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Abstract

Standard set-valued Young tableaux are a generalization of standard
Young tableaux in which cells contain (possibly empty) sets of positive
integers, with the added conditions that every integer at position (i, j)
must be smaller than every integer at positions (i, j + δ) and (i + δ, j)
for all δ ≥ 1. This paper explores the combinatorics of standard set-
valued Young tableaux with two-rows, and how those tableaux may be
used to provide new combinatorial interpretations of generalized Catalan
numbers. The paper begins by drawing a bijection between arbitrary
classes of two-row standard set-valued Young tableaux and collections of
two-dimensional lattice paths that lie weakly below a unique maximal
path. That bijection is then used to derive new combinatorial interpre-
tations for the two-parameter Fuss-Catalan numbers (Raney numbers),
the rational Catalan numbers, and the solution to the so-called “gener-
alized tennis ball problem”. The paper closes by introducing a general
methodology for the enumeration of standard set-valued Young tableaux,
prompting explicit formulas for the general two-row case.

1 Introduction

For a non-increasing sequence of positive integers λ = (λ1, λ2, . . . , λm), a Young
diagram Y of shape λ is a left-justified array of cells with exactly λi cells in its ith

row. If Y is a Young diagram of shape λ with
∑

i λi = n, a Young tableau of shape
λ is an assignment of the integers [n] = {1, . . . , n} to the cells of Y such that every
integer is used precisely once. A Young tableau in which integers increase from top
to bottom down every column and increase from left to right across every row is
said to be a standard Young tableau. For a comprehensive introduction to Young
tableaux, see Fulton [4].

Let Y be a Young diagram of shape λ, and let ρ = {ρi,j} be a collection of
non-negative integers such that

∑
i,j ρi,j = m. A set-valued tableau of shape λ
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and density ρ is a function from [m] to the cells of Y such that the cell at position
(i, j) receives a set of ρi,j integers. A set-valued tableau is said to be a standard
set-valued Young tableau if we additionally require that every integer at position
(i, j) is smaller than every integer at positions (i + δ, j) and (i, j + δ) for all δ ≥ 1.
In analogy with standard Young tableaux, we refer to these added conditions as
“column-standardness” and “row-standardness”. We denote the set of all standard
set-valued Young tableaux of shape λ and density ρ by S(λ, ρ). See Figure 1 for a
basic example.

1 2 3 4

5 6 7 8

1 2 3 5

4 6 7 8

1 2 3 6

4 5 7 8

1 2 4 5

3 6 7 8

1 2 4 6

3 5 7 8

1 2 5 6

3 4 7 8

1 3 2 5

4 6 7 8
�∈ S(λ, ρ)

Figure 1: The six elements of S(λ, ρ) when λ = (2, 2) and ρi,j = 2 for all i, j. On the
right is a set-valued tableau of the same shape and density that isn’t row-standard.

Set-valued tableaux were introduced by Buch [2] in his investigation of the K-
theory of Grassmannians. More directly influencing this paper is the work of Heu-
bach, Li and Mansour [8], who argued that the cardinality of S(n2, ρ) with row-
constant density ρ1,j = k − 1, ρ2,j = 1 equalled the k-Catalan number Ck

n. For a
more recent appearance of set-valued tableaux see Reiner, Tenner and Yong [11], who
investigated so-called “barely set-valued tableaux” with a single non-unitary density
ρi,j = 2 (not necessarily located at a fixed position i, j).

Currently, the central difficulty in studying standard set-valued Young tableaux
is the lack of a closed formula for enumerating general S(λ, ρ): there is no known set-
valued analogue of the celebrated hook-length formula for standard Young tableaux.
Reiner, Tenner and Yong [11] utilize a modified insertion algorithm to enumerate
“barely set-valued tableaux”, but theirs is an atypically tractable case and cannot
be modified to the enumeration of sets S(λ, ρ) with a fixed density at each position.

The goal of this paper is to present a thorough exploration of standard set-
valued Young tableaux of shape λ = n2. In Section 2, we draw a bijection between
two-row standard set-valued tableaux of arbitrary density and certain classes of two-
dimensional integer lattice paths with “east” E = (1, 0) and “north”N = (0, 1) steps.
In particular, S(n2, ρ) with ρ1,j = aj and ρ2,j = bj is placed in bijection with all such
lattice paths that lie weakly below the lattice path P = Ea1N b1Ea2N b2 . . . (Theorem
2.2). In Section 3, we utilize standard set-valued Young tableaux to provide new
combinatorial interpretations for various generalizations of the Catalan numbers.
In particular, we show how standard set-valued Young tableaux of shape λ = n2

and various densities are enumerated by the rational Catalan numbers (Theorem
3.2), the Raney numbers (two-parameter Fuss-Catalan numbers, Theorem 3.5), and
the solution to the “(s, t)-tennis ball problem” of Merlini, Sprugnoli, and Verri [10]
(Theorem 3.6). See Figure 2 for an overview of the various densities needed to achieve
our combinatorial interpretations. In that figure, and in all that follows, we use a
Young diagram with parenthesized entries to specify a density ρ with the exhibited
cell densities ρi,j. In Section 4, we introduce a technique for enumerating two-row
standard set-valued Young tableaux that we refer to as density shifting. Closed
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formulas are presented for the number of such tableaux of any density (Theorem
4.2).

k-Catalan numbers Ck
n = 1

kn+1

(kn+1
n

)
for λ = n2

(1) . . . (1)

(k − 1) . . . (k − 1)

Rational Catalan numbers C(a, b) = 1
a+b

(a+b
a

)
for λ = a2

(1) . . . (1) (1)

(�aba � − � (a−1)b
a �) . . . (�2ba � − � b

a�) (� b
a� − �0�)

Raney numbers Rk,r(n) =
r

kn+r

(kn+r
n

)
for λ = (n+ 1)2

(1) . . . (1) (1)

(r − 1) . . . (k − 1) (k − 1)

Solution to (s, t)-tennis ball problem

for λ = (n+ 1)2 (after n turns)

(s− t) . . . (s− t)

(t) . . . (t)

Figure 2: Densities ρ for which | S(λ, ρ)| yields various combinatorial interpretations.

