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Abstract

Given a 6-cycle system, two ways of transforming it into a Steiner triple
system have been previously considered: one can either inscribe into each
6-cycle two triangles, or one can squash each 6-cycle into two triangles. In
this paper, we consider yet another way, which we call converting: delete
two opposite edges of each 6-cycle and add two short diagonals to create
two triangles. If, when doing this to every 6-cycle of a 6-cycle system, it
results in a Steiner triple system, we call the latter a converted 6-cycle
system. We prove that a converted 6-cycle system of order v exists if and
only if v ≡ 1 or 9 (mod 12), v ≥ 13. We also prove an analogous result
for maximum packings of 6-cycles.

1 Introduction

A Steiner triple system of order v (STS(v)) is a pair (V,B) where V is a finite set,
and B is a collection of 3-element subsets of V called triples such that every 2-subset
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of V is contained in exactly one triple B ∈ B. It is well known that an STS(v) exists
if and only if v ≡ 1 or 3 (mod 6) ([5]; cf., e.g., [2]).

Similarly, a 6-cycle system of order v is a pair (V, C) where V is a finite set and
C is a collection of 6-cycles with vertices in V such that every edge of the complete
graph on V is contained in exactly one 6-cycle C ∈ C. It is well known that a 6-cycle
system of order v exists if and only if v ≡ 1 or 9 (mod 12) (cf. [8]). In other words,
a Steiner triple system is a decomposition of the complete graph into triangles, and
a 6-cycle system is a decomposition of the complete graph into hexagons (we will
use the terms 6-cycle and hexagon interchangeably, and similarly for the terms triple
and triangle).

In the literature, one can find two ways to convert a 6-cycle to two triangles.
The first consists in “inscribing” two triangles in a hexagon. More precisely, given
a 6-cycle (a, b, c, d, e, f), one obtains the two inscribed triangles (a, c, e) and (b, d, f).
Another way to express this is to say that we join vertices at distance 2 (cf. [7]). The
natural question that arises is: does there exist a 6-cycle system (V, C) such that if
we inscribe the two triangles in every 6-cycle of C, the resulting set B of inscribed
triples is the set of triples of an STS(v) (V,B)? The authors of [7] have answered
this question in the affirmative: such a 2-perfect 6-cycle system exists for all v ≡ 1
or 9 (mod 12), v > 9 (for v = 9, such a system clearly cannot exist).

The other way to convert a 6-cycle into two triangles is to squash the 6-cycle by
identifying its two opposite vertices, and renaming one of them with the other. More
precisely, given the hexagon (a, b, c, d, e, f), we may identify a and d, or b and e, or c
and f . The result is the bowtie {{a, b, c}, {a, e, f}} or {{b, c, d}, {d, e, f}}, cf. Fig. 1
(and similarly, the bowtie {{a, b, f}, {b, c, d}} or {{a, e, f}, {c, d, e}}, etc.).
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Figure 1

If there exists a 6-cycle system (V, C) such that when each 6-cycle of C is squashed,
the resulting collection of triples is the set of triples of a Steiner triple system (V,B),
then (V,B) is said to be a squashed 6-cycle system.

It was shown in [6] that a squashed 6-cycle system of order v exists if and only if
v ≡ 1 or 9 (mod 12), v ≥ 9.

However, there is also a third way to transform a 6-cycle system into a Steiner
triple system. Given the hexagon (a, b, c, d, e, f), we may delete its edges {a, f} and
{c, d} and replace them with edges {a, c} and {d, f}, thereby creating two triangles
{a, b, c} and {d, e, f}, as in Figure 2. These two triangles constitute a converted
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6-cycle.
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Figure 2

[Of course, we could also delete the two edges {b, c}, {e, f} and replace them with
the edges {b, f}, {c, e}, thus creating triangles {a, b, f}, {c, d, e}, or delete the two
edges {a, b}, {d, e} and replace them with edges {a, e}, {b, d}, thus creating triangles
{a, e, f}, {b, c, d}.]

If there exists a 6-cycle system (V, C) such that when each 6-cycle is converted,
the collection of converted 6-cycles is a Steiner triple system (V,B) then (V,B) is
said to be a converted 6-cycle system.

We prove in Section 2 that a converted 6-cycle system of order v exists if and
only if v ≡ 1 or 9 (mod 12), v ≥ 13.

