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Abstract

For a positive integer k, a k-rainbow dominating function (kRDF) of a
digraph D is a function f from the vertex set V (D) to the set of all
subsets of the set {1, 2, . . . , k} such that for any vertex v with f(v) = ∅,⋃

u∈N−(v) f(u) = {1, 2, . . . , k}, where N−(v) is the set of in-neighbors of v.
The weight of a kRDF f of D is the value

∑
v∈V (D) |f(v)|. The k-rainbow

domination number of a digraph D, denoted by γrk(D), is the minimum
weight of a kRDF of D. Let Pm�Pn denote the Cartesian product of Pm

and Pn, where Pm and Pn denote the directed paths of order m and n,
respectively. In this paper, we determine the exact values of γrk(Pm�Pn)
for any positive integers k ≥ 2, m and n.

∗ Corresponding author.
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1 Introduction and notation

The concept of domination in graphs, with its many variations, has been extensively
studied (see, for example, [3, 4, 6, 7, 8, 9]). One of the variations on the domination
theme is rainbow domination. There are many results on rainbow domination in
undirected graphs; for example, see [2, 5, 10, 11]. However, there exists a smaller
number of results on rainbow domination in digraphs. Our aim in this paper is to
study the rainbow domination in digraphs.

Throughout this paper, D = (V (D), A(D)) denotes a digraph with vertex set
V (D) and arc set A(D). For two vertices u, v ∈ V (D), we use (u, v) to denote the
arc with direction from u to v, and we say that u is an in-neighbor of v. For v ∈ V (D)
we denote the set of in-neighbors of v by N−(v), and we define the in-degree of v by
d−(v) = |N−(v)|.

For a positive integer k, we use P({1, 2, . . . , k}) to denote the set of all subsets
of the set {1, 2, . . . , k}. A k-rainbow dominating function (kRDF) of a digraph D is
a function f : V (D) → P({1, 2, . . . , k}) such that for any vertex v with f(v) = ∅,⋃

u∈N−(v) f(u) = {1, 2, . . . , k}. The weight of a kRDF f of D is the value ω(f) =∑
v∈V (D) |f(v)|. The k-rainbow domination number of a digraph D, denoted by

γrk(D), is the minimum weight of a kRDF of D. A kRDF f of D with ω(f) = γrk(D)
is called a γrk(D)-function.

Let D1 = (V1, A1) and D2 = (V2, A2) be two digraphs with disjoint vertex sets
V1 and V2 and disjoint arc sets A1 and A2, respectively. The Cartesian product
D1�D2 is the digraph with vertex set V1 × V2 and for (x1, y1), (x2, y2) ∈ V (D1�D2),
((x1, y1), (x2, y2)) ∈ A(D1�D2) if and only if either (x1, x2) ∈ A1 and y1 = y2, or
x1 = x2 and (y1, y2) ∈ A2. For any y ∈ V2, we denote by Dy

1 the subdigraph of
D1�D2 induced by the vertex set {(x, y) : x ∈ V1}. Then it is easy to see that Dy

1 is
isomorphic to D1.

Let Pn denote the directed path of order n. We emphasize that V (Pn) =
{0, 1 . . . , n− 1} and A(Pn) = {(i, i+ 1) : i = 0, 1, . . . , n− 2}, throughout this paper.
As defined earlier, for each j ∈ {0, 1, . . . , n− 1}, we denote by P j

m the subdigraph of
Pm�Pn induced by the vertex set {(i, j) : i = 0, 1, . . . , m− 1}.

In 2013, rainbow domination in digraphs was introduced by Amjadi et al. [1].
However, to date no research has been done for the Cartesian product of two directed
paths. In this paper, we give the exact values of γrk(Pm�Pn) for any positive integers
k ≥ 2, m and n.

2 The 2-rainbow domination number

In this section, we will determine the exact values of the 2-rainbow domination
number in Cartesian products of directed paths.

