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Abstract

A primitive digraph D is said to be well primitive if the local exponents
of D are all equal. In this paper we consider well primitive digraphs of
two special types: digraphs that contain loops, and symmetric digraphs
with shortest odd cycle of length r. We show that the upper bound of
the exponent of the well primitive digraph is n− 1 in both these classes
of digraphs, and we characterize the extremal digraphs.

1 Introduction

We consider digraphs in which loops are permitted but no multiple arcs. The set
of all loop vertices in a digraph D is denoted by V 0(D). Unless otherwise stated
we consider a digraph D on the vertex set {1, 2, . . . , n}. For simplicity we write the

interval of integers from i to j as [i, j]. An arc (i, j) will be written as
−→
i, j. A sequence

i0,a1,i1,a2,. . .,ip−1,ap,ip, where p ≥ 1 and ak =
−−−−→
ik−1, ik ∈ A(D) for k = 1, . . . , p, is

called a walk from i0 to ip in D (or an i0 → ip walk), and p is called its length. A
set of the vertices that belong to a walk W is denoted by VW . If i �= j, then dD(i, j)
is defined to be the length of the shortest i → j walk in D and dD(i, i) is defined
to equal 0. The maximum dD(i, j) taken over all j ∈ V (D) is denoted by e+D(i) and
the maximum e+D(i) taken over all i ∈ V (D) is called the diameter of D, denoted
diam(D). If e+D(i) = diam(D), then i is called a peripheral vertex in D. A cycle is
a walk which begins and ends in the same vertex. A walk is said to be simple if no
vertex appears at least twice in it, and a cycle is said to be simple if each vertex
except the last appears at most once in it.

Let N+
D(i) = {j ∈ V (D) :

−→
i, j ∈ A(D)} and N−

D (i) = {j ∈ V (D) :
−→
j, i ∈ A(D)}.

The cardinalities of the sets N+
D(i) and N−

D(i) are called the out-degree and the in-
degree of a vertex i in D, respectively. The minimum out-degree in D is denoted by
δ+(D).

A digraph D is strongly connected if there is an i → j walk in D for all i, j ∈
V (D). A digraph D is called primitive if for some positive integer t there is an i → j
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walk of length t in D for all i, j ∈ V (D). The smallest such t is denoted by exp(D)
and it is called the exponent of D. It is well known that a strongly connected digraph
D is primitive if and only if the lengths of cycles in D are relatively prime.

The primitivity of a digraph can be also defined by its adjacency matrix. Namely,
if M(D) is the adjacency matrix of the digraph D, then D is primitive if and only if
there exists an integer k such that all entries of a matrix [M(D)]k are positive. The
k-th power of a digraph D, denoted by Dk, is a digraph on the same set of vertices

as D in which
−→
i, j ∈ A(D) if there is an i → j walk of length k in D. It is well known

that [M(D)]k = M(Dk)

Let D be a primitive digraph and i, j ∈ V (D). The least integer p such that
for each t ≥ p there is an i → j walk of length t in D is denoted by expD(i, j)
and maxj∈V (D) expD(i, j) is called the exponent of a vertex i, denoted by expD(i).
The latter is also called the local exponent at vertex i. Obviously, the maximum of
the exponents of vertices equals exp(D). A primitive digraph D is said to be well
primitive if each of the local exponents of D equals exp(D).

The concept of local exponents can be found in [3]; Brualdi and Liu in [1] con-
sidered them as the special case of generalization of the exponent of the primitive
digraph (for details see [4]). The motivation for introducing generalized exponents
stemmed from its interpretation in an application model of a memoryless network
communication. Such a network can be represented by a directed graph in natural
way. Suppose that at time t = 0, each vertex holds one bit of information with no
two of the information bits the same. At time t = 1 each vertex passes its informa-
tion to each of its out-neighbours (so each vertex also receives bits of information
from its in-neighbours). After sending a bit of information a vertex forgets it. The
system continues in this way. If a digraph is primitive, then from certain moment all
the vertices receive each bit of information simultaneously.