When v ≡ 3 or 7 (mod 12), there exists no 6-cycle system of order v but there
exists a maximum packing of 6-cycles whose leave is a triangle [4]. It is then possible
to have a maximum packing with 6-cycles such that each of its 6-cycles can be
converted, and the collection of these converted 6-cycles together with the leave
constitutes the set of triples of a Steiner triple system (V,B). In this case, we call
(V,B) a converted maximum packing of 6-cycles.

We prove in Section 3 that a converted maximum packing with 6-cycles exists if
and only if v ≡ 3 or 7 (mod 12), v ≥ 15.

The orders above exhaust all orders v for which there exists a Steiner triple
system, namely v ≡ 1 or 3 (mod 6).

2 Converted 6-cycle systems

In order to prove our results, we need several auxiliary devices. One of these is a
group divisible design. For a general definition of a group-divisble design (GDD),
see, e.g., [1]. For our purposes we will only need GDDs with index λ = 1 and group-
and block-sizes 3 and 4. In particular, we note that a GDD with t groups of size 3
and with blocks of size 3 and 4 exists for all t ≥ 3 (cf. [1]). We denote such a GDD
simply by GDD(3t, {3, 4}).

If we now assign weight 4 to each point of such a GDD, we obtain a GDD with
12t points; each block of size 3 is replaced with a complete tripartite graph K4,4,4,
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and each block of size 4 is replaced with a complete four-partite graph K4,4,4,4. Two
crucial lemmas follow.

Lemma 2.1 There exists a decomposition of K4,4,4 into 6-cycles which can be con-
verted into a decomposition of K4,4,4 into triangles.

Proof.

The following eight 6-cycles constitute a decomposition of K4,4,4 into 6-cycles (here
{0, 1, 2, 3}, {4, 5, 6, 7}, {8, 9, 10, 11} are the partite sets of K4,4,4):

(0, 4, 8, 1, 5, 9), (0, 5, 10, 1, 4, 11), (0, 6, 9, 1, 7, 8), (0, 7, 11, 1, 6, 10),
(2, 4, 9, 3, 5, 8), (2, 5, 11, 3, 4, 10), (2, 6, 8, 3, 7, 9), (2, 7, 10, 3, 6, 11).

If in any above-listed 6-cycle (a, b, c, d, e, f) the edges {a, f}, {c, d} are replaced with
{a, c}, {d, f}, then the resulting collection of converted triangles decomposes K4,4,4.

�

Lemma 2.2 There exists a decomposition of K4,4,4,4 into 6-cycles which can be con-
verted into a decomposition of K4,4,4,4 into triangles.

Proof. Let Z16 be the vertex set of K4,4,4,4, where {0, 4, 8, 12} (mod 16) are the
partite sets (=groups). Then a collection of 16 six-cycles (0, 9, 10, 8, 3, 6)
developed modulo 16 decomposes K4,4,4,4. Replacing in (0, 9, 10, 8, 3, 6) the edges
{0, 6}, {8, 10} with the edges {0, 10}, {6, 8} (mod 16) yields a set of triangles decom-
posing K4,4,4,4. �

Example 2.3. A converted 6-cycle system of order 13 on {0, 1, . . . , 12}.
(0, 1, 2, 3, 4, 5), (0, 3, 6, 1, 4, 7), (0, 4, 8, 1, 3, 9), (0, 10, 5, 1, 11, 6), (0, 11, 7, 1, 10, 8),
(0, 12, 9, 4, 6, 2), (1, 12, 5, 7, 8, 9), (2, 5, 9, 10, 4, 12), (2, 8, 3, 5, 6, 7),
(2, 10, 7, 9, 11, 4), (2, 11, 12, 10, 6, 9), (3, 7, 12, 8, 5, 11), (3, 10, 11, 8, 6, 12).

As earlier, in each 6-cycle above, replace the edges {a, f}, {c, d} with {a, c}, {d, f}.
Example 2.4. A converted 6-cycle system of order 25 on Z25.

(0, 12, 1, 5, 13, 7), (3, 0, 10, 8, 13, 4) (mod 25).

With Examples 2.3, 2.4 and Lemmas 1.1, 1.2 in hand, we can now proceed to our
first theorem.

Theorem 2.5 Let v ≡ 1 (mod 12). Then there exists a converted 6-cycle system of
order v.