Theorem 2.1. For any positive integer n,

γr2(P1�Pn) = γr2(Pn) = n.
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Proof. Let f be a γr2(Pn)-function. Since d
−(0) = 0, it follows from the definition of

γr2(Pn)-function that f(0) �= ∅. Moreover, if there exists some i ∈ {1, 2, . . . , n− 1}
such that f(i) = ∅, then clearly f(i−1) = {1, 2}. This implies that γr2(Pn) = ω(f) =∑n−1

i=0 |f(i)| ≥ n. On the other hand, it is easy to see that γr2(Pn) ≤ n. Therefore,
γr2(P1�Pn) = γr2(Pn) = n.

Lemma 2.2. Let n ≥ 2 be any integer and let f be a γr2(P2�Pn)-function such that
|{(i, j) ∈ V (P2�Pn) : f((i, j)) = ∅}| is minimum. Then for each j ∈ {0, 1, . . . , n−1},

|f((0, j))|+ |f((1, j))| ≥ 1.

Proof. If f((1, 0)) �= ∅, then clearly |f((0, 0))|+|f((1, 0))| ≥ 1. Otherwise, f((1, 0)) =
∅. Then by the definition of γr2(P2�Pn)-function, we have f((0, 0)) = {1, 2} and
hence |f((0, 0))|+ |f((1, 0))| = 2 ≥ 1.

We now claim that for each j ∈ {1, 2, . . . , n − 1}, |f((0, j))| + |f((1, j))| ≥ 1.
Suppose, to the contrary, that there exists some j ∈ {1, 2, . . . , n − 1} such that
|f((0, j))|+ |f((1, j))| = 0. This implies that f((0, j)) = f((1, j)) = ∅. Then by the
definition of γr2(P2�Pn)-function, we have f((1, j − 1)) = {1, 2}. Define a function
g : V (P2�Pn) → P({1, 2}) by

g(v) =

{ {1}, if v = (1, j − 1), (1, j),
f(v), otherwise.

Then it is easy to see that g is a 2RDF of P2�Pn with weight ω(g) = ω(f) =
γr2(P2�Pn), implying that g is also a γr2(P2�Pn)-function. Moreover, it is easy to see
that |{(i, j) ∈ V (P2�Pn) : f((i, j)) = ∅}| − |{(i, j) ∈ V (P2�Pn) : g((i, j)) = ∅}| = 1,
contradicting the choice of f . This completes the proof.

Theorem 2.3. For any integer n ≥ 2,

γr2(P2�Pn) =

⌈
4n

3

⌉
.

Proof. Let f be a γr2(P2�Pn)-function such that |{(i, j) ∈ V (Pm�Pn) : f((i, j))
= ∅}| is minimum. For each j ∈ {0, 1, . . . , n − 1}, let aj = |f((0, j))| + |f((1, j))|
and for each j ∈ {2, 3, . . . , n − 1}, let bj = aj−2 + aj−1 + aj. Then by Lemma 2.2,
we have that for each j ∈ {1, 2, . . . , n − 1}, aj ≥ 1. Moreover, by the definition of
γr2(P2�Pn)-function, it is easy to verify that a0 ≥ 2.

Claim 1. For each j ∈ {2, 3, . . . , n− 1}, bj ≥ 4.

Proof of Claim 1. Suppose, to the contrary, that there exists some j0 ∈ {2, 3, . . . ,
n− 1} such that bj0 ≤ 3. Note that for each j ∈ {0, 1, . . . , n− 1}, aj ≥ 1. Therefore,
we have bj0 = 3 and hence aj0−2 = aj0−1 = aj0 = 1. Assume that |f((1, j0))| = 1,
implying that f((0, j0)) = ∅. Since f is a γr2(P2�Pn)-function, f((0, j0−1)) = {1, 2}.
Then we have aj0−1 ≥ |f((0, j0 − 1))| = 2, which is a contradiction. Assume next
that |f((0, j0))| = 1, implying that f((1, j0)) = ∅. Since f is a γr2(P2�Pn)-function,
{1, 2}\f((0, j0)) ⊆ f((1, j0 − 1)) and hence |f((1, j0 − 1))| = 1. This implies that
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f((0, j0−1)) = ∅ and hence f((0, j0−2)) = {1, 2}. Thus, aj0−2 ≥ |f((0, j0−2))| = 2,
which is also a contradiction. So, this claim is true.