With respect to local exponents, Brualdi and Liu [1] noted that how much time
it takes to a given bit of information was delivered simultaneously to all the vertices
of D, depends on its location in D. Thus one can ask in which networks there is no
need to care for arranging bits of information. It is therefore of interest to consider
well primitive digraphs. In natural way the exponent of a well primitive digraph
is bounded by its first local exponent. The first local exponent set is completely
described in [6]. However, the complete characterization of well primitive digraphs
and the exponent set of these cannot be directly inferred from the results obtained
by Neufeld and Shen. In particular, the problem of determining the strict upper
bound of the exponent of a well primitive digraph remains open.

In this paper we focus on two special classes of primitive digraphs. The class of
all the primitive digraphs on n vertices is denoted by DP(n). We denote by SDP(n)
the class of all primitive symmetric digraphs on n vertices. For m ∈ [1, n] we use
the symbol DP0(n,m) to denote the class of all strongly connected digraphs on n
vertices in each of which there are exactly m loop vertices. In Section 2 we study
well primitive digraphs in SDP(n) and DP0(n,m). It follows from the results known
in the literature that the upper bound of the exponent of well primitive digraphs is
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n − 1 in both of these classes. For the symmetric well primitive digraph we extend
this result, showing how the exponent of a well primitive symmetric digraph depends
on the length of the shortest odd cycle and on existence of a pair of disjoin odd cycles
in it. We also characterize the extremal digraphs. The main results concerning well
primitive symmetric digraphs are formulated and proved in Theorems 2.1, 2.3 and
2.4. Theorem 3.2 indicates all non-isomorphic extremal well primitive digraphs in
DP0(n,m).

2 Well primitive symmetric digraphs

A symmetric digraph can be viewed as a pseudograph (with no multiple edges), for

an edge (i, j) can be replaced by a pair of arcs
−→
i, j and

−→
j, i. We adopt the conventional

notations for undirected graphs as Pn and Cn, n ≥ 2, thinking of them as of directed
graphs. In additional the symbol C1 denotes the digraph consisting of one vertex
and one loop. It is well known that symmetric digraph is primitive if and only if it
is connected and there is at least one odd cycle in it. The local indices of symmetric
digraphs were thoroughly studied in [2].

The upper bound of the exponent of well primitive symmetric digraphs and the
complete characterization of extremal digraphs are simple consequences of the re-
sults proved in [8]. Let n ≥ 2 and let P ∗

n and P ∗∗
n be the digraphs obtained from

Pn by adding a loop in one of the endvertices and by adding a loops in both
endvertices, respectively. Shao, Wang and Li [8] showed that if D ∈ SDP(n),
then mini∈V (D){expD(i)} ≤ n − 1, with equality if and only if D is isomorphic
to one of the following digraphs: Cn for odd n, P ∗

n or P ∗∗
n . It is well known that

exp(P ∗
n) = 2n − 2 > n − 1 ([7]), so P ∗

n is not well primitive. Since Cn is vertex
transitive, it is in particular well primitive whenever n is odd. Next, it can easily be
observed that expP ∗∗

n
(i) = n− 1 for i = 1, 2, . . . , n. Therefore if D ∈ SDP(n) is well

primitive, then exp(D) ≤ n− 1, with equality if and only if D ∼= Cn and n is odd or
D ∼= P ∗∗

n .

Let SDP(n, r) be the class of symmetric primitive digraphs on n vertices in
each of which the length of the shortest odd cycle is r. The characterization of the
extremal well primitive digraphs in SDP(n, r) will be broken down into two cases,
depending on whether there exist disjoint odd cycles in D. Let us first mention some
known results which be used to prove our results.

Lemma 2.1 ([7]) Let D be a symmetric primitive digraph. Then

expD(i, j) = max{a(i, j), b(i, j)} − 1, (1)

where a(i, j) and b(i, j) are the lengths of the shortest odd and even i → j walk in
D, respectively.

