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On the packing numbers in graphs
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Abstract

In this paper, we find upper bounds on the open packing and k-limited
packing numbers with emphasis on the cases k = 1 and k£ = 2. We solve
the problem of characterizing all connected graphs on n vertices with
po(G) = n/§(G) which was raised in 2015 by Hamid and Saravanakumar.
Also, by establishing a relationship between the k-limited packing number
and double domination number we improve two upper bounds given by
Chellali and Haynes in 2005.
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1 Introduction

Throughout this paper, let G be a finite graph with vertex set V = V(G), edge set
FE = E(G), minimum degree § = §(G) and maximum degree A = A(G). We use
[10] for any terminology and notation not defined here. For any vertex v € V(G),
N@w) = {u € V(G) | uv € E(G)} denotes the open neighborhood of v of G, and
Nv] = N(v) U {v} denotes its closed neighborhood.

A subset B C V(G) is a packing (an open packing) in G if for every two distinct
vertices u,v € B, N[u] N N[v] = 0 (N(u) N N(v) = 0). The packing number p(G)
(open packing number p,(G)) is the maximum cardinality of a packing (an open
packing) in G. These concepts have been studied in [7, 8], and elsewhere.

In [5], Harary and Haynes introduced the concept of tuple domination numbers.
Let 1 < k < 0(G)+ 1. Aset D C V(G) is a k-tuple dominating set in G if
|IN[v] N D| > k, for all v € V(G). The k-tuple domination number, denoted vy (G),
is the smallest number of vertices in a k-tuple dominating set. In fact, the authors
showed that every graph G with § > k — 1 has a k-tuple dominating set and hence
a k-tuple domination number. When k = 2, v,5(G) is called the double domination
numberof G. For the special case k = 1, 741(G) = v(G) is the well-known domination
number (see [6]). The concept of tuple domination has been studied by several
authors including [3, 9]. In general, the reader can find comprehensive information
on various domination parameters in [1] and [6].

Gallant et al. [3] introduced the concept of k-limited packing in graphs and ex-
hibited some real-world applications of it to network security, market saturation and
codes. A set of vertices B C V is called a k-limited packing setin G if [N[v|NB| < k
for all v € V, where k& > 1. The k-limited packing number, Ly(G), is the largest
number of vertices in a k-limited packing set. When k = 1, we have L, (G) = p(G).

In this paper, we find upper bounds on the k-limited packing numbers. In Section
2, we prove that 2(n—¢+s0*)/(1+6*) is a sharp upper bound on Ly (G) for a connected
graph G on n > 3 vertices, where ¢, s and §* = 0*(G) are the number of end-
vertices, the number of support vertices and min{deg(v) | v is not an end-vertex},
respectively. Also, we give an upper bound on Li(G) (with characterization of all
graphs attaining it) in terms of the order, size and k. In Section 3, we exhibit a
solution to the problem of characterizing all connected graphs of order n > 2 with
po(G) = n/d(G) posed in [4]. Moreover, we prove that v«2(G)+ p(G) < n—0(G) +2
when 6(G) > 2. This improves two results in [2] given by Chellali and Haynes,
simultaneously.

2 Main results

The 2-limited packing number of G has been bounded from above by 2n/(5(G) + 1)
(see [9]). We present the following upper bound which works better for all graphs
with end-vertices, especially trees. First, we recall that a support vertex is called a
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weak support vertex if it is adjacent to just one end-vertex.

Theorem 2.1. Let G be a connected graph of order n > 3 with s support vertices
and ¢ end-vertices. Then,
n—1{+ s0*(Q))

1+ 6%(G)

L) < 2

and this bound is sharp. Here 0*(G) is the minimum degree taken over all vertices
which are not end-vertices.

Proof. Let {uq, ..., us } be the set of weak support vertices in G. Let G’ be the graph
of order n' formed from G by adding new vertices v, . . ., vs, and edges u1vy, . . ., Us, Vs,
to G' (we note that G = G’ if G has no weak support vertex). Clearly

s'=sn=n+s and V' =0+ s; (1)

in which ¢ and ¢ are the number of support vertives and end-vertices of G, re-
spectively. Let v € V(G') be a vertex of degree degq(v) = 6*(G’) > 2. Since G is
connected and n > 3, degg(v) > 2. Therefore,

0"(G") = degg(v) 2 degg(v) = 6°(G). (2)