Therefore, if n ≡ 0(mod3), then we have

γr2(P2�Pn) =

n−3
3∑

k=0

b3k+2 ≥ 4n

3
=

⌈
4n

3

⌉
,

and if n ≡ 1(mod3), then we have

γr2(P2�Pn) = a0 +

n−1
3∑

k=1

b3k ≥ 2 +
4(n− 1)

3
=

4n+ 2

3
=

⌈
4n

3

⌉
.

In both cases, we provide a 2RDF f ′ : V (P2�Pn) → P({1, 2}) defined by

f ′(v) =

⎧⎪⎪⎨
⎪⎪⎩

{1, 2}, if v = (0, 3k) for 0 ≤ k ≤ �n−1
3
�,

{1}, if v = (1, 3k + 1) for 0 ≤ k ≤ �n−2
3
�,

{2}, if v = (0, 3k + 2) for 0 ≤ k ≤ �n−2
3
�,

∅, otherwise,

and hence

γr2(P2�Pn) ≤ ω(f ′) = 2(�n− 1

3
�+ �n− 2

3
� + 2) =

⌈
4n

3

⌉
.

If n ≡ 2(mod3), then we have

γr2(P2�Pn) = a0 + a1 +

n−2
3∑

k=1

b3k+1 ≥ 3 +
4(n− 2)

3

=
4n+ 1

3
=

⌈
4n

3

⌉
.

In this case, we also provide a 2RDF f ′′ : V (P2�Pn) → P({1, 2}) defined by

f ′′(v) =

⎧⎪⎪⎨
⎪⎪⎩

{1, 2}, if v = (0, 3k) for 0 ≤ k ≤ n−2
3
,

{1}, if v = (1, 3k + 1) for 0 ≤ k ≤ n−2
3
,

{2}, if v = (0, 3k + 2) for 0 ≤ k ≤ n−5
3
,

∅, otherwise,

and hence

γr2(P2�Pn) ≤ ω(f ′′)

= 2(
n− 2

3
+ 1) + (

n− 2

3
+

n− 5

3
+ 2)

=
4n + 1

3
=

⌈
4n

3

⌉
,

which completes our proof.
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We shall determine the exact value of γr2(Pm�Pn) for any integers m,n ≥ 3. For
this purpose, we need some observations.

Observation 2.4. Let m,n ≥ 3 be any integers and let f be a γr2(Pm�Pn)-function.
Then

f((0, 0)) +
m−1∑
i=1

|f((i, 0))|+
n−1∑
j=1

|f((0, j))| ≥ m+ n− 2

and the equality holds if f((0, 0)) = {1, 2}, f((1, 0)) = f((0, 1)) = ∅ and |f((i, 0))| =
|f((0, j))| = 1 for i, j ≥ 2.

Proof. If f((i, 0)) �= ∅ for each i, then
∑m−1

i=0 |f((i, 0))| ≥ m. If there exists some
vertex, say (i, 0), such that f((i, 0)) = ∅, then by the definition of γr2(Pm�Pn)-
function, we have f((i − 1, 0)) = {1, 2}, which implies that

∑m−1
i=0 |f((i, 0))| ≥ m.

Similarly, we get
∑n−1

j=0 |f((0, j))| ≥ n. Therefore, it is easy to verify that

f((0, 0)) +

m−1∑
i=1

|f((i, 0))|+
n−1∑
j=1

|f((0, j))| ≥ m+ n− 2,

establishing the desired lower bound.

If f((0, 0)) = {1, 2}, f((1, 0)) = f((0, 1)) = ∅ and |f((0, j))| = 1 = |f((i, 0))| for
i, j ≥ 2, then clearly

f((0, 0)) +

m−1∑
i=1

|f((i, 0))|+
n−1∑
j=1

|f((0, j))| = m+ n− 2,

which completes our proof.

