Rainbow domination in the Cartesian product of directed paths

Guoliang Hao*
College of Science, East China University of Technology
Nanchang 330013, Jiangxi, P.R. China
guoliang-hao@163.com
Doost Ali Mojdeh
Department of Mathematics
University of Mazandaran Babolsar, Iran damojdeh@umz.ac.ir
Shouliu Wei
Department of Mathematics, Minjiang University Fuzhou 350121, Fujian, P.R. China wslwillow@126.com
Zhihong Xie
College of Science, East China University of Technology
Nanchang 330013, Jiangxi, P.R. China
xiezh168@163.com

Abstract

For a positive integer k, a k-rainbow dominating function ($k \mathrm{RDF}$) of a digraph D is a function f from the vertex set $V(D)$ to the set of all subsets of the set $\{1,2, \ldots, k\}$ such that for any vertex v with $f(v)=\emptyset$, $\bigcup_{u \in N^{-}(v)} f(u)=\{1,2, \ldots, k\}$, where $N^{-}(v)$ is the set of in-neighbors of v. The weight of a k RDF f of D is the value $\sum_{v \in V(D)}|f(v)|$. The k-rainbow domination number of a digraph D, denoted by $\gamma_{r k}(D)$, is the minimum weight of a k RDF of D. Let $P_{m} \square P_{n}$ denote the Cartesian product of P_{m} and P_{n}, where P_{m} and P_{n} denote the directed paths of order m and n, respectively. In this paper, we determine the exact values of $\gamma_{r k}\left(P_{m} \square P_{n}\right)$ for any positive integers $k \geq 2$, m and n.

[^0]
1 Introduction and notation

The concept of domination in graphs, with its many variations, has been extensively studied (see, for example, $[3,4,6,7,8,9]$). One of the variations on the domination theme is rainbow domination. There are many results on rainbow domination in undirected graphs; for example, see $[2,5,10,11]$. However, there exists a smaller number of results on rainbow domination in digraphs. Our aim in this paper is to study the rainbow domination in digraphs.

Throughout this paper, $D=(V(D), A(D))$ denotes a digraph with vertex set $V(D)$ and arc set $A(D)$. For two vertices $u, v \in V(D)$, we use (u, v) to denote the arc with direction from u to v, and we say that u is an in-neighbor of v. For $v \in V(D)$ we denote the set of in-neighbors of v by $N^{-}(v)$, and we define the in-degree of v by $d^{-}(v)=\left|N^{-}(v)\right|$.

For a positive integer k, we use $\mathcal{P}(\{1,2, \ldots, k\})$ to denote the set of all subsets of the set $\{1,2, \ldots, k\}$. A k-rainbow dominating function ($k \mathrm{RDF}$) of a digraph D is a function $f: V(D) \rightarrow \mathcal{P}(\{1,2, \ldots, k\})$ such that for any vertex v with $f(v)=\emptyset$, $\bigcup_{u \in N^{-}(v)} f(u)=\{1,2, \ldots, k\}$. The weight of a k RDF f of D is the value $\omega(f)=$ $\sum_{v \in V(D)}|f(v)|$. The k-rainbow domination number of a digraph D, denoted by $\gamma_{r k}(D)$, is the minimum weight of a k RDF of D. A k RDF f of D with $\omega(f)=\gamma_{r k}(D)$ is called a $\gamma_{r k}(D)$-function.

Let $D_{1}=\left(V_{1}, A_{1}\right)$ and $D_{2}=\left(V_{2}, A_{2}\right)$ be two digraphs with disjoint vertex sets V_{1} and V_{2} and disjoint arc sets A_{1} and A_{2}, respectively. The Cartesian product $D_{1} \square D_{2}$ is the digraph with vertex set $V_{1} \times V_{2}$ and for $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in V\left(D_{1} \square D_{2}\right)$, $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) \in A\left(D_{1} \square D_{2}\right)$ if and only if either $\left(x_{1}, x_{2}\right) \in A_{1}$ and $y_{1}=y_{2}$, or $x_{1}=x_{2}$ and $\left(y_{1}, y_{2}\right) \in A_{2}$. For any $y \in V_{2}$, we denote by D_{1}^{y} the subdigraph of $D_{1} \square D_{2}$ induced by the vertex set $\left\{(x, y): x \in V_{1}\right\}$. Then it is easy to see that D_{1}^{y} is isomorphic to D_{1}.