Lemma 2.1 indicates a close relationship between expD(i, j) and dD(i, j) in symmetric
digraphs.
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Corollary 2.1 If D is a symmetric primitive digraph, i, j ∈ V (D) and μi,j is the
length of the shortest odd cycle containing i and j, then

expD(i, j) = μi,j − 1− dD(i, j). (2)

Lemma 2.2 ([9]) Let D ∈ SDP(n, r) and let μi be the length of the shortest
odd cycle containing i ∈ V (D). Then exp(D) ≤ max {μ− 1, n− r}, where μ =
maxi∈V (D){μi}.

It is convenient for our further investigations to pick out a result which is, in fact,
a part of the proof of Lemma 2.2.

Lemma 2.3 ([9]) Under the hypotheses of Lemma 2.2, if the shortest odd cycles
containing vertices i and j have at least one vertex in common, then expD(i, j) ≤
max{μi, μj} − 1.

Let K ⊂ SDP(n, r) be the class of all the digraphs that contain a pair of disjoint
odd cycles. Obviously, K is nonempty while n ≥ 2r. Theorem 2.1 gives a complete
characterization of well primitive symmetric digraphs not in K.

Theorem 2.1 If r ≥ 3 and D ∈ SDP(n, r)\K, then D is well primitive if and only
if exp(D) = r − 1.

Proof. Since D ∈ SDP(n, r)\K, Lemma 2.3 implies that exp(D) ≤ μ − 1. On the
other hand, exp(D) ≥ expD(i, i) for each i ∈ V (D), so exp(D) ≥ μ− 1 by (1). Thus
exp(D) = μ − 1 and now our purpose is to show that μ = r. Since D ∈ SDP(n, r),
there is a subgraph of D isomorphic to Cr. Let D0

∼= Cr and i ∈ V (D0). Since D is
well primitive, there exists j ∈ V (D) such that expD(i, j) = μ− 1. It is obvious for
i = j, so let us suppose that i �= j. From Lemma 2.3 it follows that μj = μ. From
(2) we deduce that if there exists a cycle of length μ containing both of the distinct
vertices i and j, then expD(i, j) ≤ μ − 2. Therefore if i �= j, then i does not belong
to any cycle of length μ that contains j. Let Wj be a cycle of length μ that contains
j. Then there exists i′ ∈ V (D0)∩VWj

, and expD(i
′, j) ≤ μ− 1− dD(i

′, j) by (2). We
have expD(i, j) ≤ dD(i, i

′) + expD(i
′, j), so μ − 1 ≤ dD(i, i

′) + μ − 1 − dD(i
′, j), and

hence dD(i
′, j) ≤ dD(i, i

′). On the other hand, expD(i, j) ≤ expD(i, i
′) + dD(i

′, j),
which gives

μ− 1 = expD(i, j) ≤ r − 1− dD(i, i
′) + dD(i

′, j) ≤ r − 1, so μ = r.

Conversely, assume that exp(D) = r − 1. Suppose that there exists i ∈ V (D)
such that expD(i) ≤ r − 2. Then in particular expD(i, i) ≤ r − 2. Since expD(i, i) is
an even number, vertex i belongs to some cycle of length r − 2, but this contradicts
the choice of D. Therefore, expD(i) = r − 1 for each i ∈ V (D). �

Corollary 2.2 If D ∈ SDP(n, r), r ≥ 3 and n ≤ 2r− 1, then D is well primitive if
and only if exp(D) = r − 1.
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Now we proceed to characterize the extremal well primitive digraphs in K. Let
p, q ≥ 1 and m ≥ 2. We denote by Pm(Cp, Cq) a graph (or a pseudograph if p = 1)
on the vertex set [1, p+ q +m− 2] with the edge set

{(i, i+ 1) : i ∈ [1, p+ q +m− 3]} ∪ {(1, p), (p+m− 1, p+ q +m− 2)}.

A graph Pm(Cp, Cq) can be viewed as a graph obtained by joining graphs Cp and Cq

by a graph Pm. In particular, Pn(C1, C1) = P ∗∗
n .

Lemma 2.4 Let p and q be odd integers, 1 ≤ p ≤ q. A digraph Pm(Cp, Cq) is well
primitive if and only if q ≤ p+ 2m− 2. If Pm(Cp, Cq) is well primitive, then

exp(Pm(Cp, Cq)) = diam(Pm(Cp, Cq)) = (p+ q)/2 +m− 2.