Observation 2.5. Let m,n ≥ 3 be any integers and let f be a γr2(Pm�Pn)-function
such that f((0, 0)) = {1, 2}, f((1, 0)) = f((0, 1)) = ∅ and |f((i, 0))| = |f((0, j))| = 1
for i, j ≥ 2. Then

(i) f((i, 1)) ∪ f((i+ 1, 1)) �= ∅ for i ≥ 0.

(ii)
∑m−1

i=1 |f((i, 1))| ≥ �m
2
�.

(iii) The equality in (ii) holds if |f((2k − 1, 1))| = 1 for 1 ≤ k ≤ �m
2
� and

|f((2k, 1))| = 0 for 1 ≤ k ≤ �m−1
2

�.

Proof. (i) If f((i, 1)) ∪ f((i+ 1, 1)) = ∅ for some i ≥ 0, then f((i+ 1, 0)) = {1, 2}, a
contradiction to our assumption. Consequently, f((i, 1))∪ f((i+1, 1)) �= ∅ for i ≥ 0.

(ii) According to (i), (ii) is trivial.

(iii) By our assumption, we have f((i, 0)) = {1} for i ≥ 2. Let f((2k − 1, 1)) =
{2} for 1 ≤ k ≤ �m

2
� and let f((2k, 1)) = ∅ for 1 ≤ k ≤ �m−1

2
�. Then clearly∑m−1

i=1 |f((i, 1))| = �m
2
�.
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The following observation can be deduced by a similar discussion to that for
Observation 2.5.

Observation 2.6. Let m,n ≥ 3 be any integers and let f be a γr2(Pm�Pn)-function
such that f satisfies the conditions of Observation 2.5 and (iii) of Observation 2.5.
Then

(i) |f((i, 2)) ∪ f((i+ 1, 2))| �= 0 for i ≥ 0.

(ii)
∑m−1

i=1 |f((i, 2))| ≥ �m−1
2

�.
(iii) The equality of (ii) holds if |f((2k, 2))| = 1 for 1 ≤ k ≤ �m−1

2
� and |f((2k −

1, 2))| = 0 for 1 ≤ k ≤ �m
2
�.

Now by using induction we have the following result.

Observation 2.7. Let m,n ≥ 3 be any integers and let f be a γr2(Pm�Pn)-function
such that f satisfies the conditions of Observations 2.5. Then

(i) |f((i, j)) ∪ f((i+ 1, j))| �= 0 for i ≥ 0 and j ≥ 1.

(ii)
∑m−1

i=1 |f((i, j))| ≥ �m
2
� for odd j ≥ 1, and

∑m−1
i=1 |f((i, j))| ≥ �m−1

2
� for even

j ≥ 1.

(iii) The first equality of (ii) holds if |f((2k − 1, j))| = 1 for 1 ≤ k ≤ �m
2
� and

|f((2k, j))| = 0 for 1 ≤ k ≤ �m−1
2

� when j is odd, and the second equality of
(ii) holds if |f((2k, j))| = 1 for 1 ≤ k ≤ �m−1

2
� and |f((2k − 1, j))| = 0 for

1 ≤ k ≤ �m
2
� when j ≥ 1 is even.

Now we may derive the following theorem.

Theorem 2.8. For any integers m,n ≥ 3,

γr2(Pm�Pn) =

⌈
m+ 1

2

⌉⌈
n + 1

2

⌉
+
⌈m
2

⌉ ⌈n
2

⌉
− 2.