Let P_{n} denote the directed path of order n. We emphasize that $V\left(P_{n}\right)=$ $\{0,1 \ldots, n-1\}$ and $A\left(P_{n}\right)=\{(i, i+1): i=0,1, \ldots, n-2\}$, throughout this paper. As defined earlier, for each $j \in\{0,1, \ldots, n-1\}$, we denote by P_{m}^{j} the subdigraph of $P_{m} \square P_{n}$ induced by the vertex set $\{(i, j): i=0,1, \ldots, m-1\}$.

In 2013, rainbow domination in digraphs was introduced by Amjadi et al. [1]. However, to date no research has been done for the Cartesian product of two directed paths. In this paper, we give the exact values of $\gamma_{r k}\left(P_{m} \square P_{n}\right)$ for any positive integers $k \geq 2, m$ and n.

2 The 2-rainbow domination number

In this section, we will determine the exact values of the 2-rainbow domination number in Cartesian products of directed paths.

Theorem 2.1. For any positive integer n,

$$
\gamma_{r 2}\left(P_{1} \square P_{n}\right)=\gamma_{r 2}\left(P_{n}\right)=n .
$$

Proof. Let f be a $\gamma_{r 2}\left(P_{n}\right)$-function. Since $d^{-}(0)=0$, it follows from the definition of $\gamma_{r 2}\left(P_{n}\right)$-function that $f(0) \neq \emptyset$. Moreover, if there exists some $i \in\{1,2, \ldots, n-1\}$ such that $f(i)=\emptyset$, then clearly $f(i-1)=\{1,2\}$. This implies that $\gamma_{r 2}\left(P_{n}\right)=\omega(f)=$ $\sum_{i=0}^{n-1}|f(i)| \geq n$. On the other hand, it is easy to see that $\gamma_{r 2}\left(P_{n}\right) \leq n$. Therefore, $\gamma_{r 2}\left(P_{1} \square P_{n}\right)=\gamma_{r 2}\left(P_{n}\right)=n$.

Lemma 2.2. Let $n \geq 2$ be any integer and let f be a $\gamma_{r 2}\left(P_{2} \square P_{n}\right)$-function such that $\left|\left\{(i, j) \in V\left(P_{2} \square P_{n}\right): f((i, j))=\emptyset\right\}\right|$ is minimum. Then for each $j \in\{0,1, \ldots, n-1\}$,

$$
|f((0, j))|+|f((1, j))| \geq 1 .
$$

Proof. If $f((1,0)) \neq \emptyset$, then clearly $|f((0,0))|+|f((1,0))| \geq 1$. Otherwise, $f((1,0))=$ \emptyset. Then by the definition of $\gamma_{r 2}\left(P_{2} \square P_{n}\right)$-function, we have $f((0,0))=\{1,2\}$ and hence $|f((0,0))|+|f((1,0))|=2 \geq 1$.

We now claim that for each $j \in\{1,2, \ldots, n-1\},|f((0, j))|+|f((1, j))| \geq 1$. Suppose, to the contrary, that there exists some $j \in\{1,2, \ldots, n-1\}$ such that $|f((0, j))|+|f((1, j))|=0$. This implies that $f((0, j))=f((1, j))=\emptyset$. Then by the definition of $\gamma_{r 2}\left(P_{2} \square P_{n}\right)$-function, we have $f((1, j-1))=\{1,2\}$. Define a function $g: V\left(P_{2} \square P_{n}\right) \rightarrow \mathcal{P}(\{1,2\})$ by

$$
g(v)= \begin{cases}\{1\}, & \text { if } v=(1, j-1),(1, j) \\ f(v), & \text { otherwise }\end{cases}
$$

Then it is easy to see that g is a 2 RDF of $P_{2} \square P_{n}$ with weight $\omega(g)=\omega(f)=$ $\gamma_{r 2}\left(P_{2} \square P_{n}\right)$, implying that g is also a $\gamma_{r 2}\left(P_{2} \square P_{n}\right)$-function. Moreover, it is easy to see that $\left|\left\{(i, j) \in V\left(P_{2} \square P_{n}\right): f((i, j))=\emptyset\right\}\right|-\left|\left\{(i, j) \in V\left(P_{2} \square P_{n}\right): g((i, j))=\emptyset\right\}\right|=1$, contradicting the choice of f. This completes the proof.