Proof. For simplicity of notation D stands for Pm(Cp, Cq). It can easily be notified
that diam(D) = (p+ q)/2+m− 2. First assume that q ≥ p+2m. Let V1 be the set
of peripheral vertices in Pm(Cp, Cq). Then, by (1), expD(i) = diam(D) ≤ q − 2 for
i ∈ V (Cp)∩V1. On the other hand, expD(j) ≥ expD(j, j) = q−1 for j ∈ V (Cq)∩V1.
Therefore, D is not well primitive whenever q ≥ p+ 2m.

Next assume that q ≤ p + 2m − 2. Then diam(D) ≥ q − 1. If diam(D) is even,
then c = (3p+ q + 2m− 2)/4 is the unique central vertex in D. More precisely,
c /∈ V (Cp) ∪ V (Cq) unless diam(D) = q − 1. Next, μc = diam(D) + 1 and μi,c = μc

for each i ∈ V (D), so expD(c) = diam(D) by (2). Let i �= c. We now show that
expD(i) = diam(D). If j = c or j is ’by the same side’ of c as i, we obtain μi,j ≤ μc,
and hence, by (2), expD(i, j) ≤ diam(D). Now choose j such that min{i, j} < c <
max{i, j}. Since dD(i, c)+dD(c, j) and |dD(i, c)− dD(c, j)| have the same parity, we
obtain

{a(i, j), b(i, j)} = {dD(i, c) + dD(c, j), μc − |dD(i, c)− dD(c, j)|}.

Thus expD(i, j) = diam(D) while dD(i, c) = dD(j, c); otherwise expD(i, j) <
diam(D). Combining all these cases we obtain expD(i) = diam(D) for each ver-
tex i ∈ V (D).

If diam(D) is odd, then there are exactly two central vertices in D and they
are adjacent. Analogously, it can easily be verified that if i ≤ c, c + 1 ≤ j and
dD(i, c) = dD(j, c + 1), then expD(i, j) = diam(D) and expD(i, j) ≤ diam(D) for all
remaining pairs (i, j). �

Theorem 2.2 ([3]) If D ∈ DP(n) and t is a positive integer, then expDt(i) =
�(expD(i))/t� for each i ∈ [1, n].

Remark 2.1 If D is well primitive and V 0(D) �= ∅, then exp(D) = diam(D).

Theorem 2.3 If D ∈ K is well primitive, then exp(D) ≤ n− r.
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Proof. Let D ∈ K be a well primitive digraph and let p and q be the lengths of odd
disjoint cycles inD, where p ≤ q. Let q = p+2t, t ≥ 0. A digraphD is well primitive,
so is D2 and exp(D) ≤ 2 exp(D2), by Theorem 2.2. Since D is symmetric, there is
a loop in each vertex of D, so exp(D2) = diam(D2) by Remark 2.1. Moreover, each
vertex of D2 is both peripheral and central, and Cq, Cp are subgraphs of D2, so

diam(D2) ≤ �(n− (q − 1)/2− (p− 1)/2 + 1)/2� = �(n− p− t + 1)/2� .

If p ≥ r + 2 or t ≥ 1, then diam(D2) ≤ (n− r)/2, and hence exp(D) ≤ n− r.

Now let p = q = r. If n is odd, then �(n− r + 1)/2� = (n− r)/2, so exp(D) ≤
2 �n− r + 1/2� = n − r. If n is even, then 2 �(n− r + 1)/2� = n − r + 1. Suppose
exp(D) = n − r + 1. Then n − r + 1 ≤ max{μ − 1, n − r} by Lemma 2.2, so
μ ≥ n− r + 2. Next, there exist disjoint subgraphs D1 and D2 of D such that they
are both isomorphic to Cr. Choose v ∈ V (D) so that μ = μv, and for i ∈ {1, 2} let
Wi be the shortest walk joining v with Di, and let di be the length of Wi. Note that,
since D is symmetric, we can, for convenience, ignore directions of walks. A walk
W = W1+W2 joins D1 with D2. From μ ≤ r+2min{d1, d2} we obtain min{d1, d2} ≥
n/2− r+ 1, so the length of W is at least d1 + d2 ≥ n− 2r+ 2. On the other hand,
dD(V (D1), V (D2)) ≤ n−2r+1, thus, there is at least one vertex which appears in W
twice. Let v′ be the first such vertex and let d′i = dD(v

