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Abstract

In this paper, we find upper bounds on the open packing and k-limited
packing numbers with emphasis on the cases k = 1 and k = 2. We solve
the problem of characterizing all connected graphs on n vertices with
ρo(G) = n/δ(G) which was raised in 2015 by Hamid and Saravanakumar.
Also, by establishing a relationship between the k-limited packing number
and double domination number we improve two upper bounds given by
Chellali and Haynes in 2005.
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1 Introduction

Throughout this paper, let G be a finite graph with vertex set V = V (G), edge set
E = E(G), minimum degree δ = δ(G) and maximum degree Δ = Δ(G). We use
[10] for any terminology and notation not defined here. For any vertex v ∈ V (G),
N(v) = {u ∈ V (G) | uv ∈ E(G)} denotes the open neighborhood of v of G, and
N [v] = N(v) ∪ {v} denotes its closed neighborhood.

A subset B ⊆ V (G) is a packing (an open packing) in G if for every two distinct
vertices u, v ∈ B, N [u] ∩ N [v] = ∅ (N(u) ∩ N(v) = ∅). The packing number ρ(G)
(open packing number ρo(G)) is the maximum cardinality of a packing (an open
packing) in G. These concepts have been studied in [7, 8], and elsewhere.

In [5], Harary and Haynes introduced the concept of tuple domination numbers.
Let 1 ≤ k ≤ δ(G) + 1. A set D ⊆ V (G) is a k-tuple dominating set in G if
|N [v] ∩D| ≥ k, for all v ∈ V (G). The k-tuple domination number, denoted γ×k(G),
is the smallest number of vertices in a k-tuple dominating set. In fact, the authors
showed that every graph G with δ ≥ k − 1 has a k-tuple dominating set and hence
a k-tuple domination number. When k = 2, γ×2(G) is called the double domination
number ofG. For the special case k = 1, γ×1(G) = γ(G) is the well-known domination
number (see [6]). The concept of tuple domination has been studied by several
authors including [3, 9]. In general, the reader can find comprehensive information
on various domination parameters in [1] and [6].

Gallant et al. [3] introduced the concept of k-limited packing in graphs and ex-
hibited some real-world applications of it to network security, market saturation and
codes. A set of vertices B ⊆ V is called a k-limited packing set in G if |N [v]∩B| ≤ k
for all v ∈ V , where k ≥ 1. The k-limited packing number, Lk(G), is the largest
number of vertices in a k-limited packing set. When k = 1, we have L1(G) = ρ(G).

In this paper, we find upper bounds on the k-limited packing numbers. In Section
2, we prove that 2(n−�+sδ∗)/(1+δ∗) is a sharp upper bound on L2(G) for a connected
graph G on n ≥ 3 vertices, where �, s and δ∗ = δ∗(G) are the number of end-
vertices, the number of support vertices and min{deg(v) | v is not an end-vertex},
respectively. Also, we give an upper bound on Lk(G) (with characterization of all
graphs attaining it) in terms of the order, size and k. In Section 3, we exhibit a
solution to the problem of characterizing all connected graphs of order n ≥ 2 with
ρo(G) = n/δ(G) posed in [4]. Moreover, we prove that γ×2(G)+ρ(G) ≤ n− δ(G)+2
when δ(G) ≥ 2. This improves two results in [2] given by Chellali and Haynes,
simultaneously.

2 Main results

The 2-limited packing number of G has been bounded from above by 2n/(δ(G) + 1)
(see [9]). We present the following upper bound which works better for all graphs
with end-vertices, especially trees. First, we recall that a support vertex is called a
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weak support vertex if it is adjacent to just one end-vertex.

Theorem 2.1. Let G be a connected graph of order n ≥ 3 with s support vertices
and � end-vertices. Then,

L2(G) ≤ 2(n− � + sδ∗(G))

1 + δ∗(G)

and this bound is sharp. Here δ∗(G) is the minimum degree taken over all vertices
which are not end-vertices.

Proof. Let {u1, . . . , us1} be the set of weak support vertices in G. Let G′ be the graph
of order n′ formed fromG by adding new vertices v1, . . . , vs1 and edges u1v1, . . . , us1vs1
to G (we note that G = G′ if G has no weak support vertex). Clearly

s′ = s, n′ = n+ s1 and �′ = �+ s1 (1)

in which s′ and �′ are the number of support vertives and end-vertices of G′, re-
spectively. Let v ∈ V (G′) be a vertex of degree degG′(v) = δ∗(G′) ≥ 2. Since G is
connected and n ≥ 3, degG(v) ≥ 2. Therefore,

δ∗(G′) = degG′(v) ≥ degG(v) ≥ δ∗(G). (2)