We pause to introduce a foundational result that, in the case of rectangular λ,
serves as a set-valued analogue of the Schützenberger involution for standard Young
tableaux. In the case of densities ρ that are constant across each row, notice that
Proposition 1.1 manifests as invariance under a vertical reflection of those densities.

Proposition 1.1. For rectangular λ = nm and any density ρ = {ρi,j}, let r(ρ) =
{ρm−i+1,n−j+1}. Then | S(λ, ρ)| = | S(λ, r(ρ))|.
Proof. One may define a bijection f : S(λ, ρ) → S(λ, r(ρ)) such that f(T ) ∈ S(λ, r(ρ))
is obtained by reversing the alphabet of T ∈ S(λ, ρ) and rotating the resulting tableau
by 180-degrees.

2 Set-Valued Tableaux and Two-Dimensional Lattice Paths

As it will provide a framework for many of the combinatorial interpretations from
Section 3, we begin by drawing a general bijection between S(λ, ρ) with λ = n2 and
various classes of two-dimensional lattice paths. This requires a consideration of all
integer lattice paths from (0, 0) to (a, b) that use only east E = (1, 0) and north
N = (0, 1) steps, which we refer to as N-E lattice paths of shape (a, b). For reasons
that will become evident in the proof of Theorem 2.2, we eventually restrict our
attention to ρ for which there does not exist 1 ≤ j ≤ n− 1 with ρ2,j = ρ1,j+1 = 0. If
ρ avoids such a pair of zero density cells, we refer to ρ as a “reduced density”.

So fix λ = n2, and consider the density ρ where ρ1,j = aj and ρ2,j = bj . For
the remainder of this section let

∑
j aj = a and

∑
j bj = b. We may then define a

map ψρ : S(λ, ρ) → P, where P is the set of N-E lattice paths of shape (a, b), by
associating entries in the top row of T ∈ S(λ, ρ) to east steps in ψρ(T ) and associating
entries in the bottom row of T to north steps in ψρ(T ). The map ψρ is always an
injection, but its image is dependent upon the choice of ρ. See Figure 3 for a quick
example of ψρ.

To characterize im(ψρ), we introduce a partial order on P. For P1, P2 ∈ P, define
P1 ≥ P2 if P1 lies weakly above P2 across 0 ≤ x ≤ a. Notice that this poset is
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1 3 7
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9

Figure 3: A standard set-valued Young tableau T ∈ S(λ, ρ) with λ = n2 and ρ1,j =
1, ρ2,j = 2 for all j, alongside the corresponding N-E lattice path ψρ(T ) of shape
(3, 6).

isomorphic to a finite order ideal of Young’s lattice via the map that takes a path
to the Young diagram lying above its conjugate. Our map ψρ respects this partial
order in the following sense.

Lemma 2.1. For fixed λ = n2 and ρ, take P1, P2 ∈ P such that P1 ≥ P2. If
P1 ∈ im(ψρ), then P2 ∈ im(ψρ).

Proof. We prove the statement for when P1 directly covers P2. This corresponds to
the situation where P2 may be obtained from P1 by replacing a single NE subse-
quence with an EN subsequence at the same position. Assume that this NE 
→ EN
replacement occurs at the i and i+ 1 steps of both P1 and P2. By assumption there
exists T1 ∈ S(λ, ρ) with ψρ(T1) = P1. It must be the case that the integer i appears
in the second row of T1 and i+ 1 appears in the first row of T1. Since T1 is column-
standard, this also implies that i and i+ 1 cannot appear in the same column of T1.
Then define T2 to be the tableau obtained by flipping the positions of i and i+ 1 in
T1. As i and i + 1 are consecutive integers, and since i and i + 1 cannot appear in
the same column of T1, this new tableau T2 is both row- and column-standard. Thus
T2 ∈ S(λ, ρ) and ψρ(T2) = P2.

For any λ and ρ, there exists a tableau Tmax ∈ S(λ, ρ) that is referred to as the
column superstandard tableau of that shape and density. This is the unique standard
set-valued Young tableau such that, for all j, every integer in the jth column of Tmax

is smaller than every integer in the (j + 1)st column of Tmax. In terms of our map
ψρ, this is precisely the tableau such that ψρ(Tmax) = Ea1N b1 . . . EanN bn . The
tableau Tmax is important because, in the case of reduced densities ρ, the order ideal
generated by ψρ(Tmax) precisely corresponds to im(ψρ):

Theorem 2.2. Fix λ = n2, and take any reduced density ρ with ρ1,j = aj and
ρ2,j = bj for all j. For Pmax ∈ P defined by Pmax = Ea1N b1 . . . EanN bn, the set
S(λ, ρ) is in bijection with I = {P ∈ P | P ≤ Pmax}.
Proof. As Pmax = ψρ(Tmax) and Pmax ∈ im(ψρ), Lemma 2.1 gives I ⊆ im(ψρ). Since
ψρ is known to be injective, it is only left to show that im(ψρ) ⊆ I.