Theorem 2.3. For any integer $n \geq 2$,

$$
\gamma_{r 2}\left(P_{2} \square P_{n}\right)=\left\lceil\frac{4 n}{3}\right\rceil .
$$

Proof. Let f be a $\gamma_{r 2}\left(P_{2} \square P_{n}\right)$-function such that $\mid\left\{(i, j) \in V\left(P_{m} \square P_{n}\right): f((i, j))\right.$ $=\emptyset\} \mid$ is minimum. For each $j \in\{0,1, \ldots, n-1\}$, let $a_{j}=|f((0, j))|+|f((1, j))|$ and for each $j \in\{2,3, \ldots, n-1\}$, let $b_{j}=a_{j-2}+a_{j-1}+a_{j}$. Then by Lemma 2.2, we have that for each $j \in\{1,2, \ldots, n-1\}, a_{j} \geq 1$. Moreover, by the definition of $\gamma_{r 2}\left(P_{2} \square P_{n}\right)$-function, it is easy to verify that $a_{0} \geq 2$.
Claim 1. For each $j \in\{2,3, \ldots, n-1\}, b_{j} \geq 4$.
Proof of Claim 1. Suppose, to the contrary, that there exists some $j_{0} \in\{2,3, \ldots$, $n-1\}$ such that $b_{j_{0}} \leq 3$. Note that for each $j \in\{0,1, \ldots, n-1\}, a_{j} \geq 1$. Therefore, we have $b_{j_{0}}=3$ and hence $a_{j_{0}-2}=a_{j_{0}-1}=a_{j_{0}}=1$. Assume that $\left|f\left(\left(1, j_{0}\right)\right)\right|=1$, implying that $f\left(\left(0, j_{0}\right)\right)=\emptyset$. Since f is a $\gamma_{r 2}\left(P_{2} \square P_{n}\right)$-function, $f\left(\left(0, j_{0}-1\right)\right)=\{1,2\}$. Then we have $a_{j_{0}-1} \geq\left|f\left(\left(0, j_{0}-1\right)\right)\right|=2$, which is a contradiction. Assume next that $\left|f\left(\left(0, j_{0}\right)\right)\right|=1$, implying that $f\left(\left(1, j_{0}\right)\right)=\emptyset$. Since f is a $\gamma_{r 2}\left(P_{2} \square P_{n}\right)$-function, $\{1,2\} \backslash f\left(\left(0, j_{0}\right)\right) \subseteq f\left(\left(1, j_{0}-1\right)\right)$ and hence $\left|f\left(\left(1, j_{0}-1\right)\right)\right|=1$. This implies that
$f\left(\left(0, j_{0}-1\right)\right)=\emptyset$ and hence $f\left(\left(0, j_{0}-2\right)\right)=\{1,2\}$. Thus, $a_{j_{0}-2} \geq\left|f\left(\left(0, j_{0}-2\right)\right)\right|=2$, which is also a contradiction. So, this claim is true.