Proof. Let v = 12t+1. When t = 1 or t = 2, the theorem follows from Example 2.3
and Example 2.4, respectively, so assume t ≥ 3. Let V = X × Y ∪ {∞} where X is
a set such that |X| = 12, and Y = {y1, y2, . . . , yt}, X ∩Y = ∅ and ∞ is disjoint from
X ∪ Y . Start with a GDD(3t, {3, 4}) which exists, as already noted, for all t ≥ 3,
and weigh each of its points with weight 4; for each block of size 3 of this GDD,
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put on each resulting inflated block a copy of the converted 6-cycle system of K4,4,4

from Lemma 2.1, and similarly, for each block of size 4 of this GDD, put on each
resulting inflated block a copy of converted 6-cycle system of K4,4,4,4 from Lemma
2.2. Finally, for each i = 1, 2, . . . , t, put on the set X × {yi} ∪ {∞} a copy of the
converted 6-cycle system of order 13 from Example 2.3. This results in a converted
6-cycle system of order 12t+ 1 for each t ≥ 3, and the proof is complete. �

We can now turn our attention to the case when v ≡ 9 (mod 12).

First of all, we observe that even though there are 640 nonisomorphic 6-cycle
systems of order 9 [1], there exists no converted 6-cycle system of order 9. Indeed, if
such a system existed, it would mean that we can partition the set of triples of the
(unique) Steiner triple system of order 9 into 6 pairs of pairwise disjoint triples. It
is easily seen, and well known, that this is impossible [3].

Example 2.6. A converted 6-cycle system of order 21.

Here we take as the set of elements V = Z7 × {1, 2, 3}, and as the set of converted
6-cycles

(01, 11, 31, 61, 02, 22), (01, 02, 42, 11, 62, 03), (01, 23, 22, 51, 63, 53),
(01, 33, 53, 12, 21, 63), (02, 12, 43, 13, 62, 53) (mod (7, 7, 7)).

Example 2.7. A converted 6-cycle system of order 33.

Here we take as the set of elements Z11×{1, 2, 3}, and as the set of converted 6-cycles

(01, 11, 31, 02, 21, 12), (02, 01, 41, 11, 61, 92), (01, 22, 52, 11, 72, 03),
(01, 13, 12, 51, 03, 23), (01, 33, 23, 53, 11, 83), (01, 93, 42, 101, 43, 103)
(02, 42, 23, 63, 52, 102), (02, 63, 92, 03, 82, 73) (mod (11, 11, 11)).

Example 2.8. A converted 6-cycle system of order 21 with a hole of size 9 (that is,
a decomposition of K21\K9 into 6-cycles such that if each of its 6-cycles is converted,
the resulting set of triples decomposes K21 \K9).

Here the set of elements is {0, 1, . . . , 20}, and the set of elements of the hole is
{12, 13, . . . , 20}. The set of converted 6-cycles is

(0, 1, 2, 3, 4, 5), (0, 12, 3, 1, 13, 4), (0, 13, 5, 1, 12, 6), (0, 14, 4, 1, 15, 3), (0, 15, 6, 1, 14, 7),
(0, 16, 7, 1, 17, 8), (0, 17, 9, 1, 16, 10), (0, 18, 8, 1, 19, 9), (0, 19, 10, 1, 18, 11),
(0, 20, 11, 3, 13, 2), (1, 20, 5, 2, 12, 11), (2, 14, 5, 3, 16, 6), (2, 15, 4, 6, 13, 9)
(2, 16, 8, 3, 14, 10), (2, 17, 6, 3, 19, 8), (2, 18, 10, 3, 17, 11), (2, 19, 7, 9, 12, 4)
(2, 20, 9, 4, 18, 7), (3, 18, 9, 5, 17, 7), (3, 20, 7, 5, 16, 9), (4, 16, 11, 5, 12, 8)
(4, 17, 10, 6, 14, 11), (4, 19, 6, 5, 15, 10), (4, 20, 8, 11, 13, 7), (5, 18, 6, 8, 13, 10)
(5, 19, 11, 9, 14, 8), (6, 7, 8, 9, 10, 11), (6, 20, 10, 7, 15, 9), (7, 12, 10, 8, 15, 11).

Theorem 2.9 A converted 6-cycle system of order v, v ≡ 9 (mod 12), exists if and
only if v ≥ 21.