Let B’ be a maximum 2-limited packing in G’. First we show that |N[u|NB’| = 2 for
each support vertex u. Suppose to the contrary that there exists a support vertex u
in G’ for which |N[u] N B’| < 1. Thus, there exists an end-vertex v ¢ B’ adjacent
to w. It is easy to see that B’ U {v} is a 2-limited packing in G’ which contradicts
the maximality of B’. So, we may always assume that B’ contains two end-vertices
at each support vertex. This implies that all support vertices and the other ¢, — 2
end-vertices for each support vertex u belong to V/(G”)\ B', in which ¢, is the number
of end-vertices adjacent to u. Moreover, these end-vertices have no neighbors in B’.
Therefore,

(B, V(G)\ B]| <2(n" — |B| = '+ 25'). (3)

On the other hand, each end-vertex in B’ has exactly one neighbor in V(G’) \ B’
and each of the other vertices in B” has at least 6*(G’) — 1 neighbors in V(G’) \ B'.
Therefore,

(IB'] =25)(0"(G") = 1) + 28 < |[B, V(G") \ BY]. (4)
Together inequalities (3) and (4) imply that
2(n' =0+ §'0*(G"))

B'| <
Bl = 5@)

()
We now let B be a maximum 2-limited packing in G. Clearly, B is a 2-limited
packing in G’, as well. Thus, |B| < |B’|. By (1) and (5) we have

n— { + s6*(G"))
1+ 0°(G)

L(@) =B < |B] < X (6)
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On the other hand, f(z) = 2(";@51) is a decreasing function. So,

2(n — £+ s6*(G"))
1+ 6°(G)

2(n — € + $6*(G))

L(G) = 50G)

= f(67(G")) < f(07(G)) =

by (2) and (6).

To show that the upper bound is sharp, let Cy, = vivy - - - vv1be a cycle of length
k > 3. Now let H be the graph consisting of C} such that each v; is adjacent to
p > 2 end-vertices. Then Ly(H) = 2k, n(H) = k(p+ 1), {(H) = kp, s(H) = k and
0*(H) = p + 2. This implies that

2(n(H) — €(H) + s(H)o"(H))

= 2k.
T+ 0 (H) g

This completes the proof. O

It is easy to see that Ly(G) = n if and only if & > A(G) + 1. So, in what follows
we may always assume that £ < A(G) when we deal with L;(G). In Theorem 2.2
below, we provide an upper bound on Li(G) of a graph G in terms of its order, size
and k. Also, we bound p,(G) from above just in terms of the order and size. First,
we define (2 and X to be the families of all graphs G having the following properties,
respectively.

(p1) There exists a clique S such that G[V(G) \ S] is (k — 1)-regular and every
vertex in S has exactly k neighbors in V(G) \ S.

(p2) There exists a clique S such that G[V (G) \ S] is a disjoint union of copies of
K5 and every vertex in S has exactly one neighbor in V(G) \ S.

Theorem 2.2. Let G be a graph of order n and size m. Ifk < 2(n—+/n? —n —2m)
or 0(G) >k —1, then

Li(G) <n+k/2—/k2/4+ (1 —k)n+2m

with equality if and only if G € €.

Furthermore, po(G) < n—+/2m — n for any graph G with no isolated vertex. The
bound holds with equality if and only if G € 3.

Proof. Let L be a maximum k-limited packing set in G and let E(G[L]) and E(G[V"\
L]) be the edge set of the subgraphs of G induced by L and V'\ L, respectively. Clearly,

m = |E(G[L])| + |[L, V(G) \ L]| + |E(G[V'\ L])|. (7)
Therefore,

2m < (k — D|L| + 2k(n — |L]) + (n — [L])(n — |L] - 1). (®)
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Solving the above inequality for |L| we obtain
2n+k— k2 +4(1 —k)n+8m
2 )
as desired (note that k < 2(n —+v/n2 —n —2m) or 6(G) > k — 1 implies that k*/4 +
(1 —=FKk)n+2m >0).
We now suppose that the equality in the upper bound holds. Therefore
2|E(GIL])| = (k = D)|L], [[L, V(G)\ L]| = k(n — |L])

and 2|E(G[V(G)\ L])| = (n—|L])(n—|L|] — 1), by (8). This shows that V(G)\ L is
a clique satisfying the property (p;). Thus, G € Q. Conversely, suppose that G € €.
Let S be a clique of the minimum size among all cliques having the property (p;).
Then, it is easy to see that L = V(G)\ S is a k-limited packing for which the upper
bound holds with equality.