Therefore, if $n \equiv 0(\bmod 3)$, then we have

$$
\gamma_{r 2}\left(P_{2} \square P_{n}\right)=\sum_{k=0}^{\frac{n-3}{3}} b_{3 k+2} \geq \frac{4 n}{3}=\left\lceil\frac{4 n}{3}\right\rceil,
$$

and if $n \equiv 1(\bmod 3)$, then we have

$$
\gamma_{r 2}\left(P_{2} \square P_{n}\right)=a_{0}+\sum_{k=1}^{\frac{n-1}{3}} b_{3 k} \geq 2+\frac{4(n-1)}{3}=\frac{4 n+2}{3}=\left\lceil\frac{4 n}{3}\right\rceil .
$$

In both cases, we provide a $2 \mathrm{RDF} f^{\prime}: V\left(P_{2} \square P_{n}\right) \rightarrow \mathcal{P}(\{1,2\})$ defined by

$$
f^{\prime}(v)= \begin{cases}\{1,2\}, & \text { if } v=(0,3 k) \text { for } 0 \leq k \leq\left\lfloor\frac{n-1}{3}\right\rfloor \\ \{1\}, & \text { if } v=(1,3 k+1) \text { for } 0 \leq k \leq\left\lfloor\frac{n-2}{3}\right\rfloor, \\ \{2\}, & \text { if } v=(0,3 k+2) \text { for } 0 \leq k \leq\left\lfloor\frac{n-2}{3}\right\rfloor, \\ \emptyset, & \text { otherwise, }\end{cases}
$$

and hence

$$
\gamma_{r 2}\left(P_{2} \square P_{n}\right) \leq \omega\left(f^{\prime}\right)=2\left(\left\lfloor\frac{n-1}{3}\right\rfloor+\left\lfloor\frac{n-2}{3}\right\rfloor+2\right)=\left\lceil\frac{4 n}{3}\right\rceil .
$$

If $n \equiv 2(\bmod 3)$, then we have

$$
\begin{aligned}
\gamma_{r 2}\left(P_{2} \square P_{n}\right) & =a_{0}+a_{1}+\sum_{k=1}^{\frac{n-2}{3}} b_{3 k+1} \geq 3+\frac{4(n-2)}{3} \\
& =\frac{4 n+1}{3}=\left\lceil\frac{4 n}{3}\right\rceil .
\end{aligned}
$$

In this case, we also provide a $2 \mathrm{RDF} f^{\prime \prime}: V\left(P_{2} \square P_{n}\right) \rightarrow \mathcal{P}(\{1,2\})$ defined by

$$
f^{\prime \prime}(v)= \begin{cases}\{1,2\}, & \text { if } v=(0,3 k) \text { for } 0 \leq k \leq \frac{n-2}{3}, \\ \{1\}, & \text { if } v=(1,3 k+1) \text { for } 0 \leq k \leq \frac{n-2}{3}, \\ \{2\}, & \text { if } v=(0,3 k+2) \text { for } 0 \leq k \leq \frac{n-5}{3}, \\ \emptyset, & \text { otherwise, }\end{cases}
$$

and hence

$$
\begin{aligned}
\gamma_{r 2}\left(P_{2} \square P_{n}\right) & \leq \omega\left(f^{\prime \prime}\right) \\
& =2\left(\frac{n-2}{3}+1\right)+\left(\frac{n-2}{3}+\frac{n-5}{3}+2\right) \\
& =\frac{4 n+1}{3}=\left\lceil\frac{4 n}{3}\right\rceil
\end{aligned}
$$

which completes our proof.

We shall determine the exact value of $\gamma_{r 2}\left(P_{m} \square P_{n}\right)$ for any integers $m, n \geq 3$. For this purpose, we need some observations.

Observation 2.4. Let $m, n \geq 3$ be any integers and let f be a $\gamma_{r 2}\left(P_{m} \square P_{n}\right)$-function. Then

$$
f((0,0))+\sum_{i=1}^{m-1}|f((i, 0))|+\sum_{j=1}^{n-1}|f((0, j))| \geq m+n-2
$$

and the equality holds if $f((0,0))=\{1,2\}, f((1,0))=f((0,1))=\emptyset$ and $|f((i, 0))|=$ $|f((0, j))|=1$ for $i, j \geq 2$.

