decreasing Motzkin path, Δ to mean a pyramid,
and W to mean a truncated pyramid. From the definition of non-decreasing Motzkin
paths we have that each non-empty non-decreasing Motzkin path P may be uniquely
decomposed using one of the following forms: Z, XY, ZT ′, XT ′Y, WT ′, or ΔT ′ (see
Figure 2). This and the symbolic method (cf. [11]) imply that

F (x, y, z, q) = xy + x2zq + xyF (x, y, z, q) + x2zF (x, y, z, q)

+
x3yz

(1− xy)(1− x2z)
F (x, y, z, q) +

x2zq

1− x2z
F (x, y, z, q).

After some simplifications we obtain the desired result.
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Figure 2: Factorizations of any non-decreasing Motzkin path.

We now give some special cases of our first main generating function. Theorem
3.1 with y = z = q = 1 gives rise to the generating function that counts the number
of non-decreasing Motzkin paths with respect to the length:

F (x, 1, 1, 1) =
x(x2 − 1)2

1− 2x− 2x2 + 3x3 − x5

= x+ 2x2 + 4x3 + 9x4 + 21x5 + 49x6 + 115x7 + 269x8 + 630x9 + · · ·
Moreover, if an is the number of non-decreasing Motzkin paths of length n, then an
has order five and satisfies

an = 2an−1 + 2an−2 − 3an−3 + an−5,

with initial conditions a1 = 1, a2 = 2, a3 = 4, a4 = 9, and a5 = 21.

Theorem 3.1 with y = 0 and q = z = 1 gives rise to the generating function that
counts the number of non-decreasing Dyck paths of length 2n:

F (x, 0, 1, 1) =
x2(1− x2)

1− 3x2 + x4
=

∞∑
n=1

F2n−1x
2n.

Therefore, the number of non-decreasing Dyck paths of length 2n is the (2n− 1)-th
Fibonacci number (see [2]).

We use NMs to mean the set of non-decreasing Motzkin paths with exactly s
peaks. Using some parameters given in Table 1 we define the generating function:

Qs(x, y) :=
∑

P∈NMs

x�(P )yh(P ).

Setting q = 0 and z = 1 in Theorem 3.1 we obtain that Q0(x, y) = F (x, y, 1, 0).
Therefore, the generating function for the set of all non-decreasing Motzkin paths of
length n without peaks is

Q0(x, y) = F (x, y, 1, 0) =
xy(1− x2)(1− xy)

(1− xy − x2)(1− x2)(1− xy)− x3y
.
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Figure 3 shows all non-decreasing Motzkin paths of length 5 without peaks.

Figure 3: Non-decreasing Motzkin paths of length 5 without peaks.

Corollary 3.2 studies the generating function of the non-decreasing Motzkin paths
of length n with exactly s peaks. The proof follows by taking z = 1 and q = 0 in
Theorem 3.1. Taking y = 0 in Qs(x, y) we obtain a well-known result for Dyck
paths. Corollary 3.3 studies the generating function of the non-decreasing Dyck
paths of length 2n with exactly s peaks.

Corollary 3.2. If Qs(x, y) is the generating function for the non-decreasing Motzkin
paths with exactly s peaks, then the following hold:

1. For all s ≥ 2

Qs(x, y) =
x2(1− xy)

(1− xy − x2)(1− x2)(1− xy)− x3y
Qs−1(x, y).

2. For all s ≥ 1

Qs(x, y) =
x2s(1− xy)s(1− x2 +Q0(x, y))

((1− xy − x2)(1− x2)(1− xy)− x3y)s
.

Proof. We prove part (1). From the factorization given in Figure 2 we obtain that

Qs(x, y) = xyQs + x2Qs(x, y) +
x3y

(1− x2)(1− xy)
Qs(x, y) +

x2

1− x2
Qs−1(x, y).

After some simplification it is easy to see that part (1) holds.

