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Abstract

Tic-Tac-Toe is a two player pencil and paper game. Players alternate
turns placing marks on a three by three grid. The first player to have
three of their respective marks on a horizontal, vertical, or diagonal row
wins the game. In this paper, we generalize this game to graphs. In
our main result, we provide simple necessary and sufficient conditions
for the first player to have a winning strategy on a graph. We prove
that both players have a drawing strategy on all remaining graphs. We
provide simple explicit strategies for both players. Finally, we give open
problems related to this study.

1 Introduction

There has been much research in the area of games on graphs (see [8] for a survey
of references). Several tabletop games such as Lights Out [7], Nim [5], pebbling
(inspired by Mancala, see for example [9]), and peg solitaire [3] have been adapted
for play on graphs. A classic game that would lend itself to such a treatment is Tic-
Tac-Toe. For this reason, we are motivated to introduce the study of Tic-Tac-Toe
on graphs in this paper.

Games similar to Tic-Tac-Toe (or Noughts and Crosses) have been played for
at least two thousand years [6]. The most well-known variation of Tic-Tac-Toe is
played on a three by three grid. Two players alternate turns placing marks on the
grid. The first player to have three of their respective marks in a horizontal, vertical,
or diagonal row wins the game. In the traditional game, perfect play from both
players will result in a draw each time. However, generalizations of the game are
usually more complicated and often unsolved. See Beck [2] for more information on
variations of Tic-Tac-Toe.

In games of no chance, the goal is usually to determine the optimal strategy. A
strategy is one of the options available to a player where the outcome depends not
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only on the player’s actions, but the actions of others. A strategy is winning if the
player following it will win, regardless of the actions of their opponents. Similarly, a
drawing strategy is one in which the player following it can force a draw, no matter
the actions of their opponents. The Fundamental Theorem of Combinatorial Game
Theory (see for example [1, 10]) states that in games such as Tic-Tac-Toe either
one player has a winning strategy or both players have a drawing strategy. Further,
Nash’s Strategy Stealing Argument (see for example [2, 10]) says that in positional
games such as this, there is no disadvantage in going first. Therefore, if the second
player has a winning strategy or a drawing strategy, then the first player could waste
their opening move and steal the second player’s strategy. Combining these two facts
leads to the following observation.

Observation 1.1 [1, 2, 10] If the second player has a drawing strategy in Tic-Tac-
Toe, then both players have a drawing strategy.

In this paper, we generalize Tic-Tac-Toe to graphs. A graph G = (V,E) is a
set of vertices, V , and a set of edges, E. We will assume that all graphs are finite,
connected, undirected graphs with no loops or multiple edges. Our notation and
terminology will be consistent with West [12]. The star with n arms will be denoted
K1,n. The path and cycle on n vertices will be denoted Pn and Cn, respectively.
Most of our conditions will be in terms of the degree of a vertex v ∈ V (G), that
is the number of vertices adjacent to v. The neighbors of v are the vertices that
share an edge with v. A graph H is a subgraph of a graph G if V (H) ⊆ V (G) and
E(H) ⊆ E(G).

As with the traditional game, two players take turns placing their respective
marks on the vertices of a graph G. Following the convention of [1], we will refer
to the first player as “Alice” and the second player as “Bob.” The first player to
place their marks on vertices x, y, and z such that xy ∈ E(G) and yz ∈ E(G) wins.
This will be referred to as capturing a P3. Thus, each P3 subgraph of G constitutes
a winning set. The goal of this paper is to classify all graphs in which Alice has
a winning strategy. We will show that both players have a drawing strategy on all
other graphs.

2 The Basic Game

We note that if G has at most four vertices, then neither player can win, regardless
of strategy. Thus, we need only consider the case where G has at least five vertices.

In this section, we will prove our main result which is given in Theorem 2.3. Our
result will be a subgraph characterization, similar to Beineke’s Theorem (for line
graphs) and Kuratowski’s Theorem (for planar graphs). We will show that Alice
has a winning strategy on a graph G if and only if G contains one of the graphs in
Figure 1 as a subgraph. For this reason, we start by determining the graphs with
maximum degree three that have neither B1 nor B2 as a subgraph. This is given in
the following proposition.
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Figure 1: Examples of graphs in which Player One has a winning strategy
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Figure 2: Graphs with maximum degree three that have neither B1 nor B2 as a
subgraph

Proposition 2.1 Suppose that G is a graph with at least five vertices and maximum
degree three such that G has neither B1 nor B2 as a subgraph, where B1 and B2 are
illustrated in Figure 1. Then either (i) G is isomorphic to the graph on the left of
Figure 2 or (ii) G is obtained from the path on the vertices v0, v1,..., vn−1 (where
n ≥ 2) by appending two vertices (v′0 and v′′0) to v0 and at most two vertices (v′n−1

and v′′n−1) to vn−1. In this case, the edges v′0v
′′
0 and v′n−1v

′′
n−1 may or may not be in

the graph. An example is illustrated on the right of Figure 2.