Proof. If $f((i, 0)) \neq \emptyset$ for each i, then $\sum_{i=0}^{m-1}|f((i, 0))| \geq m$. If there exists some vertex, say $(i, 0)$, such that $f((i, 0))=\emptyset$, then by the definition of $\gamma_{r 2}\left(P_{m} \square P_{n}\right)$ function, we have $f((i-1,0))=\{1,2\}$, which implies that $\sum_{i=0}^{m-1}|f((i, 0))| \geq m$. Similarly, we get $\sum_{j=0}^{n-1}|f((0, j))| \geq n$. Therefore, it is easy to verify that

$$
f((0,0))+\sum_{i=1}^{m-1}|f((i, 0))|+\sum_{j=1}^{n-1}|f((0, j))| \geq m+n-2
$$

establishing the desired lower bound.
If $f((0,0))=\{1,2\}, f((1,0))=f((0,1))=\emptyset$ and $|f((0, j))|=1=|f((i, 0))|$ for $i, j \geq 2$, then clearly

$$
f((0,0))+\sum_{i=1}^{m-1}|f((i, 0))|+\sum_{j=1}^{n-1}|f((0, j))|=m+n-2
$$

which completes our proof.
Observation 2.5. Let $m, n \geq 3$ be any integers and let f be a $\gamma_{r 2}\left(P_{m} \square P_{n}\right)$-function such that $f((0,0))=\{1,2\}, f((1,0))=f((0,1))=\emptyset$ and $|f((i, 0))|=|f((0, j))|=1$ for $i, j \geq 2$. Then
(i) $f((i, 1)) \cup f((i+1,1)) \neq \emptyset$ for $i \geq 0$.
(ii) $\sum_{i=1}^{m-1}|f((i, 1))| \geq\left\lfloor\frac{m}{2}\right\rfloor$.
(iii) The equality in (ii) holds if $|f((2 k-1,1))|=1$ for $1 \leq k \leq\left\lfloor\frac{m}{2}\right\rfloor$ and $|f((2 k, 1))|=0$ for $1 \leq k \leq\left\lfloor\frac{m-1}{2}\right\rfloor$.

Proof. (i) If $f((i, 1)) \cup f((i+1,1))=\emptyset$ for some $i \geq 0$, then $f((i+1,0))=\{1,2\}$, a contradiction to our assumption. Consequently, $f((i, 1)) \cup f((i+1,1)) \neq \emptyset$ for $i \geq 0$.
(ii) According to (i), (ii) is trivial.
(iii) By our assumption, we have $f((i, 0))=\{1\}$ for $i \geq 2$. Let $f((2 k-1,1))=$ $\{2\}$ for $1 \leq k \leq\left\lfloor\frac{m}{2}\right\rfloor$ and let $f((2 k, 1))=\emptyset$ for $1 \leq k \leq\left\lfloor\frac{m-1}{2}\right\rfloor$. Then clearly $\sum_{i=1}^{m-1}|f((i, 1))|=\left\lfloor\frac{m}{2}\right\rfloor$.

The following observation can be deduced by a similar discussion to that for Observation 2.5.

Observation 2.6. Let $m, n \geq 3$ be any integers and let f be a $\gamma_{r 2}\left(P_{m} \square P_{n}\right)$-function such that f satisfies the conditions of Observation 2.5 and (iii) of Observation 2.5. Then
(i) $|f((i, 2)) \cup f((i+1,2))| \neq 0$ for $i \geq 0$.
(ii) $\sum_{i=1}^{m-1}|f((i, 2))| \geq\left\lfloor\frac{m-1}{2}\right\rfloor$.
(iii) The equality of (ii) holds if $|f((2 k, 2))|=1$ for $1 \leq k \leq\left\lfloor\frac{m-1}{2}\right\rfloor$ and $\mid f((2 k-$ $1,2)) \mid=0$ for $1 \leq k \leq\left\lfloor\frac{m}{2}\right\rfloor$.
Now by using induction we have the following result.
Observation 2.7. Let $m, n \geq 3$ be any integers and let f be a $\gamma_{r 2}\left(P_{m} \square P_{n}\right)$-function such that f satisfies the conditions of Observations 2.5. Then
(i) $|f((i, j)) \cup f((i+1, j))| \neq 0$ for $i \geq 0$ and $j \geq 1$.
(ii) $\sum_{i=1}^{m-1}|f((i, j))| \geq\left\lfloor\frac{m}{2}\right\rfloor$ for odd $j \geq 1$, and $\sum_{i=1}^{m-1}|f((i, j))| \geq\left\lfloor\frac{m-1}{2}\right\rfloor$ for even $j \geq 1$.
(iii) The first equality of (ii) holds if $|f((2 k-1, j))|=1$ for $1 \leq k \leq\left\lfloor\frac{m}{2}\right\rfloor$ and $|f((2 k, j))|=0$ for $1 \leq k \leq\left\lfloor\frac{m-1}{2}\right\rfloor$ when j is odd, and the second equality of (ii) holds if $|f((2 k, j))|=1$ for $1 \leq k \leq\left\lfloor\frac{m-1}{2}\right\rfloor$ and $|f((2 k-1, j))|=0$ for $1 \leq k \leq\left\lfloor\frac{m}{2}\right\rfloor$ when $j \geq 1$ is even.
Now we may derive the following theorem.
Theorem 2.8. For any integers $m, n \geq 3$,