Proof of part (2). From

Q1(x, y) = x2+xyQ1(x, y)+x2Q1(x, y)+
x3y

(1− x2)(1− xy)
Q1(x, y)+

x2

1− x2
Q0(x, y)

and iterating the equation in part (1) the result in part (2) follows.
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We now give some special cases of the generating function given in Corollary 3.2.
Notice that this corollary with y = 0 gives [6, Proposition 3]. Now, taking y = 1 and
s = 1, 2, 3 in Corollary 3.2 part (2) we obtain the following series:

Q1(x, 1) = x2 + 2x3 + 4x4 + 10x5 + 22x6 + 51x7 + 115x8 + 259x9 + 579x10 + · · ·
Q2(x, 1) = x4 + 3x5 + 9x6 + 25x7 + 65x8 + 167x9 + 416x10 + 1022x11 + · · ·
Q3(x, 1) = x6 + 4x7 + 15x8 + 48x9 + 143x10 + 407x11 + 1114x12 + 2970x13 + · · ·

Figure 4 shows all non-decreasing Motzkin paths of length 7 with three peaks.

Figure 4: Non-decreasing Motzkin paths of length 7 with exactly three peaks.

Corollary 3.3. The generating function for the non-decreasing Dyck paths of length
2n with exactly s peaks satisfies

1. for all s ≥ 2

Qs(x, 0) =
x

(1− x)2
Qs−1(x, 0).

2. For all s ≥ 1

Qs(x, 0) =
xs

(1− x)2s−1
.

Therefore, the number of non-decreasing Dyck paths of length 2n with exactly
s peaks is (

n + s− 2

2s− 2

)
.

3.1 The Area

We recall that the area under a given non-decreasing Motzkin path P is the sum of
the altitudes of all points of P . For instance, the path in Figure 1 has area 62. Using
the parameters given in the Table 1 we define the generating function:

T (x, y, z, q) :=
∑

P∈NM
x�(P )yh(P )za(P )qp(P ).

Theorem 3.4. The generating function for the area of the non-decreasing Motzkin
paths is given by the following equation

T (x, y, z, q) =
∞∑
k=1

x2kzk
2
q + x2k−1yzk

2−k∏k−1
j=1(1− xyzk−1 − P1(xzj , y, z)− P2(xzj , z, q))

,
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where

P1(x, y, z) = y

∞∑
k=1

x2k+1zk
2+k

1− xyzk

and

P2(x, z, q) = q
∞∑
k=1

x2kzk
2

.

Proof. The generating function of the area of a truncated pyramid X iZjY i, is given
by:

∞∑
k=1

∞∑
�=1

(x2kzk
2

)(x�y�z�k) = y
∞∑
k=1

x2k+1zk
2+k

1− xyzk
= P1(x, y, z).

Analogously, the generating function of the area of a pyramid X iY i, (i ≥ 1) is given
by P2(x, z, q).

From the decomposition given in Figure 2 we have

T (x, y, z, q) = xy + x2zq + xyT (x, y, z, q) + x2zT (xz, y, z, q)

+ P1(x, y, z)T (x, y, z, q) + P2(x, z, q)T (x, y, z, q).

Therefore the desired result follows.

We now give a special case of Theorem 3.4. Taking y = 0 and seting x2 := x in
T (x, y, z, q) we obtain the following corollary.

Corollary 3.5 (Theorem 3.2 [2]). The generating function for the area of the non-
decreasing Dyck paths is

T (x, z, q) = q

∞∑
k=1

xkzk
2∏k−1

j=1(1− P (xz2j , z, q))
,

where

P (x, z, q) = q

∞∑
k=1

xkzk
2

.

4 Prefixes of non-decreasing Dyck paths and Motzkin paths

A path prefix is any initial sub-path. Let P be a non-decreasing Motzkin path. A
prefix of P is called non-decreasing Motzkin. Intuitively, a initial sub-path Q of P is
a prefix, if Q contains more X’s than Y ’s. The prefixes of the classical Dyck paths
are also called Ballot paths. The height of a path is defined as the final height of
the path, i.e., the stopping y-coordinate. The number of non-decreasing Motzkin
prefixes of length n and height k is denoted by wn,k. Figure 5 shows that w4,2 = 9.
Let M be the infinite lower triangular matrix defined by M = [wn,k]n,k≥0. The first
few terms of this matrix are
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M = [wn,k]n,k≥0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0
2 2 1 0 0 0 0 0
4 5 3 1 0 0 0 0
9 12 9 4 1 0 0 0
21 30 25 14 5 1 0 0
49 74 69 44 20 6 1 0
115 182 185 133 70 27 7 1
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Figure 5: Non-decreasing Motzkin prefixes of length 4 and height 2.