Proof. Let f be a γr2(Pm�Pn)-function such that f satisfies the conditions of
Observation 2.5. Therefore, by Observations 2.4 and 2.7, we obtain

γr2(Pm�Pn) = f((0, 0)) +

m−1∑
i=1

|f((i, 0))|+
n−1∑
j=1

|f((0, j))|+
n−1∑
j=1

m−1∑
i=1

|f((i, j))|

≥ m+ n− 2 +

�n/2�∑
l=1

m−1∑
i=1

|f((i, 2l− 1))|+
�(n−1)/2�∑

l=1

m−1∑
i=1

|f((i, 2l))|

≥ m+ n− 2 +

�n/2�∑
l=1

⌊m
2

⌋
+

�(n−1)/2�∑
l=1

⌊
m− 1

2

⌋

= (n+m− 2) +
n− 1

2
(m− 1)

=

⌈
m+ 1

2

⌉⌈
n+ 1

2

⌉
+
⌈m
2

⌉ ⌈n
2

⌉
− 2.



GUOLIANG HAO ET AL. /AUSTRALAS. J. COMBIN. 70 (3) (2018), 349–361 355

To show the upper bound, we now provide a 2RDF g : V (Pm�Pn) → P({1, 2})
defined by

g((i, j)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1, 2}, if i = j = 0,
{1}, if i = 2k − 1 for 1 ≤ k ≤ �m

2
� and

j = 2l − 1 for 1 ≤ l ≤ �n
2
�,

{2}, if i = 0 and 2 ≤ j ≤ n− 1, or
if 2 ≤ i ≤ m− 1 and j = 0, or
if i = 2k for 1 ≤ k ≤ �m−2

2
� and

j = 2l for 1 ≤ l ≤ �n−2
2
�,

∅, otherwise.

Therefore, we have

γr2(Pm�Pn) ≤ ω(g)

= 2 +
⌊m
2

⌋ ⌊n
2

⌋
+ (n− 2) + (m− 2) +

⌈
m− 2

2

⌉⌈
n− 2

2

⌉

=

⌈
m+ 1

2

⌉⌈
n + 1

2

⌉
+
⌈m
2

⌉ ⌈n
2

⌉
− 2,

which completes our proof.

3 The 3-rainbow domination number

In this section, we will derive the exact value of the 3-rainbow domination number
in Cartesian products of directed paths.

Lemma 3.1. For any integers m,n ≥ 2,

γr3(Pm�Pn) ≥
{

mn− m−1
2

⌊
n−1
2

⌋
, if m is odd,

3mn+2m
4

, if both m and n are even with m ≥ n.

Proof. Let f be a γr3(Pm�Pn)-function such that |{(i, j) ∈ V (Pm�Pn) : f((i, j))
= ∅}| is minimum and let aj =

∑m−1
i=0 |f((i, j))| for each j ∈ {0, 1, . . . , n− 1}.

Claim 2. For each i ∈ {0, 1, . . . , m− 1} and j ∈ {0, 1, . . . , n− 1},

f((i, 0)) �= ∅ and f((0, j)) �= ∅.

Proof of Claim 2. If there exists some i ∈ {1, 2, . . . , m − 1} such that f((i, 0)) = ∅,
then by the definition of γr3(Pm�Pn)-function, we have f((i − 1, 0)) = {1, 2, 3}.
Define a function g : V (Pm�Pn) → P({1, 2, 3}) by

g(v) =

⎧⎨
⎩

{1}, if v = (i− 1, 0), (i, 0),
f(v) ∪ {1}, if v = (i− 1, 1),
f(v), otherwise.
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Then it is easy to see that g is a 3RDF of Pm�Pn with weight ω(g) ≤ ω(f) =
γr3(Pm�Pn), implying that g is also a γr3(Pm�Pn)-function. Moreover, clearly
|{(i, j) ∈ V (Pm�Pn) : f((i, j)) = ∅}| − |{(i, j) ∈ V (Pm�Pn) : g((i, j)) = ∅}| = 1 or
2, a contradiction to the choice of f . Note that f((0, 0)) �= ∅ since d−((0, 0)) = 0.
Therefore, we have f((i, 0)) �= ∅ for each i ∈ {0, 1, . . . , m − 1}. Similarly, we have
f((0, j)) �= ∅ for each j ∈ {0, 1, . . . , n− 1}. So, this claim is true.