$$
\gamma_{r 2}\left(P_{m} \square P_{n}\right)=\left\lceil\frac{m+1}{2}\right\rceil\left\lceil\frac{n+1}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil-2 .
$$

Proof. Let f be a $\gamma_{r 2}\left(P_{m} \square P_{n}\right)$-function such that f satisfies the conditions of Observation 2.5. Therefore, by Observations 2.4 and 2.7, we obtain

$$
\begin{aligned}
\gamma_{r 2}\left(P_{m} \square P_{n}\right) & =f((0,0))+\sum_{i=1}^{m-1}|f((i, 0))|+\sum_{j=1}^{n-1}|f((0, j))|+\sum_{j=1}^{n-1} \sum_{i=1}^{m-1}|f((i, j))| \\
& \geq m+n-2+\sum_{l=1}^{\lfloor n / 2\rfloor} \sum_{i=1}^{m-1}|f((i, 2 l-1))|+\sum_{l=1}^{\lfloor(n-1) / 2\rfloor} \sum_{i=1}^{m-1}|f((i, 2 l))| \\
& \left.\left.\geq m+n-2+\sum_{l=1}^{\lfloor n / 2\rfloor}\left\lfloor\frac{m}{2}\right\rfloor+\sum_{l=1}^{\lfloor(n-1) / 2\rfloor} \right\rvert\, \frac{m-1}{2}\right\rfloor \\
& =(n+m-2)+\frac{n-1}{2}(m-1) \\
& =\left\lceil\frac{m+1}{2}\right\rceil\left\lceil\frac{n+1}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil-2 .
\end{aligned}
$$

To show the upper bound, we now provide a 2RDF $g: V\left(P_{m} \square P_{n}\right) \rightarrow \mathcal{P}(\{1,2\})$ defined by

$$
g((i, j))= \begin{cases}\{1,2\}, & \text { if } i=j=0, \\ \{1\}, & \text { if } i=2 k-1 \text { for } 1 \leq k \leq\left\lfloor\frac{m}{2}\right\rfloor \text { and } \\ \{2\}, & j=2 l-1 \text { for } 1 \leq l \leq\left\lfloor\frac{n}{2}\right\rfloor, \\ & \text { if } i=0 \text { and } 2 \leq j \leq n-1, \text { or } \\ & \text { if } 2 \leq i \leq m-1 \text { and } j=0, \text { or } \\ \text { if } i=2 k \text { for } 1 \leq k \leq\left\lceil\frac{m-2}{2}\right\rceil \text { and } \\ \emptyset, & j=2 l \text { for } 1 \leq l \leq\left\lceil\frac{n-2}{2}\right\rceil, \\ \text { otherwise. }\end{cases}
$$

Therefore, we have

$$
\begin{aligned}
\gamma_{r 2}\left(P_{m} \square P_{n}\right) & \leq \omega(g) \\
& =2+\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor+(n-2)+(m-2)+\left\lceil\frac{m-2}{2}\right\rceil\left\lceil\frac{n-2}{2}\right\rceil \\
& =\left\lceil\frac{m+1}{2}\right\rceil\left\lceil\frac{n+1}{2}\right\rceil+\left\lceil\frac{m}{2}\right\rceil\left\lceil\frac{n}{2}\right\rceil-2,
\end{aligned}
$$

which completes our proof.