Theorem 4.1. Let Tk(x) be the generating function for the non-decreasing Motzkin
prefixes defined by

Tk(x) :=
∞∑
n=0

wn,kx
n.

Then

Tk(x) = (1 + F (x, 1, 1, 1))

(
x

(1− x)2(1 + x)

1− 2x− x2 + 2x3 − x4

)k

=
1− x− 2x2 + x3

1− 2x− 2x2 + 3x3 − x5

(
x

(1− x)2(1 + x)

1 − 2x− x2 + 2x3 − x4

)k

.

Proof. We use U to mean a Motzkin path without valleys or valleys of height zero,
T to mean a non-decreasing Motzkin path (possible empty). Each non-decreasing
Motzkin prefix P of height k may be uniquely decomposed as UXUX · · ·UXT (see
Figure 6).

Let U be the family of Motzkin paths without valleys or valleys of height zero.
Then Tk(x) = (xU(x, 1))k(1 + F (x, 1, 1, 1)), where

U(x, y) :=
∑
P∈U

x�(P )yh(P ).
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k

Figure 6: Factorization of any non-decreasing Motzkin prefix of height k.

Figure 7: Factorizations of any Motzkin path without valleys or valleys of height
zero.

Any path of U may be uniquely decomposed as either λ (empty path), XŨY U or

ZU , where Ũ is a Motzkin path without valleys, see Figure 7.

Let Ũ(x, y) be the generating function defined by

Ũ(x, y) :=
∑
P∈ ˜U

x�(P )yh(P ),

where Ũ is the family of Motzkin paths without valleys. It is not difficult to show
that (see Figure 8)

Ũ(x, y) = 1 + x2Ũ(x, y) +
xy

1− xy
.

Therefore,

Ũ(x, y) =
1

(1− xy)(1− x2)
.

So,
U(x, y) = 1 + x2Ũ(x, y)U(x, y) + xyU(x, y).

Then

U(x, y) =
(1− xy)(1− x2)

(1− xy)2(1− x2)− x2
.

This completes the proof.

We recall that an infinite lower triangular matrix is called a Riordan array [14]
if its kth column satisfies the generating function g(z) (f(z))k for k ≥ 0, where g(z)
and f(z) are formal power series with g(0) �= 0, f(0) = 0 and f ′(0) �= 0 (where f ′(x)
is the formal derivative of f(x)). The matrix corresponding to the pair f(z), g(z)
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Figure 8: Factorizations of any Motzkin path without valleys.

is denoted by (g(z), f(z)). If we multiply (g, f) by a column vector (c0, c1, . . . )
T

with the generating function h(z), then the resulting column vector has generating
function gh(f). This property is known as the fundamental theorem of Riordan
arrays or summation property.

The product of two Riordan arrays (g(z), f(z)) and (h(z), l(z)) is defined by

(g(z), f(z)) ∗ (h(z), l(z)) = (g(z)h (f(z)) , l (f(z))) .

We recall that the set of all Riordan matrices is a group under the operator “ ∗ ”
[14]. The identity element is I = (1, z), and the inverse of (g(z), f(z)) is

(g(z), f(z))−1 =
(
1/

(
g ◦ f) (z), f(z)) , (1)

where f(z) is the compositional inverse of f(z).

The following theorem is straightforward from the definition of Riordan matrix.

Theorem 4.2. The matrix M is a Riordan matrix given by

M =

(
1− x− 2x2 + x3

1− 2x− 2x2 + 3x3 − x5
,

x(1− x)2(1 + x)

1− 2x− x2 + 2x3 − x4

)
.