Assume by contradiction there exists T ∈ S(λ, ρ) with ψρ(T ) � Pmax. Then there
is a smallest index i such that the ith steps of both ψρ(T ) and Pmax begin at the
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same point, the ith step of ψρ(T ) is a N step, and the ith step of Pmax is an E step.
This means that the subtableaux of T and Tmax consisting only of {1, . . . , i−1} have
the same shape and density, but the integer i lies in the first row of Tmax and in the
second row of T . So assume that i lies at position (1, j) of Tmax. The construction
of Tmax implies that every integer in the (j − 1)st columns of both T and Tmax is
smaller than i. In T , this means that i must lie in the leftmost cell (2, j′) satisfying
both j′ ≥ j and ρ2,j′ �= 0. If ρ2,j �= 0, then i lies in the (2, j) cell of T and there must
exist an entry at position (1, j) of T that is larger than i. If ρ2,j = 0, since ρ is a
reduced density it must be the case that i lies at a cell (2, j′) such that ρ1,j′ �= 0. In
this case, there once again must be an entry at (1, j′) of T that is larger than i. We
may then conclude that T is not column-standard.

Example 2.3. For any pair of integers a, b > 0, there exists a unique greatest element
Q = N bEa and a unique least element Q′ = EaN b in the poset of N-E lattice paths
of shape (a, b). Using the notation of Theorem 2.2, Q and Q′ serve as Pmax for the
choice of reduced densities ρ and ρ′ shown below.

ρ :
(0) (a)
(b) (0)

ρ′ :
(a)
(b)

By Theorem 2.2, S(22, ρ) is in bijection with all N-E lattice paths of shape (a, b),
whereas S(12, ρ′) is in bijection with the singlet set {Q′}. This agrees with the basic
enumerations | S(22, ρ)| = (

a+b
a

)
and | S(12, ρ′)| = 1.

Since there exist reduced densities with cells satisfying ρi,j = 0, it is possible
for distinct sets S(λ, ρ), S(λ, ρ′) of the same shape to be associated with the same
maximal path Pmax ∈ P. Thus, it is possible for distinct sets S(λ, ρ), S(λ, ρ′) to lie
in bijection with the same set of N-E lattice paths. See Figure 4 for an example.

Also observe that, if ρ is not a reduced density, it may be the case that I � im(ψρ).
This only requires the existence of an index j where ρ2,j = ρ1,j+1 = 0, ρ1,j �= 0, and
ρ2,j+1 �= 0. For such a non-reduced density, begin with Tmax and permute a nonzero
number of entries between the cells at (1, j) and (2, j + 1). The resulting tableaux
T still lies in S(λ, ρ) but satisfies ψρ(T ) �≤ Pmax. Luckily, non-reduced densities will
not appear in the combinatorial interpretations of Section 3, allowing us to forego a
full characterization of im(ψρ) in this case.

ρ1 :
(1) (0) (1)
(1) (2) (1)

ρ2 :
(1) (0) (1)
(2) (1) (1)

Figure 4: A pair of distinct densities ρ1, ρ2 for shape λ = 32 such that S(λ, ρ1)
and S(λ, ρ2) are both in bijection with N-E lattice paths of shape (2, 4) lying below
Pmax = E1N3E1N1.
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3 Generalized Catalan Numbers and Set-Valued Tableaux

Before proceeding to our new combinatorial interpretations, we briefly summarize
known results about the k-Catalan numbers. For any k ≥ 1, the k-Catalan numbers
are given by Ck

n = 1
kn+1

(
kn+1
n

)
for all n ≥ 0. Notice that the k-Catalan numbers

specialize to the usual Catalan numbers when k = 2.
See Hilton and Pedersen [7] or Heubach, Li and Mansour [8] for various combina-

torial interpretations of the k-Catalan numbers. Relevant to our work is the standard
result that Ck

n enumerates the set Dk
n of k-good paths of length kn: the subset of N-E

lattice paths of shape (n, (k−1)n) that stay weakly below the line y = (k−1)x. This
set of k-good paths is obviously in bijection with k-ary paths of length kn: integer
lattice paths from (0, 0) to (nk, 0) that use steps u = (1, 1

k−1
), d = (1,−1) and stay

weakly above y = 0. The results of Section 2 justify our preference for k-good paths
over k-ary paths.

Heubach, Li and Mansour [8] showed that standard set-valued Young tableaux
of shape λ = n2 and row-constant density ρ1,j = k − 1, ρ2,j = 1 are counted by Ck

n.
This was done by placing such tableaux in bijection with k-ary paths of length kn.
An equivalent result quickly follows from Theorem 2.2, yielding the combinatorial
interpretation for the k-Catalan numbers shown in the top-left of Figure 2.

Proposition 3.1. Take any k ≥ 1, n ≥ 0. Then Ck
n = | S(n2, ρ)| for the density ρ

with ρ1,j = 1 and ρ2,j = k − 1 for all 1 ≤ j ≤ n.

Proof. The set Dk
n of k-good paths of length kn are precisely those N-E lattice paths

of shape (n, (k − 1)n) that lie weakly below Pmax = (ENk−1)n. The result then
follows from the bijection of Theorem 2.2.