3 The 3-rainbow domination number

In this section, we will derive the exact value of the 3-rainbow domination number in Cartesian products of directed paths.

Lemma 3.1. For any integers $m, n \geq 2$,

$$
\gamma_{r 3}\left(P_{m} \square P_{n}\right) \geq \begin{cases}m n-\frac{m-1}{2}\left\lfloor\frac{n-1}{2}\right\rfloor, & \text { if } m \text { is odd, } \\ \frac{3 m n+2 m}{4}, & \text { if both } m \text { and } n \text { are even with } m \geq n .\end{cases}
$$

Proof. Let f be a $\gamma_{r 3}\left(P_{m} \square P_{n}\right)$-function such that $\mid\left\{(i, j) \in V\left(P_{m} \square P_{n}\right): f((i, j))\right.$ $=\emptyset\} \mid$ is minimum and let $a_{j}=\sum_{i=0}^{m-1}|f((i, j))|$ for each $j \in\{0,1, \ldots, n-1\}$.
Claim 2. For each $i \in\{0,1, \ldots, m-1\}$ and $j \in\{0,1, \ldots, n-1\}$,

$$
f((i, 0)) \neq \emptyset \text { and } f((0, j)) \neq \emptyset .
$$

Proof of Claim 2. If there exists some $i \in\{1,2, \ldots, m-1\}$ such that $f((i, 0))=\emptyset$, then by the definition of $\gamma_{r 3}\left(P_{m} \square P_{n}\right)$-function, we have $f((i-1,0))=\{1,2,3\}$. Define a function $g: V\left(P_{m} \square P_{n}\right) \rightarrow \mathcal{P}(\{1,2,3\})$ by

$$
g(v)= \begin{cases}\{1\}, & \text { if } v=(i-1,0),(i, 0), \\ f(v) \cup\{1\}, & \text { if } v=(i-1,1), \\ f(v), & \text { otherwise. }\end{cases}
$$

Then it is easy to see that g is a 3 RDF of $P_{m} \square P_{n}$ with weight $\omega(g) \leq \omega(f)=$ $\gamma_{r 3}\left(P_{m} \square P_{n}\right)$, implying that g is also a $\gamma_{r 3}\left(P_{m} \square P_{n}\right)$-function. Moreover, clearly $\left|\left\{(i, j) \in V\left(P_{m} \square P_{n}\right): f((i, j))=\emptyset\right\}\right|-\left|\left\{(i, j) \in V\left(P_{m} \square P_{n}\right): g((i, j))=\emptyset\right\}\right|=1$ or 2 , a contradiction to the choice of f. Note that $f((0,0)) \neq \emptyset$ since $d^{-}((0,0))=0$. Therefore, we have $f((i, 0)) \neq \emptyset$ for each $i \in\{0,1, \ldots, m-1\}$. Similarly, we have $f((0, j)) \neq \emptyset$ for each $j \in\{0,1, \ldots, n-1\}$. So, this claim is true.

Therefore, by Claim 2, we have $a_{0}=\sum_{i=0}^{m-1}|f((i, 0))| \geq m$.
Claim 3. There do not exist two vertices (i, j) and $(i+1, j)$, where $i, j \geq 1$, of $P_{m} \square P_{n}$ such that

$$
f((i, j))=f((i+1, j))=\emptyset .
$$

Proof of Claim 3. Suppose, to the contrary, that there exist two vertices (i, j) and $(i+1, j)$, where $i, j \geq 1$, of $P_{m} \square P_{n}$ such that $f((i, j))=f((i+1, j))=\emptyset$. Note that f is a $\gamma_{r 3}\left(P_{m} \square P_{n}\right)$-function. Therefore, $f((i+1, j-1))=\{1,2,3\}$. Define a function $g: V\left(P_{m} \square P_{n}\right) \rightarrow \mathcal{P}(\{1,2,3\})$ by

$$
g(v)= \begin{cases}\{1\}, & \text { if } v=(i+1, j-1),(i+1, j) \\ f(v) \cup\{1\}, & \text { if } v=(i+2, j-1) \\ f(v), & \text { otherwise }\end{cases}
$$