′, V (Di)) for i ∈ {1, 2}. Next,
denote by W ′

i the shortest walk joining V (Di) with v′, contained in Wi, for i ∈ {1, 2}.
Then W ′ = W ′

1+W ′
2 is a simple walk. We show that expD(v

′) ≤ μ−2 = exp(D)−1.
LetD0 be the subgraph induced by the set V (D1)∪V (D2)∪VW ′ and u ∈ V (D0). Then
D0

∼= P1+d′1+d′2(Cr, Cr) and v′ ∈ V (D0), so expD(v
′, u) ≤ expD0

(v′, u) ≤ r−1+d′1+d′2
by Lemma 2.4, and hence expD(v

′, u) ≤ n−r ≤ μ−2. For u ∈ V (D)\V (D0) we have
dD(u, v

′) ≤ n− (d′1 + d′2 + 2r− 1). Next, since μv′ ≤ 2min{d′1, d′2}+ r ≤ d′1 + d′2 + r,
by (1), expD(v

′, u) ≤ dD(u, v
′) + μv′ − 1, and applying two previous inequalities, we

obtain expD(v
′, u) ≤ n − r ≤ μ − 2. Therefore expD(v

′) ≤ μ − 2 < exp(D), which
contradicts the assumption that D is well primitive. Hence, exp(D) ≤ n− r+1 and
exp(D) �= n− r + 1, so exp(D) ≤ n− r. �

Remark 2.2 If D ∈ DP(n) is well primitive, then δ+(D) ≥ 2.

Theorem 2.4 If r ≥ 3 and n ≥ 2r and D ∈ SDP(n, r) is well primitive, then
exp(D) = n− r if and only if D ∼= Pn−2r+2(Cr, Cr).

Proof. Obviously, by Lemma 2.4, exp(Pn−2r+2(Cr, Cr)) = n − r. Now assume
that D ∈ SDP(n, r) is well primitive and exp(D) = n − r. Then n ≥ 2r implies
exp(D) ≥ r, so, by Theorem 2.1, D ∈ K. Let p and q be the lengths of disjoint odd
cycles. There is no loss of generality in assuming that these cycles are simple. Since
D is strongly connected, we can choose a subgraph D0 of D that is isomorphic to
Pm(Cp, Cq) with 2 ≤ m ≤ n− p− q + 2.

First, suppose that |V (D0)| = n−a for some a ≥ 1. Since D is well primitive, for
each i ∈ V (D0) there exists j

′ ∈ V (D) such that expD(i, j
′) = n−r. Next, by Lemma
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2.4, expD(i, j) ≤ expD0
(i, j) ≤ n − a− r for all i, j ∈ V (D0). Thus j′ /∈ V (D0). On

the other hand,

expD(i, j
′) ≤ min

j∈V (D0)
{expD0

(i, j) + dD(j, j
′)},

so dD(j, V (D0)) = a. Thus if there exists j′ ∈ V (D)\V (D0) such that dD(j
′, V (D0))

= a, then, by Remark 2.2, j must be a loop vertex, contrary to D ∈ SDP(n, r).
Therefore, V (D0) = V (D), so n − r ≤ n − (p+ q)/2 and hence p = q = r, i.e.
Pn−2r+2(Cr, Cr) is the subgraph of D. To complete the proof it remains to verify
that if Pn−2r+2(Cr, Cr) is the proper subgraph of D, then expD(1) < n − r or D /∈
SDP(n, r). This simple verification is left to the reader. �

Remark 2.3 If n ≥ 2r, then Theorem 2.4 asserts that the extremal well primitive
digraph in DP(n, r) is unique. However, if the assumption on the length of the
shortest odd cycle is dropped, then using Pn−2r+2(Cr, Cr) we can indicate the family
of symmetric digraphs on n vertices, each of them being well primitive, containing
Pn−2r+2(Cr, Cr) as a subgraph and having the equal exponent. Let us consider, as
the example, the case r = 9, n = 20 (Fig. 1).