Proof. Suppose that G is a graph with maximum degree three such that G has
neither B1 nor B2 as a subgraph. Let v0 be a vertex of degree three in G with
neighbors v′0, v

′′
0 , and v1. Since G must have at least five vertices, we assume that v1

is adjacent to a vertex v2 /∈ {v0, v′0, v′′0}. We now have two cases to consider.

Case 1: Suppose that v′0 is adjacent to a vertex u /∈ {v0, v′′0}. If v′0v2 ∈ E(G), then
G has B1 as a subgraph. Likewise, if v′0 is adjacent to a vertex u /∈ {v′′0 , v0, v1, v2},
then G has B2 as a subgraph. Thus, we can assume that v′0v1 ∈ E(G). Reversing the
roles of v′0 and v′′0 shows that v′′0 can only be adjacent to v′0 or v1. In either case, the
resulting graph has B1 as a subgraph. Thus the degree of v′′0 must be one. Further,
if the degree of v2 is at least two, then G will have B2 as a subgraph. Hence, G will
be isomorphic to the graph illustrated on the left of Figure 2.

Case 2: Suppose that v′0 has no neighbor outside of the set {v0, v′′0}. Note that
if v′′0 has a neighbor outside of {v0, v′0}, then this reduces to Case 1. So we may
assume that neither v′0 nor v′′0 has a neighbor outside of the set {v0, v′0, v′′0}. Let
P = {v0, v1, ..., vn} be a path containing v0, where n ≥ 2. If vi is a vertex of degree
three, where 1 ≤ i ≤ n−2, then G has B2 as a subgraph. Thus, we may assume that
the degree of vi is two for all i, where 1 ≤ i ≤ n− 2. Suppose that vn−1 is of degree
three, with neighbors vn−2, vn, and v′n−1. If vn has a neighbor outside of {vn−1, v

′
n−1},

then G has B2 as a subgraph. Thus, if vn−1 is of degree three, then this is isomorphic
to the graph in (ii) with vn = v′′n−1. If vn−1 is of degree two, then vn may have at
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most two neighbors v′n and v′′n other than vn−1. Using a similar argument as above,
v′n and v′′n can have no neighbor outside of the set {vn, v′n, v′′n}. Thus, any acceptable
graph can be obtained from the path on the vertices v0, v1,...,vn−1 by appending two
vertices (v′0 and v′′0) to v0 and at most two vertices (v′n−1 and v′′n−1) to vn−1. The
edges v′0v

′′
0 and v′n−1v

′′
n−1 may or may not be in the graph.

The graph in Proposition 2.1 (i) is called the bull graph in West [12]. We now
introduce notation for an important subset of those graphs described in Proposition
2.1 (ii). Let P ′

n denote the graph obtained from the path on n vertices by appending
two pendant vertices to each of the two end vertices of the path. The notation for the
vertices of P ′

n will be consistent with Proposition 2.1. The graph P ′
2�+1 is illustrated

in Figure 1.

In order to prove our main result it is also useful to define the concept of a fork. A
fork is a subgraph and a placement of marks on that subgraph such that one player,
say Alice, can win on her next turn, provided that Bob cannot win first. As in the
traditional game, recognizing forks and potential forks is central to the strategy of
Tic-Tac-Toe on graphs. We will characterize forks based on the minimum subgraph
in which they can appear. For this reason, we will assume that Bob has no marks
on these subgraphs. This characterization is given in the following proposition.

Proposition 2.2 There are precisely four possible forks:

(i) The K1,3-fork - Alice takes the center and one arm of a K1,3.

(ii) The P4-fork - Alice takes the two center vertices of a P4.

(iii) The C4-fork - Alice takes the non-adjacent vertices of a C4.

(iv) The P5-fork - Alice takes the first, third, and fifth vertices of a P5.

In each case, Bob has no vertices in the respective subgraph.

Proof. In order for Alice to have a fork, she must have two vertices in each of
two winning sets and Bob can have no vertices in these same sets. Assuming that
Bob blocks when necessary, these two winning sets must share at least one common
vertex. This common vertex must belong to Alice. For this reason, we assume that
the only winning sets are {c, u1, u2} and {c, u3, u4}.

If c is the only shared vertex, then we get the P5-fork. In this case, Alice must
take the first, third, and fifth vertices of the P5. For the rest of the proof, we assume
that the two sets share two common vertices. Without loss of generality, suppose
that u1 = u4.

If c and u1 are nonadjacent, then the two copies of P3 are c, u2, u1 and c, u3, u1.
This gives us the C4-fork. Notice that Alice must take c and u1 on this subgraph.

Thus we may assume that c and u1 share an edge. If c has two neighbors in the
set {u2, u3}, then this gives us the K1,3-fork. If c has only one neighbor in the set
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{u2, u3}, then this gives us the P4-fork. In both cases, Alice must take c and u1 on
these subgraphs.

We are now prepared to prove our main result.

Theorem 2.3 Alice has a winning strategy on a graph G if and only if G has one
of the following as a subgraph: K1,4, B1, B2, or P

′
2�+1 for some � ≥ 1 (see Figure 1).

Both players have a drawing strategy on all other graphs.