3.1 Rational Catalan numbers

The first generalization of the Catalan numbers for which we provide a new combina-
torial interpretation are the rational Catalan numbers. For relatively prime positive
integers a and b, there exists a rational Catalan number C(a, b) = 1

a+b

(
a+b
a

)
. As

originally shown by Bizley [1] and extended by Grossman [6], the rational Catalan
number C(a, b) equals the number of rational Dyck paths of shape (a, b). By rational
Dyck paths of shape (a, b) we mean N-E lattice paths of shape (a, b) that lie weakly
below the line of rational slope y = b

a
x. Observe that, for any k ≥ 1 and n ≥ 1, the

integers n and (k − 1)n + 1 are relatively prime and the rational Catalan numbers
specialize to the k-Catalan numbers as C(n, (k − 1)n+ 1) = Ck

n.
Our combinatorial interpretation, shown in the bottom-left of Figure 2, again

follows from Theorem 2.2:

Theorem 3.2. Take positive integers a, b such that gcd(a, b) = 1. Then C(a, b) =

| S(a2, ρ)| for the density ρ with ρ1,j = 1 for all 1 ≤ j ≤ a and ρ2,j = � bj
a
� − � b(j−1)

a
�.

Proof. Consider the lattice path P(a,b) = E1N c1 . . . E1N ca of shape (a, b), where

ci = � bi
a
� − � b(i−1)

a
�. As

∑k
i=1 ci = �bk�a for all 1 ≤ k ≤ a, the path P(a,b) has a
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northwest corner at the first integer lattice point below the intersection of y = b
a
x

with x = k, for every 1 ≤ k ≤ a. This implies that the set of rational Dyck paths
of shape (a, b) are in bijection with N-E lattice paths of shape (a, b) that lie weakly
below P(a,b). By Theorem 2.2, such lattice paths are in bijection with S(a2, ρ) for the
given density.

For (a, b) = (n, (k−1)n+1), it may be shown that Theorem 3.2 gives ρ2,j = k−1
for all 1 ≤ j ≤ n−1. As rational Dyck paths of shape (n, (k−1)n+1) are enumerated
by the k-Catalan number Ck

n, this implies that Theorem 3.2 may be viewed as a direct
generalization of Proposition 3.1.

Example 3.3. By Theorem 3.2, | S(72, ρ)| = C(7, 9) = 715 for the density ρ below

ρ :
(1) (1) (1) (1) (1) (1) (1)
(1) (1) (1) (2) (1) (1) (2)

3.2 Raney numbers

The next generalization of the Catalan numbers for which we will present a new com-
binatorial interpretation are the Raney numbers, also known as the two-parameter
Fuss-Catalan numbers. Unlike the case with both the k-Catalan numbers and ratio-
nal Catalan numbers, this combinatorial interpretation will require a more involved
approach than a straightforward citation of Theorem 2.2.

For any k ≥ 1 and r ≥ 1, the Raney numbers are given by Rk,r(n) =
r

kn+r

(
kn+r
n

)
for all n ≥ 0.1 The Raney numbers specialize to the k-Catalan numbers both as
Rk,1(n) = Ck

n and as Rk,k(n− 1) = Ck
n. For numerous identities involving the Raney

numbers, see Hilton and Pederson [7]. The most pertinent result from Hilton and
Pederson [7] is the fact that the Raney numbers are calculable from the k-Catalan
numbers as

Rk,r(n) =
∑

(i1,...,ir)�n
Ck

i1C
k
i2 . . . C

k
ir (1)

Here (i1, . . . , ir) � n denotes all weak compositions of n, meaning that one or
more of the ij may be zero. The summation of (1) is useful in that it allows one to
construct combinatorial interpretations for the Raney numbers as ordered r-tuples
of pre-existing interpretations for the k-Catalan numbers:

Proposition 3.4. Fix k, r ≥ 1, n ≥ 0. Then Rk,r(n) equals the number of ordered
r-tuples (T1, . . . , Tr) with Tj ∈ S(i2j , ρ), where ρ is the row-constant density ρ1,j = 1,
ρ2,j = k − 1 and i1 + · · ·+ ir = n.

Our goal is to replace the ordered r-tuples of Proposition 3.4 with a single set-
valued tableau of shape λ = (n + 1)2. This utilizes a technique that we refer to

1Hilton and Pedersen [7] use the alternative notation dqk(p) = p−q
pk−q

(
pk−q
k−1

)
for their two-

parameter generalization. The two notations are related via the change of variables Rp,p−q(k−1) =
dqk(p).
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“horizontal tableaux concatenation”, whereby the entries of the ordered r-tuple are
continuously reindexed and a new column with density ρ1,1 = 1, ρ2,1 = r−1 is added
to the front of the resulting tableau. This additional column carries the information
needed to recover the original partition of the tableau into r pieces.

So fix n ≥ 0 and take any two-row rectangular shape λ = (n + 1)2. To ease
notation, for any k, r ≥ 1 we temporarily define the density ρ(k, r) = {ρi,j} by
ρ1,j = 1 for all 1 ≤ j ≤ n, ρ2,1 = r − 1, and ρ2,j = k − 1 for all 2 ≤ j ≤ n. Notice
that ρ(k, r) is the density shown in the top-right of Figure 2.

Theorem 3.5. Take any k, r ≥ 1, n ≥ 0, and define ρ(k, r) as above. Then Rk,r(n) =
| S((n+ 1)2, ρ(k, r))|.
Proof. Let S denote the set of ordered r-tuples of set-valued tableaux (T1, . . . , Tr)
with Tj ∈ S(i2j , ρ) and i1 + · · · + ir = n, where ρ is the row-constant density ρ1,j =
1, ρ2,j = k − 1. We provide a pair of injective functions φ1 : S → S((n + 1)2, ρ(k, r))
and φ2 : S((n + 1)2, ρ(k, r)) → S. For an example illustrating both functions, see
Figure 5.