Figure 1: P4(C9, C9) as a subgraph

One can easily verify that adding any set of the dotted pairs of arcs (represented in
Fig. 1 as dotted edges) we obtain a symmetric digraph which is well primitive, and
its exponent equals exp(P4(C9, C9)).

3 Well primitive digraphs with loops

By Remark 2.1 the upper bound of the exponent of a well primitive digraph D ∈
DP0(n,m) is n − 1. Moreover, Remark 2.1 implies that there is a loop at each of
peripheral vertices.

Lemma 3.1 Let D be a strongly connected digraph on n vertices such that
diam(D) = n − 1. If D is non-Hamiltonian, then there are at most two periph-
eral vertices in D.

Proof. We may assume D to be loopless. A digraph D is strongly connected and
diam(D) = n − 1, so the vertices of D can be relabelled from 1 up to n so that



J. ROSIAK/AUSTRALAS. J. COMBIN. 71 (1) (2018), 1–11 8

dD(1, i) = i − 1 for i = 2, . . . , n. Then all the arcs in D are of the form
−−−−→
i, i+ 1

for i = 1, . . . , n − 1 or
−→
i, j, where 1 ≤ j < i ≤ n, except the case where i = n

and j = 1. Now assume that there exists i �= 1 such that e+D(i) = n − 1, and
let j be a vertex satisfying dD(i, j) = n − 1. Then j < i and no simple cycle in
D contains both i and j, for D is non-Hamiltonian. Next, observe that a vertex i
belongs to a simple cycle which also contains a vertex n, since otherwise the shortest

i → j walk does not contain a vertex n. Let b = min{j :
−→
n, j ∈ A(D)} and

c = max{l : −−→l, m ∈ A(D) ∧ m < b ≤ l}. Obviously, b ≥ 2, i ≥ b and c ≤ n − 1.
Now our goal is to see that i = c + 1. First suppose that i ≤ c. Since j < i implies
dD(i, j) ≤ c−1 < n−1, we obtain a contradiction. Thus i ≥ c+1, and, in particular,
c = n−1 implies i = n = c+1. Next, if c ≤ n−2, then we claim that the assumption
i ≥ c+2 leads to a contradiction. Indeed, for each i′ ≥ c+2 and j′ ∈ V (D) no simple
i′ → j′ walk contains both c+ 1 and b− 1, which implies e+D(i

′) ≤ n− 2. Therefore
i = c+ 1, and we conclude that there exist at most two peripheral vertices in D. �

Theorem 3.1 states the necessary condition for a well primitive digraph D ∈
PD0(n,m) to attain the upper bound.

Lemma 3.2 ([5]) If D ∈ PD(n), i ∈ V (D) and gD(i) is the length of the shortest
cycle in D containing the vertex i, then expD(i) ≤ gD(i)(n− deg+D(i)) + 1.

Denote by
−→
Cn a digraph with the arc set {−→1, 2,−→2, 3, . . . ,−−−−−→n− 1, n,

−→
n, 1}.

Theorem 3.1 If D ∈ PD0(n,m) is well primitive and exp(D) = n− 1, then m = 2
or m = n.

Proof. First note that Lemma 3.2 and Remark 2.2 provide deg+D(v) = 2 for each
v ∈ V 0(D). Suppose that there exists a well primitive digraph in D ∈ PD0(n, 1) such
that exp(D) = n− 1, and let V 0(D) = {v}. Let N+

D(v) = {u, v}. Then −→uv ∈ A(D),
since otherwise e+D(u) ≤ n− 3, and hence expD(v) = e+D(v) ≤ n− 2, a contradiction.
Next, by Remark 2.1, there exists w ∈ V (D) such that dD(v, w) = n − 1. Let W0

be a u → v walk in D of length n − 1. The length of the shortest u → w walk
containing v is at least n, so v /∈ W0. On the other hand, since dD(v, w) = n − 1
and each v → w walk contains a vertex u, the length of each u → w walk is of the
form n− 2 + a1p1 + a2p2 + . . .+ atpt, where ai ≥ 0 and pi are the lengths of simple
cycles in D for 1 ≤ i ≤ t. We may assume that 1 ≤ p1 < p2 < . . . < pt−1 < pt.
Then the equality n − 2 + a1p1 + a2p2 + . . . + atpt = n − 1 implies a1 = p1 = 1
and a2 = . . . = at = 0, which means that there must be another loop vertex in
D, contrary to m = 1. Therefore there is no well primitive D ∈ PD0(n, 1) with
exp(D) = n− 1.