Let B′ be a maximum 2-limited packing in G′. First we show that |N [u]∩B′| = 2 for
each support vertex u. Suppose to the contrary that there exists a support vertex u
in G′ for which |N [u] ∩ B′| ≤ 1. Thus, there exists an end-vertex v /∈ B′ adjacent
to u. It is easy to see that B′ ∪ {v} is a 2-limited packing in G′ which contradicts
the maximality of B′. So, we may always assume that B′ contains two end-vertices
at each support vertex. This implies that all support vertices and the other �u − 2
end-vertices for each support vertex u belong to V (G′)\B′, in which �u is the number
of end-vertices adjacent to u. Moreover, these end-vertices have no neighbors in B′.
Therefore,

|[B′, V (G′) \B′]| ≤ 2(n′ − |B′| − �′ + 2s′). (3)

On the other hand, each end-vertex in B′ has exactly one neighbor in V (G′) \ B′

and each of the other vertices in B′ has at least δ∗(G′)− 1 neighbors in V (G′) \B′.
Therefore,

(|B′| − 2s′)(δ∗(G′)− 1) + 2s′ ≤ |[B′, V (G′) \B′]|. (4)

Together inequalities (3) and (4) imply that

|B′| ≤ 2(n′ − �′ + s′δ∗(G′))
1 + δ∗(G′)

. (5)

We now let B be a maximum 2-limited packing in G. Clearly, B is a 2-limited
packing in G′, as well. Thus, |B| ≤ |B′|. By (1) and (5) we have

L2(G) = |B| ≤ |B′| ≤ 2(n− �+ sδ∗(G′))
1 + δ∗(G′)

. (6)
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On the other hand, f(x) = 2(n−�+sx)
1+x

is a decreasing function. So,

L2(G) ≤ 2(n− �+ sδ∗(G′))
1 + δ∗(G′)

= f(δ∗(G′)) ≤ f(δ∗(G)) =
2(n− �+ sδ∗(G))

1 + δ∗(G)
,

by (2) and (6).

To show that the upper bound is sharp, let Ck = v1v2 · · · vkv1be a cycle of length
k ≥ 3. Now let H be the graph consisting of Ck such that each vi is adjacent to
p ≥ 2 end-vertices. Then L2(H) = 2k, n(H) = k(p + 1), �(H) = kp, s(H) = k and
δ∗(H) = p + 2. This implies that

2(n(H)− �(H) + s(H)δ∗(H))

1 + δ∗(H)
= 2k.

This completes the proof.

It is easy to see that Lk(G) = n if and only if k ≥ Δ(G) + 1. So, in what follows
we may always assume that k ≤ Δ(G) when we deal with Lk(G). In Theorem 2.2
below, we provide an upper bound on Lk(G) of a graph G in terms of its order, size
and k. Also, we bound ρo(G) from above just in terms of the order and size. First,
we define Ω and Σ to be the families of all graphs G having the following properties,
respectively.

(p1) There exists a clique S such that G[V (G) \ S] is (k − 1)-regular and every
vertex in S has exactly k neighbors in V (G) \ S.

(p2) There exists a clique S such that G[V (G) \S] is a disjoint union of copies of
K2 and every vertex in S has exactly one neighbor in V (G) \ S.

Theorem 2.2. Let G be a graph of order n and size m. If k ≤ 2(n−√
n2 − n− 2m)

or δ(G) ≥ k − 1, then

Lk(G) ≤ n+ k/2−
√
k2/4 + (1− k)n+ 2m

with equality if and only if G ∈ Ω.

Furthermore, ρo(G) ≤ n−√
2m− n for any graph G with no isolated vertex. The

bound holds with equality if and only if G ∈ Σ.

Proof. Let L be a maximum k-limited packing set in G and let E(G[L]) and E(G[V \
L]) be the edge set of the subgraphs ofG induced by L and V \L, respectively. Clearly,

m = |E(G[L])|+ |[L, V (G) \ L]| + |E(G[V \ L])|. (7)

Therefore,

2m ≤ (k − 1)|L|+ 2k(n− |L|) + (n− |L|)(n− |L| − 1). (8)
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Solving the above inequality for |L| we obtain

Lk(G) = |L| ≤ 2n+ k −√
k2 + 4(1− k)n + 8m

2
,

as desired (note that k ≤ 2(n−√
n2 − n− 2m) or δ(G) ≥ k− 1 implies that k2/4 +

(1− k)n+ 2m ≥ 0).

We now suppose that the equality in the upper bound holds. Therefore

2|E(G[L])| = (k − 1)|L|, |[L, V (G) \ L]| = k(n− |L|)
and 2|E(G[V (G) \L])| = (n− |L|)(n− |L| − 1), by (8). This shows that V (G) \L is
a clique satisfying the property (p1). Thus, G ∈ Ω. Conversely, suppose that G ∈ Ω.
Let S be a clique of the minimum size among all cliques having the property (p1).
Then, it is easy to see that L = V (G) \ S is a k-limited packing for which the upper
bound holds with equality.

The proof of the second result is similar to the proof of the first one when k = 1.