For φ1, take any (T1, . . . , Tr) ∈ S. Observe that the entries of each Tj are in
bijection with [kij ], and that a total of kn entries appear across all of the Tj . Also
notice that, if ij = 0, then Tj is the empty tableau with zero columns. We begin by
constructing an intermediate tableau D as follows

1. For every 1 ≤ j ≤ r, add an empty column in front of Tj . For T1, fill the top
cell of that new column with 0. For all other Tj , fill the bottom cell of that
new column with 0. We refer to the resulting tableaux of shape (ij +1)2 as the

T̃j .

2. For every 1 ≤ j ≤ r, reindex the entries of T̃j (including the 0 entry) by

x 
→ x + j + k(i1 + · · · + ij−1). As each of the T̃j contains precisely kij + 1
entries, this implies that every integer of [kn + r] is used precisely once across
our reindexed tableaux.

3. Concatenate the reindexed tableaux in the given order, producing a tableau D
of shape λD = (n+ r)2.

The tableau D is row- and column-standard by construction, and contains pre-
cisely r cells of density 0. Also observe that the top row of D contains a total of
n + 1 integers, while the bottom row of D contains a total (k − 1)(n + 1) integers.
The reindexing of step #2 also ensures that the map (T1, . . . , Tr) 
→ D is injective, as
distinct choices for (T1, . . . , Tr) will result is distinct collections of integers appearing
across the top row of D.

To obtain φ1(T1, . . . , Tr) = T from D, we shift all entries of D to the left until
each cell contains the number of entries proscribed by ρ(k, r). Any zero density
columns at the right are then deleted, producing a tableau T of shape λ = (n + 1)2

and density ρ(k, r). This step D 
→ T is clearly injective, as both tableaux contain
the same collection of integers across their top rows. This implies that the overall
map φ1 is injective. It only remains to be shown that T ∈ S((n+ 1)2, ρ(k, r)).
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As D is row-standard, so is T . To see that T is column-standard, notice that top
row entries of D that were originally associated with Tj are shifted left by precisely
j− 1 cells as we pass from D to T . Alternatively, bottom row entries in D that were
originally associated with Tj are shifted left by at least j − 1 cells as we pass from
D to T . This latter observation follows from the fact that r − 1 integers are needed
to fill the (2, 1) cell of T , whereas only j − 1 ≤ r − 1 bottom row entries had been

added to the left of Tj as we constructed D (those being the 0 entries of T̃2, . . . , T̃j).
As bottom row entries of D are shifted at least as far to the left as top row entries
of D, column-standardness of D implies that T is also column-standard.

Now for φ2, take any T ∈ S((n + 1)2, ρ(k, r)). We begin by adding an empty
column at the right of T and shifting all entries in the bottom row to the right until
the (2, 1) cell is empty, the cells at (2, 2), . . . , (2, n + 1) each contain k − 1 entries,
and the cell at (2, n+ 2) contains r − 1 entries. We then work through the columns

of the resulting tableau T̃ from left to right as follows

1. Identify the least integer j such that the smallest entry aj at (2, j) is smaller
than the sole entry at (1, j). Then insert an empty column immediately before
the jth column.

2. Consider all bottom row entries greater than or equal to aj, and shift those
integers one entry to the left (so that the cell at (2, j) receives aj , all subsequent
bottom row cells that aren’t the bottom-rightmost cell receive k − 1 entries,
and the bottom-rightmost cell is left with one fewer entry than previously).

3. Repeat steps #1-#2 until the resulting tableaux D′ is column-standard.

Due to how T̃ was constructed from T , this procedure terminates after precisely
r−1 new columns have been added to T̃ . It follows that D′ has shape λD = (n+r)2.
Also notice that the identification of j in step #1 guarantees that the sole entry
in each of the r − 1 new columns of D′ is smaller than every entry in the column
immediately at their right. Since T and D′ feature identical sets of integers across
their top rows, the procedure T 
→ D′ is injective.

To produce the ordered r-tuple φ2(T ) from D′, we essentially reverse the three-
step procedure from φ1 that was used to obtain D. Begin by using the r−1 columns
with an empty top row cell to divide D′ into r tableaux T̃1, . . . , T̃r, with the leftmost
column of T̃j corresponding to the jth column of D′ with an empty top row cell

for each j ≥ 2. Each T̃j will contain kij + 1 entries for some positive integer ij,

where i1 + · · · + ir = kn + r. Then delete the leftmost column of each T̃j and
reindex its remaining entries by x 
→ x − j − k(i1 + · · · + ij−1). This will yield an
ordered tuple φ2(T ) = (T1, . . . , Tr) of tableaux such that Tj ∈ S(i2j , ρ) for density
ρ1,j = 1, ρ2,j = k − 1. The procedure that takes D′ to φ2(T ) is injective, because
distinct D′ will correspond to distinct sequences of integers across the top rows of
the T1, . . . , Tr. It follows that the overall map φ2 is also injective, as required.