Therefore, by Claim 2, we have a0 =
∑m−1

i=0 |f((i, 0))| ≥ m.

Claim 3. There do not exist two vertices (i, j) and (i + 1, j), where i, j ≥ 1, of
Pm�Pn such that

f((i, j)) = f((i+ 1, j)) = ∅.

Proof of Claim 3. Suppose, to the contrary, that there exist two vertices (i, j) and
(i+ 1, j), where i, j ≥ 1, of Pm�Pn such that f((i, j)) = f((i+1, j)) = ∅. Note that
f is a γr3(Pm�Pn)-function. Therefore, f((i+1, j−1)) = {1, 2, 3}. Define a function
g : V (Pm�Pn) → P({1, 2, 3}) by

g(v) =

⎧⎨
⎩

{1}, if v = (i+ 1, j − 1), (i+ 1, j),
f(v) ∪ {1}, if v = (i+ 2, j − 1),
f(v), otherwise.

Then it is easy to see that g is a 3RDF of Pm�Pn and ω(g) ≤ ω(f) = γr3(Pm�Pn), im-
plying that g is also a γr3(Pm�Pn)-function. Moreover, clearly |{(i, j) ∈ V (Pm�Pn) :
f((i, j)) = ∅}| − |{(i, j) ∈ V (Pm�Pn) : g((i, j)) = ∅}| = 1 or 2, a contradiction to
the choice of f . So, this claim is true.

For each j ∈ {0, 1, . . . , n− 1}, let bj = |{(i, j) ∈ V (P j
m) : f((i, j)) = ∅}|. Then by

Claims 2 and 3, we have that b0 = 0 and bj ≤ �m
2
� for each j ∈ {1, 2, . . . , n− 1}.

Claim 4. a0 + a1 ≥ 2m and aj−1 + aj ≥ �3m
2
� for each j ∈ {2, 3, . . . , n− 1}.

Proof of Claim 4. Let j ∈ {1, 2, . . . , n − 1}. If f((i, j)) �= ∅ for each i, then clearly
aj =

∑m−1
i=0 |f((i, j))| ≥ m and hence if j = 1, then a0+a1 = a0+aj ≥ m+m = 2m;

if j ∈ {2, 3, . . . , n− 1}, then

aj−1 + aj ≥ (m− bj−1) + aj ≥ (m− �m
2
�) +m = �3m

2
�.

Hence we may assume that there exists some i such that f((i, j)) = ∅, implying
that bj ≥ 1. For each k ∈ {1, 2, . . . , bj}, let f((ik, j)) = ∅. Then it is easy to see

that
∑bj

k=1 |f((ik, j))| = 0 and by Claim 3, we have that for each k ∈ {1, 2, . . . , bj},
f((ik − 1, j)) �= ∅. Note that f is a γr3(Pm�Pn)-function. Therefore, for each
k ∈ {1, 2, . . . , bj}, f((ik, j− 1))∪ f((ik − 1, j)) = {1, 2, 3} and hence |f((ik, j− 1))|+
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|f((ik − 1, j))| ≥ 3. Thus,

aj−1 + aj =

m−1∑
i=0

|f((i, j − 1))|+
m−1∑
i=0

|f((i, j))|

=

bj∑
k=1

[|f((ik, j − 1))|+ |f((ik − 1, j))|] +
∑
i∈Xj

|f((i, j − 1))|

+
∑
i∈Yj

|f((i, j))|+
bj∑
k=1

|f((ik, j))|

≥ 3bj + (m− bj−1 − bj) + (m− 2bj)

= 2m− bj−1,

where Xj = {0, 1, . . . , m − 1}\{i1, i2, . . . , ibj}, Yj = Xj\{i1 − 1, i2 − 1, . . . , ibj − 1}
and

∑
i∈Xj

|f((i, j − 1))| ≥ m − bj−1 − bj . Note that b0 = 0 and bj ≤ �m
2
� for each

j ∈ {1, 2, . . . , n − 1}. Therefore, we have a0 + a1 ≥ 2m − b0 = 2m and for each
j ∈ {2, 3, . . . , n − 1}, aj−1 + aj ≥ 2m − bj−1 ≥ 2m − �m

2
� = �3m

2
�. So, this claim is

true.