3 The special case k = 1

Hamid and Saravanakumar [4] proved that

ρo(G) ≤ n

δ(G)
(9)

for any connected graph G of order n ≥ 2. Moreover, the authors characterized all
the regular graphs which attain the above bound. In general, they posed the problem
of characterizing all connected graphs of order n ≥ 2 with equality in (9). We solve
this problem in this section. For this purpose, we define the family Γ containing
all graphs G constructed as follows. Let H be the disjoint union of t ≥ 1 copies of
K2. Join every vertex u of H to k new vertices as its private neighbors lying outside
V (H). Let V = V (H) ∪ (∪u∈V (H)pn(u)), in which pn(u) is the set of neighbors
(private neighbors) of u which lies outside V (H). Add new edges among the vertices
in ∪u∈V (H)pn(u) to construct a connected graph G on the set of vertices in V = V (G)
with deg(v) ≥ k + 1, for all v ∈ ∪u∈V (H)pn(u). Clearly, every vertex in V (H) has
the minimum degree δ(G) = k+1 and every vertex in ∪u∈V (H)pn(u) has exactly one
neighbor in V (H).

We are now in a position to present the following theorem.

Theorem 3.1. Let G be a connected graph of order n ≥ 2. Then, ρo(G) = n
δ(G)

if
and only if G ∈ Γ.

Proof. We first state a proof for (9). Let B be a maximum open packing in G. Every
vertex in V (G) has at most one neighbor in B and hence every vertex in B has at
least δ(G)− 1 neighbors in V (G) \B, by the definition of an open packing. Thus,

(δ(G)− 1)|B| ≤ |[B, V (G) \B]| ≤ n− |B|. (10)
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Therefore, ρo(G) = |B| ≤ n
δ(G)

.

Suppose now that the equality in (9) holds. Then both the inequalities in (10)
hold with equality, necessarily. Since every vertex in B has at least δ(G)−1 neighbors
in V (G)\B and (δ(G)−1)|B| = |[B, V (G)\B]|, every vertex in B has exactly δ(G)−1
neighbors in V (G) \B and one neighbor in V (H) = B, necessarily. Therefore, H is
a disjoint union of t = |B|/2 copies of K2 and each vertex in B has the minimum
degree δ(G). Moreover, |[B, V (G)\B]| = n−|B| shows that every vertex in V (G)\B
has exactly one neighbor in B. So, each vertex in B has δ(G)− 1 private neighbors
lying outside B. This implies that, G ∈ Γ.

Now let G ∈ Γ. Then B = V (H) is an open packing in G, for which the
inequalities in (10) hold with equality, by the construction of G. So, ρo(G) ≥ |B| =
n

δ(G)
. This completes the proof.

Remark 3.2. Similar to the proof of Theorem 3.1 we have ρ(G) ≤ n/(δ(G)+1), for
each connected graph G of order n. Furthermore, the characterization of graphs G
attaining this bound can be obtained in a similar fashion by making some changes
in Γ. It is sufficient to consider H as a subgraph of G with no edges in which every
vertex has exactly δ(G) private neighbors lying outside V (H).

In [2], Chellali and Haynes proved that for any graph G of order n with δ(G) ≥ 2,

γ×2(G) + ρ(G) ≤ n.

Also, they proved that
γ×2(G) ≤ n− δ(G) + 1

for any graph G with no isolated vertices.

We note that the second upper bound is trivial for δ(G) = 1. So, we may assume
that δ(G) ≥ 2. In the following theorem, using the concepts of double domination
and k-limited packing, we improve these two upper bounds, simultaneously.

Theorem 3.3. Let G be a graph of order n. If δ(G) ≥ 2, then

γ×2(G) + ρ(G) ≤ n− δ(G) + 2.

Furthermore, this bound is sharp.

Proof. Let B be a maximum (δ(G) − 1)-limited packing set in G. Every vertex in
B has at most δ(G) − 2 neighbors in B. Therefore it has at least two neighbors
in V (G) \ B. On the other hand, every vertex in V (G) \ B has at most δ(G) − 1
neighbors in B, hence it has at least one neighbor in V (G) \ B. This implies that
V (G) \B is a double dominating set in G. Therefore,

γ×2(G) + Lδ(G)−1(G) ≤ n. (11)
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Now let 1 ≤ k ≤ Δ(G) and let B be a maximum k-limited packing set in G. Then
|N [v] ∩ B| ≤ k, for all v ∈ V (G). We claim that B �= V (G). If B = V (G) and
u ∈ V (G) such that deg(u) = Δ(G), then Δ(G) + 1 = |N [u] ∩ B| ≤ k ≤ Δ(G), a
contradiction. Now let u ∈ V (G)\B. It is easy to check that |N [v]∩(B∪{u})| ≤ k+1,
for all v ∈ V (G). Therefore B ∪ {u} is a (k + 1)-limited packing set in G. Hence

Lk+1(G) ≥ |B ∪ {u}| = |B|+ 1 = Lk(G) + 1,

for k = 1, . . . ,Δ(G). Applying this inequality repeatedly leads to

Lδ−1(G) ≥ L1(G) + δ(G)− 2 = ρ(G) + δ(G)− 2.

Hence, γ×2(G) + ρ(G) ≤ n− δ(G) + 2 by (11). Finally, the upper bound is sharp for
the complete graph Kn with n ≥ 3
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