From the summation property for the Riordan matrices we obtain the generating
function for the total number of non-decreasing Motzkin prefixes:

∞∑
n=0

n∑
k=0

wn,kx
n =

1− 3x− x2 + 8x3 − 3x4 − 4x5 + 4x6 − x7

1− 5x+ 4x2 + 12x3 − 17x4 − 3x5 + 16x6 − 6x7 − 3x8 + 2x9
.

4.1 Non-decreasing Dyck prefixes paths

The number of non-decreasing Dyck prefixes of length n and height k is denoted by
dn,k. Let us define the matrix D1 = [dn,k]n,k≥0. The first few terms of this matrix
are:
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D1 = [dn,k]n,k≥0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0
0 2 0 1 0 0 0 0 0 0 0
2 0 3 0 1 0 0 0 0 0 0
0 5 0 4 0 1 0 0 0 0 0
5 0 9 0 5 0 1 0 0 0 0
0 13 0 14 0 6 0 1 0 0 0
13 0 26 0 20 0 7 0 1 0 0
0 34 0 45 0 27 0 8 0 1 0
34 0 73 0 71 0 35 0 9 0 1
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Taking y = 0 in the proof of Theorem 4.1 we obtain the following corollary.

Corollary 4.3. The Riordan matrix D1 is given by

D1 =

(
1− 2x2

1− 3x2 + x4
, x

(1− x2)

1− 2x2

)
.

Notice that the first column of D1 are the odd-indexed Fibonacci numbers. From
the summation property for the Riordan matrices we have the Corollary 4.4.

Corollary 4.4. The bivariate generating function is

∞∑
n=0

∞∑
k=0

dn,kx
nyk =

(1− 2x2)2

(1− 3x2 + x4)(1− 2x2 − xy + x3y)
.

In particular the generating function of the total non-decreasing Dyck prefixes is

∞∑
n=0

n∑
k=0

dn,kx
n =

(1− 2x2)2

(1− 3x2 + x4)(1− x− 2x2 + x3)
.

Note that the total number of Dyck prefixes of length n is
(

n
�n/2�

)
(cf. [12]).

Corollary 4.5 gives an explicit expression for the entries dn,k. This corollary
follows from the definition of Riordan matrix and Corollary 4.3.

Corollary 4.5. For n, k ≥ 0 we have

dn,k =

n−k
2∑

�=0

F2�−1

n−k
2

−�∑
j=0

(
k + j − 1

j

)(
k

n−k
2

− �− j

)
2j(−1)

n−k
2

−j−�,

if n+ k is even; and 0 otherwise.
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Let D2 = [d2n−k,k]n,k≥0 = [d̃n,k]n,k≥0. The first few terms of the matrix D2 are

D2 = [d̃n,k]n,k≥0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0
5 5 3 1 0 0 0 0 0
13 13 9 4 1 0 0 0 0
34 34 26 14 5 1 0 0 0
89 89 73 45 20 6 1 0 0
233 233 201 137 71 27 7 1 0
610 610 546 402 234 105 35 8 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Corollary 4.6 is a straightforward application of the summation property.

Corollary 4.6. The Riordan matrix D2 is given by

D2 =

(
1− 2x

1− 3x+ x2
, x

(1− x)

1− 2x

)
.

Moreover,
n∑

k=0

d̃n,k =
1

5
((5 + 3n)F2n−1 + (3− n)F2n)

and
n∑

k=0

(−1)kd̃n,k =
1

2
(F2n+3 − Fn) , (n ≥ 2).

5 Two Additional Generalizations

The classic concept of Motzkin paths has been generalized to (u, �, d)-colored Motzkin
paths [20] and also to k-generalized Motzkin paths [5, 15, 16]. It is natural to ask
if a generalization of the non-decreasing Motzkin paths to those mentioned concepts
also have interesting results. The first generalization is called (u, �, d)-colored non-
decreasing Motzkin paths. In this case each step is coloured. Let u be the number
of colors of each up-step (1, 1), let � be the number of colors for each horizontal-step
(1, 0) and let d be the number of colors of each each down-step (1,−1). Let NM(u,�,d)

be the set of all (u, �, d)-colored non-decreasing Motzkin paths. For brevity we are
not going to give proofs of the following results. From the factorizations in Figure 2
and the symbolic method it is easy to see that the results hold.