Therefore, it follows from Claim 4 that if n is odd, then

γr3(Pm�Pn) = ω(f) = a0 +

n−1
2∑

k=1

(a2k−1 + a2k)

≥ m+
n− 1

2

⌈
3m

2

⌉
,

implying that if both m and n are odd, then

γr3(Pm�Pn) ≥ m+
(3m+ 1)(n− 1)

4

= mn− m− 1

2

⌊
n− 1

2

⌋
;

if n is even, then

γr3(Pm�Pn) = ω(f) = (a0 + a1) +

n−2
2∑

k=1

(a2k + a2k+1)

≥ 2m+
n− 2

2

⌈
3m

2

⌉
,

implying that if m is odd and n is even, then

γr3(Pm�Pn) ≥ 2m+
(3m+ 1)(n− 2)

4

= mn− m− 1

2

⌊
n− 1

2

⌋
.
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As a consequence, we have that if m is odd, then

γr3(Pm�Pn) ≥ mn− m− 1

2

⌊
n− 1

2

⌋
;

and if both m and n are even, then

γr3(Pm�Pn) ≥ 2m+
n− 2

2

⌈
3m

2

⌉
=

3mn+ 2m

4
,

which completes our proof.

Note that γr3(Pm�Pn) = γr3(Pn�Pm). Therefore, we have the following corollary.

Corollary 3.2. For any integers m,n ≥ 2,

γr3(Pm�Pn) ≥
{

mn− �m−1
2

�n−1
2
, if n is odd,

3mn+2n
4

, if both m and n are even with n ≥ m.

As an immediate consequence of Lemma 3.1 and Corollary 3.2, we have the
following result.

Corollary 3.3. For integers m,n ≥ 2,

γr3(Pm�Pn) ≥
{

mn− �m−1
2

��n−1
2
�, if m is odd, or if n is odd,

3mn+2max{m,n}
4

, if both m and n are even.

Lemma 3.4. For integers m,n ≥ 2,

γr3(Pm�Pn) ≤
{

mn− �m−1
2

��n−1
2
�, if m or n is odd,

3mn+2max{m,n}
4

, if both m and n are even.

Proof. If m or n is odd, then we provide a 3RDF f : V (Pm�Pn) → P({1, 2, 3})
defined by

f((i, j)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1, 2}, if i = 2k − 1 for 1 ≤ k ≤ �m
2
� and

j = 2l − 1 for 1 ≤ l ≤ �n
2
�,

∅, if i = 2k − 1 for 1 ≤ k ≤ �m
2
� and

j = 2l for 1 ≤ l ≤ �n−1
2
�, or

if i = 2k for 1 ≤ k ≤ �m−1
2

� and
j = 2l − 1 for 1 ≤ l ≤ �n

2
�,

{3}, otherwise,

and hence

γr3(Pm�Pn) ≤ ω(f)

= 2
⌊m
2

⌋⌊n
2

⌋
+mn−

(⌊m
2

⌋ ⌊n
2

⌋
+
⌊m
2

⌋⌊n− 1

2

⌋
+

⌊
m− 1

2

⌋ ⌊n
2

⌋)

= mn−
⌊
m− 1

2

⌋⌊
n− 1

2

⌋
.
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If both m and n are even, then we also provide a 3RDF g : V (Pm�Pn) →
P({1, 2, 3}) defined by

g((i, j)) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{1, 2}, if i ∈ {1, 3, . . . ,min{n− 3, m− 1}}
and j = 2k − 1 for 1 ≤ k ≤ n−i−1

2
, or

if i ∈ {2, 4, . . . ,min{n− 2, m− 1}}
and j = 2k for n−i

2
≤ k ≤ n−2

2
, or

if m ≥ n+ 1, i = 2l for n
2
≤ l ≤ m−2

2

and j = 2k for 0 ≤ k ≤ n−2
2
;