Now let m ∈ [3, n − 1] and n ≥ 4. Suppose that there exists a well primitive
digraph D ∈ PD0(n,m) with exp(D) = n − 1. Remark 2.1 yields that there exist
at least m peripheral vertices in D. Since m ≥ 3, Lemma 3.1 provides the existence
of the Hamilton cycle in D, so the vertices of D can be relabelled as 1, 2, . . . , n so
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that A(
−→
Cn) ⊂ A(D). Next, m ≤ n − 1, so there exist v ∈ V 0(D) and v′ /∈ V 0(D)

such that
−→
vv′ ∈ A(D). Without loss of generality put v = n ∈ V 0(D) and v′ =

1 ∈ V (D)\V 0(D). We show that expD(1) ≤ n − 2. Let i = min{t : t ∈ V 0(D)}.
The assumption m ≥ 3 implies i ≤ n − 2. Since expD(1, j) = dD(1, j) whenever
j ∈ [i, n− 1], we have expD(1, j) = j − 1 ≤ n− 2. Next, expD(1, 1) = 2, so

expD(1, j) ≤ 2 + dD(1, j) = j + 1 ≤ i ≤ n− 2 for j ≤ i− 1.

Therefore expD(1) < exp(D), which contradicts the assumption that D is well prim-
itive. �

Theorem 3.2 gives the complete characterization of all (non-isomorphic) well
primitive digraphs on n vertices for which the upper bound is attained. LetDP0(n) =
⋃

1≤m≤n DP0(n,m). Let
−→
C∗

n be a digraph with the arc set A(
−→
C∗

n) = A(
−→
Cn) ∪ {−→i, i :

i ∈ [1, n]} and D∗
n (Fig. 2) be a digraph with A(D∗

n) = A(
−→
Cn) ∪ {−→1, 1,−→2, 2} ∪ {−→i, 2 :

3 ≤ i ≤ n}.

Figure 2: A digraph D∗
n

Theorem 3.2 If n ≥ 4 and D ∈ PD0(n) is well primitive, then exp(D) = n − 1 if

and only if D is isomorphic to one of the following digraphs: P ∗∗
n ,

−→
C∗

n or D∗
n.

Proof. The necessity part of the proof can easily be verified so it is omitted. Let
D ∈ PD0(n) be a well primitive digraph satisfying exp(D) = n − 1. Then, by
Theorem 3.1, m = n or m = 2. If m = n, then Lemma 3.2 implies that D is

isomorphic to
−→
C∗

n. Let m = 2. By Remark 2.1, there exists a simple walk in D of
length n−1 that begins at a loop vertex. Moreover, if V 0(D) = {i, j}, then i /∈ N−

D (j)
or j /∈ N−

D (i) . There is no loss of generality in assuming that 1 ∈ V 0(D) and N−
D (1)

does not contain the other loop vertex. Let the vertices of D be renumbered so
that dD(1, i) = i − 1 for i = 2, . . . , n. Then, as in the proof of Lemma 3.1, we

see that all the arcs not of the form
−−−−→
i, i+ 1 are ’backward’ or loops. In particular,
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N+
D (2) ⊆ {1, 2, 3}. However, if {−→2, 1,−→2, 2} ⊂ A(D), then expD(2) ≤ n − 2. On the