We denote by F (u,�,d)(x, y, z, q) the generating function with the parameters given
in Table 1:

F (u,�,d)(x, y, z, q) :=
∑

P∈NM(u,�,d)

x�(P )yh(P )zr(P )qp(P ).

Theorem 5.1. The generating function F (u,�,d)(x, y, z, q) is given by

x(1− �xy)(�y + dquxz)(1 − dux2z)

1− 2�xy + �2x2y2 − (2+q)(dux2z + d�ux3yz)− d�2ux4y2z + d2u2x4z2 − d2�u2x5yz2



R. FLÓREZ AND J.L. RAMÍREZ /AUSTRALAS. J. COMBIN. 72 (1) (2018), 138–154 150

In particular, the generating function for the (u, �, d)-colored non-decreasing
Motzkin paths is

F (u,�,d)(x, 1, 1, 1) =
x(1− �x)(�+ dux)(1− dux2)

1− 2�x+ (�2 − 3du)x2 + 3d�ux3 − (d�2u− d2u2)x4 − d2�u2x5
.

Moreover, the generating function for the (u, d)-colored non-decreasing Dyck paths
is

F (u,d)(x, 0, 1, 1) =
dux2(1− dux2)

1− 3dux2 + d2u2x4
=

∞∑
n=1

(ud)nF2n−1x
2n.

The second generalization is the k-generalized non-decreasing Motzkin paths. In
this case the horizontal step is (k, 0) for k ∈ Z>0. Let NM(k) be the set of all k-
generalized non-decreasing Motzkin paths. We denote by Fk(x, y, z, q) the generating
function:

Fk(x, y, z, q) :=
∑

P∈NM(k)

x�(P )yh(P )zr(P )qp(P ).

Theorem 5.2. The generating function Fk(x, y, z, q) is given by

x(1− xky)(xzq + xk−1y)(1− x2z)

1− 2xky + x2ky2 − (2 + q)x2z + (2 + q)x2+kyz − x2+2ky2z + x4z2 − x4+kyz2
.

In particular, the generating function for the k-generalized non-decreasing Motz-
kin paths with respect to the length is

Fk(x, 1, 1, 1) =
x(1 − xk)(x+ xk−1)(1− x2)

1− 3x2 + x4 − 2xk + 3x2+k − x4+k + x2k − x2+2k
.

6 Weak Non-Decreasing Motzkin Paths

A weak valley is a subpath of the form Y X, Y Z, ZX or ZZ. (This concept is called
valley by Brennan and Mavhungu [4].) We say that a Motzkin path is weak non-
decreasing if the weak valleys form a non-decreasing sequence. Let WM be the set
of all weak non-decreasing Motzkin paths.

Theorem 6.1 gives an expression for the generating function in (2). The proof of
Theorem 6.1 follows from the factorization given in Figure 2, where the last term (the
leftmost on second line) factors as X iZY iT (i ≥ 1) with T a weak non-decreasing
Motzkin path.

W (x, y, z, q) :=
∑

P∈WM
x�(P )yh(P )zr(P )qp(P ). (2)

Theorem 6.1. The generating function W (x, y, z, q) is given by

W (x, y, z, q) =
x(y + qxz)(1 − x2z)

1− xy − (2 + q)x2z + x4z2
.



R. FLÓREZ AND J.L. RAMÍREZ /AUSTRALAS. J. COMBIN. 72 (1) (2018), 138–154 151

We now give some special cases of the generating function given in Theorem 6.1.
Taking y = z = q = 1 in Theorem 6.1 we obtain the generating function for the weak
non-decreasing Motzkin paths with respect to the length:

W (x, 1, 1, 1) =
x− x3

1− 2x− x2 + x3

= x+ 2x2 + 4x3 + 9x4 + 20x5 + 45x6 + 101x7 + 227x8 + 510x9 + · · ·
If bn is the number of weak non-decreasing Motzkin paths of length n, then it is clear
that the sequence bn satisfies the recurrence relation

bn = 2bn−1 + bn−2 − bn−3,

with the initial values b1 = 1, b2 = 2, and b3 = 4.