Proof. Let v = 12t + 9. When t = 1 or t = 2, the theorem follows from Example
2.6 and Example 2.7, respectively. So let t ≥ 3, and let V = (X × Y ) ∪N where X
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is a set such that |X| = 12, Y = {y1, y2, . . . , yt} and N is a set such that |N | = 9,
and X, Y , and N are pairwise disjoint. Put on the set (X × {y1}) ∪N a copy of the
converted 6-cycle system of order 21 from Example 2.6, and for each i = 2, 3, . . . , t,
put on the set (X × {yi}) ∪ N a copy of the converted 6-cycle system of order 21
with a hole of size 9 from Example 2.8 so that the hole aligns with N . The rest of
the proof is the same as that of Theorem 2.5. �

Theorems 2.5 and 2.9 together yield the proof of the main result of this section.

Theorem 2.10 A converted 6-cycle system of order v exists if and only if v ≡ 1 or
9 (mod 12), v ≥ 13.

3 Converted 6-cycle packings

When v ≡ 3 or 7 (mod 12), we need to prove the existence of a maximum packing of
6-cycles such that each of its 6-cycles can be converted and the collection of converted
6-cycles together with the single triangle (the leave) forms a set of triples of a Steiner
triple system of order v. We will abuse the language slightly and call such a Steiner
triple system a converted maximum packing.

Consider first the case of v ≡ 3 (mod 12). Let v = 12t + 3. In order to facilitate
recursion, we need to construct directly converted maximum packings of 6-cycles of
order 15 and 27.

Example 3.1 A converted maximum packing of 6-cycles of order 15 on {0, 1, . . . , 14}
with leave {9, 11, 13}:

(0, 1, 2, 3, 4, 5), (0, 3, 6, 1, 4, 7), (0, 4, 8, 1, 3, 9), (0, 10, 5, 1, 11, 6), (0, 11, 7, 1, 10, 8)
(0, 12, 9, 2, 4, 13), (0, 14, 13, 3, 7, 2), (1, 12, 13, 2, 5, 9), (1, 14, 5, 3, 8, 13)
(2, 6, 8, 7, 13, 10), (2, 11, 12, 7, 9, 8), (2, 14, 10, 4, 6, 12), (3, 11, 14, 9, 6, 10)
(3, 12, 10, 9, 4, 14), (4, 11, 10, 7, 5, 12), (5, 11, 8, 14, 7, 6), (5, 13, 6, 14, 12, 8).

Before proceeding to the case of v = 27, we need several auxilliary devices. Let
G0 be the cocktail-party graph on 12 vertices, that is, the complete graph K12 from
which a 1-factor I has been removed.

Lemma 3.2 There exists a decomposition of G0 into 6-cycles each of whose 6-cycles
can be converted so that the collection of converted 6-cycles yields the triples of a
maximum packing of K12 with triples.

Proof. Let V (G0) = {0, 1, . . . , 11}, and let I = {{2i, 2i + 1}, i = 0, 1, 2, . . . , 5}.
Converted 6-cycles:

(0, 2, 4, 1, 3, 5), (0, 3, 7, 1, 6, 4), (0, 6, 10, 5, 11, 7), (0, 8, 5, 6, 3, 11),
(0, 9, 11, 4, 7, 10), (1, 2, 11, 6, 9, 5), (1, 8, 7, 5, 2, 10), (1, 9, 10, 4, 8, 11),
(2, 6, 8, 3, 4, 9), (2, 7, 9, 3, 10, 8). �

Let G1 be the graph K11\(C3∪C4), that is, the graph obtained from the complete
graph K11 by removing from it a disjoint 3-cycle and 4-cycle.
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Lemma 3.3 There exists a decomposition of G1 into 6-cycles each of whose 6-cycles
can be converted so that the collection of converted 6-cycles yields the triples of a
decomposition of G1 into triples.

Proof. Let V (G1) = {0, 1, . . . , 10}, and let (0, 1, 2), (3, 4, 5, 6) be the two cycles
deleted from K11. Converted 6-cycles:

(0, 3, 5, 1, 4, 6), (0, 4, 8, 1, 7, 5), (0, 7, 10, 1, 9, 8), (0, 9, 6, 1, 3, 10),
(2, 3, 8, 10, 4, 9), (2, 4, 7, 8, 5, 10), (2, 5, 9, 7, 6, 8), (2, 6, 10, 9, 3, 7).

Lemma 3.4 There exists a converted maximum packing of 6-cycles of order 27.