Notice that our interpretation of Rk,r(n) as the cardinality of S((n+ 1)2, ρ(k, r))
immediately recovers the k-Catalan specialization Rk,k(n − 1) = Ck

n of Heubach, Li
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1
2 3

1 3
2 4 5 6 ∅ 1 4

2 3 5 6

⇓
0 1
2 3

1 3
0 2 4 5 6 0

1 4
0 2 3 5 6

⇓
1 2
3 4

6 8
5 7 9 10 11 12

14 17
13 15 16 18 19

⇓
D =

1 2 6 8 14 17
3 4 5 7 9 10 11 12 13 15 16 18 19

⇓
1 2 6 8 14 17

3 4 5 7 9 10 11 12 13 15 16 18 19

1 2 6 8 14 17
3 4 5 7 9 10 11 12 13 15 16 18 19

⇓
T̃ =

1 2 6 8 14 17
3 4 5 7 9 10 11 12 13 15 16 18 19

⇓
1 2 6 8 14 17
3 4 5 7 9 10 11 12 13 15 16 18 19

⇓
1 2 6 8 14 17
3 4 5 7 9 10 11 12 13 15 16 18 19

⇓
D′ =

1 2 6 8 14 17
3 4 5 7 9 10 11 12 13 15 16 18 19

⇓
1
2 3

1 3
2 4 5 6 ∅ 1 4

2 3 5 6

Figure 5: Transforming an r-tuple (T1, . . . , Tr) of set-valued tableaux into a single set-
valued tableau of density ρ(k, r) via horizontal concatenation, alongside the inverse
procedure.

and Mansour [8] when r = k. Also notice the special meaning of Theorem 3.5 as it
applies to the extreme case of r = 1, as set-valued tableaux of density ρ(k, 1) have
a cell of density 0 at position (2, 1). In this case, there is a bijection from S((n +
1)2, ρ(k, 1)) to S(n2, ρ(k, k)) that deletes the first column of T ∈ S((n + 1)2, ρ(k, 1))
and re-indexes the remaining nk entries of T by x 
→ x − 1. This bijection directly
corresponds to the Raney number identity Rk,1(n) = Rk,k(n− 1) = Ck

n.

3.3 Solution to the (s, t)-Tennis Ball Problem

The so-called “tennis ball problem” was introduced by Tymoczko and Henle [12]
and subsequently formalized by Mallows and Shapiro [9]. The classic version of the
problem (essentially) asks for the number of size n subsets of [2n] that contain at
least j elements of [2j] for every 1 ≤ j ≤ n. Working independently from Mallows
and Shapiro [9], Grimaldi and Moser [5] proved that the number of such subsets is the
Catalan number Cn+1. For a full statement of the original tennis ball problem, which
involves throwing tennis balls out of a kitchen window, see Mallows and Shapiro [9].

Directly generalizing these phenomena was the (s, t)-tennis ball problem of Mer-
lini, Sprugnoli and Verri [10]. For any pair of positive integers t < s, the (s, t)-tennis
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ball problem asks for the number of size tn subsets of [sn] that contain at least tj
elements of [sj] for every 1 ≤ j ≤ n. Notice that the original tennis ball corresponds
to the specific case of s = 2 and t = 1. If we let Bs,t(n) denote the number of valid
subsets in the (s, t)-tennis ball problem, Merlini, Sprugnoli and Verri [10] showed
that Bk,1(n) = Ck

n+1. Generating functions for all Bs,t(n) were later developed by de
Mier and Noy [3].

Most relevant to what follows is the result of de Mier and Noy [3] that gives a
combinatorial interpretation for arbitrary Bs,t(n) as the number of N-E lattice paths
of shape ((s− t)n, tn) that stay weakly below (N tEs−t)n. This observation directly
leads to a new combinatorial interpretation of the Bs,t(n) in terms of standard set-
valued Young tableaux:

Theorem 3.6. For any positive integers s, t such that t < s, Bs,t(n) = | S((n+1)2, ρ)|
for the row-constant density ρ1,j = t, ρ2,j = s− t.

Proof. The result of de Mier and Noy [3] is equivalent to saying that Bs,t(n) equals
the number of N-E lattice paths of shape ((s− t)(n + 1), t(n+ 1)) that stay weakly
below Pmax = Es−t(N tEs−t)N t = (Es−tN t)n+1. By Theorem 2.2, such lattice paths
are in bijection with standard set-valued Young tableaux of shape (n+1)2 and row-
constant density ρ1,j = s− t, ρ2,j = t.

If one wishes to bypass the usage of N-E lattice paths in the proof of Theorem
2.2, it is relatively straightforward to place the size tn subsets specified by the (s, t)-
tennis ball problem in direct bijection with elements of S((n+1)2, ρ). This bijection
f places the elements of the size tn subset S across the top row of f(S), filling cells
(1, 2) through (1, n+1), places all remaining elements of [sn] across the bottom row
of f(S), filling cells (2, 1) through (2, n), reindexes all entries by x 
→ x+ t, and then
places [t] in the cell at (1, 1).

Observe that, in the specific case of t = 1, Theorem 3.6 places Bs,t(n) in bijec-
tion with our set-valued tableaux interpretation of the k-Catalan numbers (after an
application of Proposition 1.1) and hence recovers the result of Merlini, Sprungnoli,
and Verri [10] that Bs,1(n) = Cs

n+1. Further specializing Theorem 3.6 to s = 2, t = 1
places our result in agreement with the standard interpretation of Cn+1 as standard
Young tableaux of shape λ = (n+ 1)2.