other hand, deg+D(2) ≥ 2 by Remark 2.2, so N+
D (2) = {1, 3} or N+

D (2) = {2, 3}.
First assume that N+

D (2) = {1, 3}. Then expD(2, i) ≤ n − 2 for i ∈ [1, n− 2], so
expD(2) = n− 1 implies expD(2, n− 1) = n− 1 or expD(2, n) = n− 1. However, the
latter is impossible, because if it was true, that would imply, that there was no 2 → n
walk of length n−2, contrary to dD(2, n) = n−2. Therefore, expD(2, n−1) = n−1,
so none of the vertices 3, . . . , n − 1 is a loop vertex, which means that the second
loop in D is at the vertex n. Applying again Remark 2.1, we can see that the vertex
n is peripheral, so dD(n, 1) = n − 1 or dD(n, n− 1) = n − 1. Since N−

D (1) does not
contain the loop vertex, we have dD(n, 1) = n− 1, and hence D ∼= P ∗∗

n .

Now assume that N+
D (2) = {2, 3}, that is, a loop is at the vertex 2. Then

expD(2, i) ≤ n − 2 for i ∈ [2, n], so the assumption expD(2) = n − 1 implies that

expD(2, 1) = n − 1, and hence A(
−→
Cn) ⊂ A(D),

−→
i, 1 /∈ A(D) for i ∈ [2, n − 1] and

expD(i, 1) = n− i+ 1 ≤ n− 2 for i ∈ [3, n].

Our aim is to show that N+
D (i) = {2, i+1} for i ∈ [3, n− 1] and N+

D(n) = {1, 2}.
It is trivial for i = 3, because in this case the only possibility is N+

D(3) = {2, 4}. Now
expD(3, 3) = 2 implies expD(3, i) ≤ n − 2 for i ≤ n − 1 and expD(3, n) = n − 1. If
n ≥ 5, then N+

D (4) ⊆ {2, 3, 5}. We claim that N+
D (4) = {2, 5}. Suppose not. Then

N+
D (4) = {2, 3, 5} or N+

D(4) = {3, 5}. But in the former case we have expD(4, 4) ≤ 2,
and hence expD(4) ≤ n− 2, a contradiction. Next, suppose that N+

D (4) = {3, 5}. If−→
4, 3 ∈ A(D), then expD(4, 4) ≤ 4, and hence expD(4, i) ≤ n − 2 for i ∈ [5, n − 2].

Thus, if
−→
4, 3 ∈ A(D), then expD(4) = n − 1 implies that expD(4, n − 1) = n − 1 or

expD(4, n) = n−1. However, since dD(4, n) = n−4 and expD(4) = n−1, there exists
a 4 → n walk in D, say W , which contains cycles of lengths adding up to 3. In fact,
a walk W must contain a cycle of length 3, for no vertex among 4, . . . , n is a loop
vertex. This means, in particular, that there is a 4 → n−1 walk in D which consists
of a cycle of length 3 and the shortest 4 → n− 1 walk, that is, there is a 4 → n− 1
walk of length n − 2. Likewise, since

−→
4, 3 ∈ A(D), there is a 4 → n walk of length

n − 2 (it consists of a cycle of length 2 and the shortest 4 → n walk). Therefore, if−→
4, 3 ∈ A(D), then expD(4) ≤ n − 2, a contradiction. Since both N+

D(4) = {2, 3, 5}
and N+

D (4) = {3, 5} lead to a contradiction, our claim holds.

Moreover,
−−−−→
i, i− 1 /∈ A(D) for i ≥ 4, for if not, there is a cycle of length 2 and

we obtain expD(4) = n − 2 again. Next, if n ≥ 6, then N+
D (5) ⊆ {2, 3, 6}, since−→

5, 4 /∈ A(D).

Now we prove that
−→
5, 3 /∈ A(D). We obtain this in a manner similar to that used

for the case expD(4), thereby showing that
−−−−→
i, i− 2 /∈ A(D) for i ≥ 5.

Continuing in this way for the consecutive vertices, we see that for n ≥ 6 it follows
that each vertex i does not belong to any cycle of length 3, . . . , i− 2 for i ≥ 5, and
hence N+

D(i) = {2, i + 1} for i ∈ [5, n − 1] and N+
D (n) = {1, 2}. Finally, D = D∗

n,
which completes the proof. �
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