Proof. Let V = (X × {1, 2, 3}) ∪ {a, b, c} where X = {x1, x2, . . . , x8}. For each
i = 1, 2, 3, consider the complete graph K11 on the set (X × {i}) ∪ {a, b, c}. Delete
from it the cycles (a, b, c) and (x1,i, x2,i, x3,i, x4,i), thus obtaining the graph isomorphic
to G1. Put now on it a copy of the converted 6-cycle decomposition of the graph
G1. On the 12-element set ∪3

i=1{x1,i, x2,i, x3,i, x4,i} put a copy of the converted 6-
cycle decomposition of the cocktail-party graph K12 − I from Lemma 3.2 where
I = ∪3

i=1{{x1,i, x3,i}, {x2,i, x4,i}}. Finally, on each of the three sets

{x1,1, x2,1, x3,1, x4,1, x5,2, x6,2, x7,2, x8,2, x5,3, x6,3, x7,3, x8,3},
{x5,1, x6,1, x7,1, x8,1, x1,2, x2,2, x3,2, x4,2, x5,3, x6,3, x7,3, x8,3},
{x5,1, x6,1, x7,1, x8,1, x5,2, x6,2, x7,2, x8,2, x1,3, x2,3, x3,3, x4,3},

put a copy of a converted 6-cycle decomposition of K4,4,4 from Example 2.1 (where
obviously the second indices indicate the partite sets). It is easily verified directly
that as a result we obtain a converted maximum packing of 6-cycles of order 27. �

Theorem 3.5 Let v ≡ 3 (mod 12), v > 3. Then there exists a converted maximum
packing of 6-cycles of order v.

Proof. Let v = 12t + 3, and let V = (X × Y ) ∪ {a, b, c} where X is a set such
that |X| = 12 and Y = {y1, y2, . . . , yt}. When t = 1 or t = 2, the statement follows
from Example 3.1 and Lemma 3.4, respectively, so we may assume t ≥ 3. For each
i = 1, 2 . . . , t, put on the set (X ×{yi})∪ {a, b, c} a copy of the converted maximum
packing of 6-cycles of order 15 from Example 3.1 in such a way that {a, b, c} is the
leave of the packing. The remainder of the proof is the same as that of Theorem 2.5.

�
Finally, we are going to deal with the case when v ≡ 7 (mod 12).

Example 3.6. A converted maximum packing of 6-cycles of order 19 on Z16 ∪
{16, 17, 18} with leave {16, 17, 18}.

(0, 1, 10, 8, 11, 6) (mod 16), and

(16, 0, 8, 17, 13, 5), (16, 9, 5, 17, 6, 2), (16, 10, 6, 18, 8, 4), (17, 14, 10, 18, 15, 11),
(16, 12, 4, 18, 5, 1), (16, 13, 1, 18, 3, 7), (16, 14, 2, 17, 15, 3), (16, 15, 7, 18, 14, 6),
(17, 1, 9, 18, 12, 0), (17, 4, 0, 18, 2, 10), (17, 7, 11, 18, 13, 9), (16, 11, 3, 17, 12, 8).
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Let G2 be a graph isomorphic to K15 \K7, that is the complete graph K15 from
which a complete subgraph K7 has been deleted.

Lemma 3.7 There exists a decomposition of G2 into 6-cycles each of whose 6-cycles
can be converted so that the collection of converted 6-cycles constitutes a decomposi-
tion of G2 into triangles.

Proof. Let V (G2) = {0, 1, . . . , 14}, and let the vertex set of the sub-K7 be
{0, 1, . . . , 6}. The 14 converted 6-cycles are

(0, 7, 9, 1, 8, 10), (0, 8, 12, 1, 11, 9), (0, 11, 14, 1, 13, 12), (0, 13, 10, 1, 7, 14),
(2, 7, 10, 3, 8, 11), (2, 8, 14, 3, 7, 13), (2, 9, 13, 3, 12, 10), (2, 12, 11, 4, 13, 14),
(3, 9, 14, 5, 13, 11), (4, 7, 12, 6, 13, 8), (4, 9, 8, 5, 12, 14), (4, 10, 11, 6, 9, 12),
(5, 7, 8, 6, 14, 10), (5, 9, 10, 6, 7, 11). �

Lemma 3.8 There exists a converted maximum packing of 6-cycles of order 31.

Proof. Let V = (X × {1, 2, 3}) ∪ N where X is a set such that |X| = 8 and N
is a set such that |N | = 7. Put on the set (X × {1}) ∪ N a copy of a converted
maximum packing of 6-cycles of order 15 from Example 3.1. For i = 2, 3, put on the
set (X ×{i})∪N a copy of a converted 6-cycle decomposition of the graph G2 from
Lemma 3.7 (so that the deleted K7 is put on N). In addition, take a GDD(6; {3})
(also known as a Pasch configuration) with three groups of size 2 and give each of its
6 points weight 4. This inflation replaces each block of size 3 by a complete tripartite
graph K4,4,4. Now put on each inflated block a converted decomposition of K4,4,4 into
6-cycles from Lemma 2.1. The union of the above constitutes a converted maximum
packing of 6-cycles of order 31. �

Let G3 be a graph isomorphic to K19 \K7, that is the complete graph K19 from
which a complete subgraph K7 has been deleted.