The result of Theorem 3.6 may be further generalized to the “non-constant”
tennis ball problem of de Mier and Noy [3] to give an (admittedly rather contrived)
combinatorial interpretation of | S((n+1)2, ρ)| for any density ρ without zero-density
cells. If �s = {si}ni=1 and �t = {ti}ni=1 are sequences of positive integers such that
ti < si for all i, the (�s,�t)-tennis ball problem asks for the number of size

∑n
i=1 ti

subsets of [
∑n

i=1 si] that contain at least
∑j

i=1 ti elements of [
∑j

i=1 si] for every 1 ≤
j ≤ n. If we use B�s,�t(n) to denote the number of such subsets, de Mier and Noy
[3] show that B�s,�t(n) equals the number of N-E lattice paths that lie weakly below
N t1Es1−t1N t2Es2−t2 . . . N tnEsn−tn . A similar argument to Theorem 3.7 then gives

Theorem 3.7. Let �s = {si}ni=1 and �t = {ti}ni=1 be sequences of positive integers such
that ti < si for all i. Then B�s,�t(n) = | S((n + 1)2, ρ)|, where ρ is the density below
and x, y are arbitrary non-negative integers..
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(x) (t1) . . . (tn−1) (tn)
(s1 − t1) (s2 − t2) . . . (sn − tn) (y)

4 Enumeration of Two-Row Set-Valued Tableaux

Although an enumeration of S(λ, ρ) for general λ and ρ is not currently tractable,
the two-row case of λ = (n1, n2) is sufficiently simple that methodologies may be de-
veloped for arbitrary ρ. In this section, we present a technique for such enumeration
that we refer to as “density shifting”. This procedure sets up a bijection between
S(λ, ρ) and a collection of sets S(λ′, ρ′i), where λ

′ = (n1 − 1, n2− 1) and the densities
ρ′i are determined by ρ.

It should be noted that de Mier and Noy have already derived generating functions
F (z) =

∑
fqz

q for the number of N-E lattice paths of shape (q
∑n

i=1 si, q
∑n

i=1 ti)
that lie weakly below (N t1Es1−t1 . . . N tnEsn−tn)q (Theorem 2 of [3]). Via Theorem
3.7, the cardinality of S((n + 1)2, ρ) for arbitrary ρ corresponds to the linear coef-
ficient f1 of one such generating function. The difficulty in applying their result is
that the generating function F (z) is defined in terms of the s − t unique solutions
w1, w2, . . . , ws−t to (w−1)s−t−zws = 0 that qualify as fractional power series, where
t =

∑n
i=1 ti and s =

∑n
i=1 si. Such generating functions obviously become arduous

to compute when s and t become large.
To define our procedure of density shifting, fix λ = (n1, n2) and a density ρ with

ρ1,j = aj , ρ2,j = bj . We focus on the first two columns of an arbitrary T ∈ S(λ, ρ),
and consider the relationship of the integers β1 < · · · < βb1 at position (2, 1) to the
integers α1 < · · · < αa2 at position (1, 2). In particular, we divide the entries at
(2, 1) into two (possibly empty) sets A1 = {β1, . . . βm−1} and A2 = {βm, . . . , βb1},
where every integer in A1 is less than αa2 and every integer in A2 is greater than
αa2 . The elements of A2 are moved to the cell at (2, 2), with the definition of
A2 ensuring that this shift does not violate column-standardness. The elements
of A2 always become the b1 − m + 1 smallest integers at (2, 2). The elements of
A1 are then moved to the cell at (1, 2), where they are smaller than αa2 but their
relationship to α1, . . . , αa2−1 depends upon the choice of T . With the cell at (2, 1)
empty, the entire first column of the tableau is deleted and the remaining entries
are re-indexed according to x 
→ x − a1. This produces a tableau d(T ) ∈ S(λ′, ρ′)
for λ′ = (n1 − 1, n2 − 1) and some density ρ′ with ρ′i,j = ρi+1,j+1 for j > 1 and first
column densities ρ′i,1 determined by T . We refer to this new tableau d(T ) as the
density shift of T . See Figure 6 for an example.

1 2 4 5 7 . . .
3 6 8 9 10 11 . . . ⇒ 1 2 3 4 5 6 7 . . .

8 9 10 11 . . . ⇒ 1 2 3 4 5 . . .
6 7 8 9 . . .

Figure 6: A two-row set-valued tableau T and its density shift d(T ).

The map T 
→ d(T ) is well-defined into
⋃

i S(λ
′, ρ′i), assuming that one appropri-

ately determines the collection of shifted densities ρ′i. However, the map is far from
injective, as d(T ) does not remember which of its (non-maximal) entries at position
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(1, 1) were shifted to that position from the (2, 1) cell of T . Relating | S(λ, ρ)| to
the | S(λ′, ρ′i)| requires that we account for all possible positioning of those shifted
entries.

In the statement of Theorem 4.1 and all that follows, notice the absolute value
signs about the Young diagrams with parenthesized entries. As such, those diagrams
denote the cardinality of S(λ, ρ) for ρ with the cell densities ρi,j shown.

Theorem 4.1. For any two-row shape λ = (n1, n2) and density ρ as shown,

| S(λ, ρ)| =
∣∣∣∣ (a1) (a2) (a3) . . .
(b1) (b2) (b3) . . .

∣∣∣∣ =
b1∑
i=0

(
a2 + i− 1

i

) ∣∣∣∣ (a2) (a3) . . .
(b1 + b2 − i) (b3) . . .

∣∣∣∣
where the Young diagram inside the summation has shape λ′ = (n1 − 1, n2 − 1).

Proof. For fixed λ = (n1, n2) and ρ as shown, partition S(λ, ρ) into subsets S0, . . . , Sb1

where Si denotes the set of tableaux in S(λ, ρ) for which precisely i entries at (2, 1)
are smaller than the largest entry at (1, 2). When restricted to a specific Si, density
shifting T 
→ d(T ) defines a function di : Si → S(λ′, ρ′) with λ′ = (n1 − 1, n2 − 1)
and ρ′1,1 = a2 + i, ρ′2,1 = b2 + b1 − i. For any 0 ≤ i ≤ b1, we claim di is onto and is

m-to-1, where m =
(
a2+i−1

i

)
.