Taking y = 0 and q = 1 = z in Theorem 6.1, we recover the number of non-
decreasing Dyck paths of length 2n (F2n−1 the (2n− 1)-th Fibonacci numbers).

The sequence bn coincides with the sequence A052534 of the OEIS [18]. Therefore,
it is possible to obtain different combinatorial interpretations for this sequence.

For example, consider the Motzkin paths whose height is at most 2 and the
horizontal steps all occur at level zero or one. This family of Motzkin paths is
represented using the transition diagram of Figure 9.

q0 q1 q2

Z Z

X

Y

X

Y

Figure 9: Transition diagram for the restricted Motzkin paths.

The technique on how to find the ordinary generating function corresponding to
an automaton (or in general for a context-free language) is known as the Chomsky-
Schűtzenberger methodology, (see for example [9, 11, 8]).

The finite automaton in Figure 9 gives rise to a system of equations for the
associated generating functions:⎧⎪⎨

⎪⎩
L0(x) = xL0(x) + xL1(x) + 1

L1(x) = xL0(x) + xL1(x) + xL2(x)

L2(x) = xL1(x)

The augmented matrix associated to this system of equations is⎡
⎣1− x −x 0 1

−x 1− x −x 0
0 −x 1 0

⎤
⎦ .
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Using Gaussian elimination, we obtain the generating function

L0(x) =
1− x− x2

1− 2x− x2 + x3
.

Notice that L0(x) = W (x, 1, 1, 1) + 1. So, we have the following relation.

Corollary 6.2. The number of weak non-decreasing Motzkin paths of length n is
equal to the number of Motzkin paths of length n whose height is at most 2 and the
horizontal steps occur at level zero or one.

It will be interesting to have a bijective proof of this relation.

There are several interesting relations related to Corollary 6.2. The first is given
by the red/black partitions (introduced by De Andrade et al. [1]). Other relations
can be found in A052534. A red-black partition is a partition where the parts may
be of two colors, red or black. Each red part from one up to the largest part appears
at least once and at most twice. Each black part is counted twice and the largest
black part is at most twice the largest red part. Let cn be the number of red/black
partitions into at most n parts. For example, c3 = 9, where the partitions are

∅; 1r; 1r + 1r; 2r + 1r; 1r + 1b; 1r + 2b; 2r + 1r + 1r; 2r + 2r + 1r; 3r + 2r + 1r.

We observe that from [1, Theorem 10.1] the following holds.

Corollary 6.3. The number of weak non-decreasing Motzkin paths of length n + 1
is equal to the number of red/black partitions into at most n parts.

Let WMs be the set of weak non-decreasing Motzkin paths with exactly s peaks
(subwords XY ). We introduce the following generating function:

Js(x, y) :=
∑

P∈WMs

x�(P )yh(P ).

From Theorem 6.1 we have that the generating function for the weak non-
decreasing Motzkin paths without peaks is

J0(x, y) = W (x, 1, 1, 0) =
x(1− x2)

1− x− 2x2 + x4
. (3)

The number of weak non-decreasing Motzkin paths without peaks coincides with the
sequence A052535. This is actually the number of compositions of n with parts in
the set {2, 1, 3, 5, 7, 9, . . .}.
Corollary 6.4. The generating function for the weak non-decreasing Motzkin paths
with exactly s peaks satisfies

1. for all s ≥ 2

Ts(x, y) =
x2

1− 2x2 + x4 − xy
Ts−1(x, y).
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2. For all s ≥ 1

Ts(x, y) =
x2s(1− x2 + T0(x, y))

(1− 2x2 + x4 − xy)s
.

Notice that for all s ≥ 1

Ts(x, 1) =
x2s(1− x2)3

(1− x− 2x2 + x4)s+1
.
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