Proof. We begin by giving Alice’s winning strategy on the above graphs. Suppose
that G has a K1,4 or B1 as a subgraph. Alice takes c followed by one element from
each of the sets {u1, u3} and {u2, u4}. Since c together with one element from each
of those pairs constitutes a winning set, Alice has a winning strategy.

Suppose that G has B2 as a subgraph. For her opening move, Alice takes vertex
c. Bob can take at most one element of {u2, u5}. Hence, Alice responds by taking
the remaining element of that set. At this point, she has captured either the center
of a P4 or the center and one arm of a K1,3. In either case, Alice can win on her next
move by Proposition 2.2.

Suppose that G is the graph P ′
2�+1, where � ≥ 1. On Alice’s ith turn (i = 1, ..., �),

she takes vertex v2i−1. Bob must respond by taking v2i−2 either to prevent both the
P4-fork and K1,3-fork (on his first turn) or to block (on his remaining turns). On
Alice’s (�+ 1)st turn, she takes vertex v2�. This gives her the center and one arm of
a K1,3. Hence by Proposition 2.2, she can win on her next turn regardless of Bob’s
actions.

We now give Bob’s drawing strategy on the remaining graphs. Note that the
maximum degree of such a graph is three since Alice has a winning strategy if the
graph has a K1,4 subgraph. Clearly, both players have a drawing strategy on a graph
with maximum degree one. Let G be a graph with maximum degree two. In such a
graph, there are at most two paths between any two vertices u and v. We say that
such a path is a P1-path if Alice has taken u and v and Bob has not taken any vertex
along this path.

Suppose that on such a graph, Alice takes vertex vi on her ith turn. On his first
turn, Bob responds by taking any neighbor of v1. On his ith turn (i ≥ 2), Bob takes
any neighbor of vi that is on a P1-path. Since the maximum degree of G is two,
this neighbor (if it exists) is unique. Hence, Bob will prevent both the P4-fork and
the P5-fork. If no such neighbor exists, then Bob can take any available vertex. By
adopting this strategy, Bob will take at least one vertex from every winning set of
G. Hence, he has a drawing strategy.

Suppose that G is a graph with maximum degree three that has neither B1 nor
B2 as a subgraph. These graphs are described in Proposition 2.1. For Bob’s drawing
strategy on the bull graph from Proposition 2.1 (i), he takes a vertex of degree three
on his first move and then blocks as necessary.

For the graphs described in Proposition 2.1 (ii), let G� be the graph obtained
from P ′

2� by adding the edges v′0v
′′
0 and v′2�−1v

′′
2�−1. We now give Bob’s drawing
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strategy on G�. Whenever Alice takes an element from one of the pairs {v′0, v′′0},
{v0, v1},...,{v2�−2, v2�−1}, {v′2�−1, v

′′
2�−1}, Bob responds by taking the remaining ele-

ment from that set. Any P3 subgraph of G� must contain two elements from some
pair. Hence, this strategy will guarantee that Bob will have at least one vertex from
every winning set. Ergo, he has a drawing strategy. Since all remaining graphs are
subgraphs of G�, Bob has a drawing strategy on these graphs as well.

3 Open Problems

We end this paper by giving a number of open problems as possible avenues for future
research. Since Alice has a winning strategy on most graphs, a natural question is
how to neutralize her advantage. For this reason, we propose three open problems
that suggest different approaches to reducing Alice’s advantage.

Problem 3.1 The pie rule (also known as the swap rule or Nash’s rule from Hex)
is a common method for mitigating the advantage of going first [4]. If the pie rule
is implemented, then after the first move is made, Bob has one of two options. If
he lets the move stand, then play proceeds as normal. Otherwise, Bob “takes” that
move. In which case, Alice then plays as if she were the second player. What is
the set of graphs in which each player has a winning strategy when the pie rule is
implemented?

Problem 3.2 Suppose that we allow play to continue after one player has captured
a P3 (this is known as full play convention in [2, 10]). (i) What is the set of graphs in
which Alice cannot prevent Bob from capturing a P3? (ii) What is the set of graphs
in which Alice can prevent Bob from capturing a P3 only at the expense of capturing
her own? (iii) What is the set of graphs in which Alice can both capture a P3 and
prevent Bob from capturing a P3?

Problem 3.3 In the (a, b)-game (see for example [11]), players alternate turns as
usual. On each of Alice’s turns, she places a marks. Similarly, Bob places b marks on
each of his turns. For each pair (a, b), determine necessary and sufficient conditions
on a graph for each player to have a winning strategy in the (a, b)-game.

Other open problems would center around the possibility of using other subgraphs
as our winning sets. For example, suppose that we were to consider a variation in
which the winning sets were induced P3-subgraphs. In such a variation, the game
would continue upon the capture of a C3. What is the set of graphs in which Alice has
a winning strategy in this variation? In addition, if we were to generalize Connect-
Four to graphs, then we would likely assume that both players were trying to capture
a P4. Likewise, if we assumed that our grid in Tic-Tac-Toe were wrapped around
something akin to a torus, then our winning sets would be C3-subgraphs. We could
generalize this further by assigning each player a family of graphs (which need not be
the same for both players). The first player to capture any graph in their respective
family wins.
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