Lemma 3.9 There exists a decomposition of G3 into 6-cycles each of whose 6-cycles
can be converted so that the collection of converted 6-cycles constitutes a decomposi-
tion of G3 into triangles.

Proof. Let V (G3) = {0, 1, . . . , 18}, and let the vertex set of the sub-K7 be {12, 13,
. . . , 18}. The 25 converted 6-cycles are

(0, 1, 2, 3, 4, 5), (0, 3, 12, 1, 11, 13), (0, 4, 13, 1, 8, 12), (0, 6, 14, 1, 3, 15),
(0, 7, 5, 3, 6, 2), (0, 8, 15, 1, 7, 14), (0, 9, 16, 1, 6, 17), (0, 10, 17, 1, 4, 18),
(0, 11, 18, 1, 5, 16), (2, 4, 12, 5, 11, 14), (2, 5, 13, 3, 7, 16), (2, 7, 15, 5, 10, 12),
(2, 8, 17, 9, 11, 15), (2, 9, 18, 3, 11, 17), (2, 10, 14, 3, 9, 13), (2, 11, 16, 8, 5, 18),
(3, 8, 14, 4, 7, 17), (3, 10, 18, 6, 4, 16), (4, 9, 14, 5, 6, 15), (4, 10, 15, 9, 5, 17),
(6, 7, 18, 8, 10, 16), (6, 8, 13, 7, 11, 12), (6, 9, 12, 7, 10, 13), (8, 4, 11, 10, 1, 9),
(8, 7, 9, 10, 6, 11). �
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Theorem 3.10 Let v ≡ 7 (mod 12). A converted maximum 6-cycle packing exists
if and only if v ≥ 19.

Proof. Let v = 12t + 7. Clearly, there exists no converted 6-cycle system of order
7: the unique Steiner triple system of order 7 cannot contain two disjoint triples.
When t = 1 or t = 2, the statement follows from Example 3.6 and Lemma 3.8,
respectively. So let t ≥ 3. Let V = (X×Y )∪N where X is a set such that |X| = 12,
Y = {y1, y2, . . . , yt}, and N is a set such that |N | = 7. Put on the set (X×{y1})∪N
a copy of a converted maximum packing of 6-cycles of order 19 from Example 3.6.
For each i = 2, 3, . . . , t, put on the set (X × {yi}) ∪ N a copy of the decomposition
of G3 into converted 6-cycles from Lemma 3.9 in such a way that the hole (i.e.,
the deleted K7) aligns with N . The remainder of the proof is the same as that of
Theorem 2.5. �

Combining Theorems 3.5 and 3.10 yields the main result of this section.

Theorem 3.11 Let v ≡ 3 or 7 (mod 12). A converted maximum 6-cycle packing of
order v exists if and only if v ≥ 15.

References

[1] C. J. Colbourn and J.H. Dinitz (Eds.), Handbook of Combinatorial Designs, 2nd
Eedition, CRC Press, 2007.

[2] C. J. Colbourn and A. Rosa, Triple Systems, Oxford University Press, 1999.

[3] P. Horák and A. Rosa, Decomposing Steiner triple systems into small configura-
tions, Ars Combin. 26 (1988), 91–105.

[4] J.A. Kennedy, Maximum packings of Kn with hexagons, Australas J. Combin. 7
(1993), 101–110.

[5] T. P. Kirkman, On a problem in combinations, Cambridge and Dublin Math. J.
2 (1847), 191–204.

[6] C.C. Lindner, M. Meszka and A. Rosa, From squashed 6-cycles to Steiner triple
systems, J. Combin. Designs 22 (2014), 189–195.

[7] C.C. Lindner, K.T. Phelps and C.A. Rodger, The spectrum for 2-perfect 6-cycle
systems, J. Combin. Theory Ser. A 57 (1991), 76–85.

[8] A. Rosa and C. Huang, Another class of balanced graph designs: balanced circuit
designs, Discrete Math. 12 (1975), 269–293.

(Received 25 May 2017; revised 22 Feb 2018)