{3}, if i = 0 and 0 ≤ j ≤ n− 1, or
if j = 0 and 1 ≤ i ≤ min{n− 1, m− 1}, or
if i ∈ {2, 4, . . . ,min{n− 4, m− 4}}
and j = 2k for 1 ≤ k ≤ n−i−2

2
, or

if i ∈ {1, 3, . . . ,min{n− 1, m− 1}}
and j = 2k − 1 for n−i+1

2
≤ k ≤ n

2
, or

if m ≥ n+ 1, i = 2l + 1 for n
2
≤ l ≤ m−2

2

and j = 2k + 1 for 0 ≤ k ≤ n−2
2
;

∅, otherwise.

and hence

ω(g) =

{
2n+ (m−2

2
)(3n

2
) = 3mn+2n

4
, if n ≥ m

2n+ (n−2
2
)(3n

2
) + (m−n

2
)(3n+2

2
) = 3mn+2m

4
, if m ≥ n

Therefore, if both m and n are even, then γr3(Pm�Pn) ≤ ω(g) = 3mn+2max{m,n}
4

,
which completes our proof.

Using Corollary 3.3 and Lemma 3.4, we can derive the following result.

Theorem 3.5. For any integers m,n ≥ 2,

(1) If m is odd, or n is odd, then

γr3(Pm�Pn) = mn−
⌊
m− 1

2

⌋⌊
n− 1

2

⌋
.

(2) If both m and n are even, then

γr3(Pm�Pn) =
3mn+ 2max{m,n}

4
.

4 The k-rainbow domination number (k ≥ 4)

We now determine the exact value of γrk(Pm�Pn) for k ≥ 4.

Theorem 4.1. For any integers m,n ≥ 1 and k ≥ 4,

γrk(Pm�Pn) = mn.
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Proof. Let f be a γrk(Pm�Pn)-function such that |{(i, j) ∈ V (Pm�Pn) : f((i, j)) =
∅}| is minimum and let aj =

∑m−1
i=0 |f((i, j))| for each j ∈ {0, 1, . . . , n− 1}.

Claim 5. If f((i, j)) = ∅, where i, j ≥ 1, then |f((i− 1, j))| ≥ 2.

Proof of Claim 5. Suppose, to the contrary, that |f((i− 1, j))| ≤ 1. Without loss of
generality, we may assume that f((i−1, j)) = ∅ or {1}. Note that f is a γrk(Pm�Pn)-
function. Therefore, f((i, j − 1)) = {1, 2, . . . , k} or {2, 3, . . . , k}. Define a function
g : V (Pm�Pn) → P({1, 2, . . . , k}) by

g(v) =

⎧⎨
⎩

{1}, if v = (i, j − 1), (i, j),
f(v) ∪ {1}, if v = (i+ 1, j − 1),
f(v), otherwise.

We observe that g is a kRDF of Pm�Pn with weight ω(g) ≤ ω(f) − (k − 4) ≤
ω(f) = γrk(Pm�Pn), implying that g is also a γrk(Pm�Pn)-function. Moreover,
clearly |{(i, j) ∈ V (Pm�Pn) : f((i, j)) = ∅}| − |{(i, j) ∈ V (Pm�Pn) : g((i, j)) =
∅}| = 1 or 2, a contradiction to the choice of f . So, this claim is true.

Using the similar method to Claim 2 of Lemma 3.1, we have that for each i and
j, f((i, 0)) �= ∅ and f((0, j)) �= ∅. This implies that a0 ≥ m. Moreover, it follows
from Claim 5 that for each j ∈ {1, 2, . . . , n− 1}, aj ≥ m. Therefore,

γrk(Pm�Pn) = ω(f) =

n−1∑
j=0

aj ≥ mn.

On the other hand, it is easy to see that γrk(Pn�Pm) ≤ mn. As a result, we have
γrk(Pm�Pn) = mn, which completes our proof.
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