Fixing 0 ≤ i ≤ b1, notice that the (1, 1) cell of any T ′ ∈ S(λ′, ρ′) is filled with
the integers {1, 2, . . . , a2 + i}. For any choice �u = {u1, . . . , ui} of i integers from
[a2 + i− 1], define a map f�u : S(λ′, ρ′) → S(λ, ρ) as follows

1. For any T ′ ∈ S(λ′, ρ′), let c1 < · · · < ca2+i−1 denote the integers at position
(1, 1) of T ′. Then remove the i integers cu1 , . . . , cui

at position (1, 1) as well as
the b1 − i smallest integers at position (2, 1).

2. Append a new column to the left of T ′ and fill the bottom cell of that new
column with the b1 integers removed during step #1.

3. Reindex all entries in the resulting tableau by x 
→ x+a1, and then fill the cell
at (1, 1) with [a1]. The result is f�u(T ) ∈ S(λ, ρ).

The map f�u has been defined so that d◦f�u(T ′) = T ′ for all T ′ ∈ S(λ′, ρ′). For any
T ∈ Si, if we let β1 < · · · < βb1 denote the integers at (2, 1) of T and let c1 < · · · <
ca2+i−1 denote the entries at (1, 1) of f(T ), we also have f�u ◦ di(T ) = T for precisely
those T where {β1, . . . , βi} = {cu1, . . . , cui

}. Define Si|�u to be the subset of Si with
this restriction upon the β1, . . . , βi. It follows that Si|�u is in bijection with S(λ′, ρ′).
Ranging over all choices of �u then allows us to conclude that |Si| =

(
a2+i−1

i

)| S(λ′, ρ′)|.
Note that changing the density ρ′1,1 at position (1, 1) does not change the size of

any set S(λ′, ρ′). We then assume for simplicity that ρ′1,1 = a2 = ρ1,2. As the Si

partition S(λ, ρ), varying 0 ≤ i ≤ b1 yields the required summation.

Now consider a pair of n-tuples of non-negative integers �x = (x1, . . . , xn) and
�y = (y1, . . . , yn). One may define a dominance ordering on these tuples whereby
�x � �y if x1 + · · ·+ xi ≤ y1 + · · ·+ yi for every 1 ≤ i ≤ n. Theorem 4.1 may then be
repeatedly applied to derive the following.
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Theorem 4.2. For any two-row shape λ = (n1, n2) and density ρ as shown,

| S(λ, ρ)| =

∣∣∣∣ (a1) (a2) (a3) . . .
(b1) (b2) (b3) . . .

∣∣∣∣ =
∑

(i1,...,in1−1)�(b1,...,bn1−1)

n1−1∏
j=1

(
aj+1 + ij − 1

ij

)

Proof. Begin by noticing that, if n2 < n1, we may replace S(λ, ρ) with a set S(n2, ρ̃)
where ρ̃n2+1 = . . . = ρ̃n1 = 0. Clearly | S(λ, ρ)| = | S(n2, ρ̃)|. Repeated application of
Theorem 4.1 then yields ∣∣∣∣ (a1) (a2) (a3) . . .

(b1) (b2) (b3) . . .

∣∣∣∣ =

b1∑
i1=0

(
a2 + i1 − 1

i1

) b1+b2−i1∑
i2=0

(
a3 + i2 − 1

i2

)
· · ·

b1+···+bn−1
−i1−···−in−2∑

in−1=0

(
an + in−1 − 1

in−1

) ∣∣∣∣ (an)
(x)

∣∣∣∣
Here the non-negative integer x depends upon the bj and ij but is irrelevant

because | S(λ̃, ρ̃)| = 1 for any ρ̃ with λ̃ = 12. This allows us to reduce the right side
to a nested series of summations involving only binomial coefficients. If we assume
that i1, i2, . . . are non-negative integers, the bounds of summation on the right side
imply the dominance conditions i1+ · · ·+ ij ≤ b1+ · · ·+ bj for all 1 ≤ j ≤ n1−1.

Observe that the equation of Theorem 4.2 does not involve a1, aligning with our
intuition that changing the cell density at (1, 1) does not affect | S(λ, ρ)|. Similarly,
if λ = n2, the equation of Thoerem 4.2 does not involve bn because changing the cell
density at (n, n) also does not affect | S(λ, ρ)|.
Example 4.3. For λ = (n, n), aj = 1, and bj = k − 1, the product of Theorem 4.2
reduces to

n1−1∏
j=1

(
aj+1 + ij − 1

ij

)
=

n1−1∏
j=1

(
ij
ij

)
= 1

Thus | S(λ, ρ)| is the number of (n−1)-tuples of non-negative integers (i1, . . . , in−1) �
(k−1, . . . , k−1). If we let y = kn−i1−. . . in−1, these tuples may be placed in bijection
with the set Dk

n of k-good paths by (i1, . . . , in−1) 
→ EN i1EN i2 . . . EN in−1ENy. Hence
| S(λ, ρ)| = Ck

n, as expected from Theorem 3.1.

Example 4.4. More generally, for λ = (n, n) and any density with aj = 1 for
all j, Theorem 4.2 places S(λ, ρ) in bijection with the number of (n − 1)-tuples of
non-negative integers (i1, . . . , in−1) � (b1, . . . , bn−1). These tuples may be placed in
bijection with the set of N-E lattice paths of shape (n, b1 + . . . + bn) that lie weakly
below the path P = EN b1EN b2 . . . EN bn via the same map as Example 4.3. This
corresponds to a special case of Theorem 2.2.
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