Li(G) = L] <

The proof of the second result is similar to the proof of the first one when £ = 1.
O

3 The special case k£ =1

Hamid and Saravanakumar [4] proved that
n

<

po(G) < @ (9)
for any connected graph G of order n > 2. Moreover, the authors characterized all
the regular graphs which attain the above bound. In general, they posed the problem
of characterizing all connected graphs of order n > 2 with equality in (9). We solve
this problem in this section. For this purpose, we define the family I' containing
all graphs GG constructed as follows. Let H be the disjoint union of ¢ > 1 copies of
K. Join every vertex u of H to k new vertices as its private neighbors lying outside
V(H). Let V. = V(H) U (Uyevmypn(u)), in which pn(u) is the set of neighbors
(private neighbors) of w which lies outside V(H). Add new edges among the vertices
in Uyev(mypn(u) to construct a connected graph G on the set of vertices in V' = V/(G)
with deg(v) > k 4+ 1, for all v € Uyeymypn(u). Clearly, every vertex in V(H) has
the minimum degree §(G)) = k + 1 and every vertex in Uyeymypn(u) has exactly one
neighbor in V(H).

We are now in a position to present the following theorem.

Theorem 3.1. Let G be a connected graph of order n > 2. Then, p,(G) = T%) if
and only if G € T.

Proof. We first state a proof for (9). Let B be a maximum open packing in G. Every
vertex in V(G) has at most one neighbor in B and hence every vertex in B has at
least §(G) — 1 neighbors in V(G) \ B, by the definition of an open packing. Thus,

(0(G) = D|B[ < [[B,V(G)\ B]l <n —[B]. (10)
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Therefore, p,(G) = |B| < HER

Suppose now that the equality in (9) holds. Then both the inequalities in (10)
hold with equality, necessarily. Since every vertex in B has at least (G)— 1 neighbors
in V(G)\Band (6(G)—1)|B| = |[B,V(G)\B]|, every vertex in B has exactly 0(G)—1
neighbors in V(G) \ B and one neighbor in V(H) = B, necessarily. Therefore, H is
a disjoint union of ¢ = |B|/2 copies of K5 and each vertex in B has the minimum
degree §(G). Moreover, |[B,V(G)\ B]| = n—|B| shows that every vertex in V(G)\ B
has exactly one neighbor in B. So, each vertex in B has §(G) — 1 private neighbors
lying outside B. This implies that, G € I'.

Now let G € I'. Then B = V(H) is an open packing in G, for which the
inequalities in (10) hold with equality, by the construction of G. So, p,(G) > |B| =

56 This completes the proof. O

Remark 3.2. Similar to the proof of Theorem 3.1 we have p(G) < n/(6(G)+ 1), for
each connected graph G of order n. Furthermore, the characterization of graphs GG
attaining this bound can be obtained in a similar fashion by making some changes
in I'. It is sufficient to consider H as a subgraph of G with no edges in which every
vertex has exactly 0(G) private neighbors lying outside V' (H ).

In [2], Chellali and Haynes proved that for any graph G of order n with §(G) > 2,
'7><2(G) + p(G) <n.

Also, they proved that
Yx2(G) <n —0(G) + 1
for any graph G with no isolated vertices.

We note that the second upper bound is trivial for §(G)) = 1. So, we may assume
that 6(G) > 2. In the following theorem, using the concepts of double domination
and k-limited packing, we improve these two upper bounds, simultaneously.

Theorem 3.3. Let G be a graph of order n. If 6(G) > 2, then
1x2(G) + p(G) < n —6(G) + 2.
Furthermore, this bound is sharp.

Proof. Let B be a maximum (6(G) — 1)-limited packing set in G. Every vertex in
B has at most 6(G) — 2 neighbors in B. Therefore it has at least two neighbors
in V(G) \ B. On the other hand, every vertex in V(G) \ B has at most 6(G) — 1
neighbors in B, hence it has at least one neighbor in V(G) \ B. This implies that
V(G) \ B is a double dominating set in GG. Therefore,

Vx2(G) + Lsc)-1(G) < n. (11)
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Now let 1 < k < A(G) and let B be a maximum k-limited packing set in G. Then
IN[v] N B| < k, for all v € V(G). We claim that B # V(G). If B = V(G) and
u € V(@) such that deg(u) = A(G), then A(G)+ 1 = |Nu]NnB| <k < A(G), a
contradiction. Now let u € V(G)\B. It is easy to check that |[N[v]N(BU{u})| < k+1,
for all v € V(G). Therefore B U {u} is a (k + 1)-limited packing set in G. Hence

Lin(G) = |BU{u}| = Bl + 1= L(G) + 1,
for k =1,...,A(G). Applying this inequality repeatedly leads to
Ls 1(G) > L1(G) + 6(G) =2 = p(G) + 0(G) — 2.

Hence, vx2(G) 4+ p(G) < n—§(G) + 2 by (11). Finally, the upper bound is sharp for
the complete graph K, with n > 3 O
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