Then it is easy to see that g is a 3RDF of $P_{m} \square P_{n}$ and $\omega(g) \leq \omega(f)=\gamma_{r 3}\left(P_{m} \square P_{n}\right)$, implying that g is also a $\gamma_{r 3}\left(P_{m} \square P_{n}\right)$-function. Moreover, clearly $\mid\left\{(i, j) \in V\left(P_{m} \square P_{n}\right)\right.$: $f((i, j))=\emptyset\}\left|-\left|\left\{(i, j) \in V\left(P_{m} \square P_{n}\right): g((i, j))=\emptyset\right\}\right|=1\right.$ or 2 , a contradiction to the choice of f. So, this claim is true.

For each $j \in\{0,1, \ldots, n-1\}$, let $b_{j}=\left|\left\{(i, j) \in V\left(P_{m}^{j}\right): f((i, j))=\emptyset\right\}\right|$. Then by Claims 2 and 3, we have that $b_{0}=0$ and $b_{j} \leq\left\lfloor\frac{m}{2}\right\rfloor$ for each $j \in\{1,2, \ldots, n-1\}$.
Claim 4. $a_{0}+a_{1} \geq 2 m$ and $a_{j-1}+a_{j} \geq\left\lceil\frac{3 m}{2}\right\rceil$ for each $j \in\{2,3, \ldots, n-1\}$.
Proof of Claim 4. Let $j \in\{1,2, \ldots, n-1\}$. If $f((i, j)) \neq \emptyset$ for each i, then clearly $a_{j}=\sum_{i=0}^{m-1}|f((i, j))| \geq m$ and hence if $j=1$, then $a_{0}+a_{1}=a_{0}+a_{j} \geq m+m=2 m$; if $j \in\{2,3, \ldots, n-1\}$, then

$$
a_{j-1}+a_{j} \geq\left(m-b_{j-1}\right)+a_{j} \geq\left(m-\left\lfloor\frac{m}{2}\right\rfloor\right)+m=\left\lceil\frac{3 m}{2}\right\rceil .
$$

Hence we may assume that there exists some i such that $f((i, j))=\emptyset$, implying that $b_{j} \geq 1$. For each $k \in\left\{1,2, \ldots, b_{j}\right\}$, let $f\left(\left(i_{k}, j\right)\right)=\emptyset$. Then it is easy to see that $\sum_{k=1}^{b_{j}}\left|f\left(\left(i_{k}, j\right)\right)\right|=0$ and by Claim 3, we have that for each $k \in\left\{1,2, \ldots, b_{j}\right\}$, $f\left(\left(i_{k}-1, j\right)\right) \neq \emptyset$. Note that f is a $\gamma_{r 3}\left(P_{m} \square P_{n}\right)$-function. Therefore, for each $k \in\left\{1,2, \ldots, b_{j}\right\}, f\left(\left(i_{k}, j-1\right)\right) \cup f\left(\left(i_{k}-1, j\right)\right)=\{1,2,3\}$ and hence $\left|f\left(\left(i_{k}, j-1\right)\right)\right|+$
$\left|f\left(\left(i_{k}-1, j\right)\right)\right| \geq 3$. Thus,

$$
\begin{aligned}
a_{j-1}+a_{j}= & \sum_{i=0}^{m-1}|f((i, j-1))|+\sum_{i=0}^{m-1}|f((i, j))| \\
= & \sum_{k=1}^{b_{j}}| | f\left(\left(i_{k}, j-1\right)\right)\left|+\left|f\left(\left(i_{k}-1, j\right)\right)\right|\right]+\sum_{i \in X_{j}}|f((i, j-1))| \\
& \quad+\sum_{i \in Y_{j}}|f((i, j))|+\sum_{k=1}^{b_{j}}\left|f\left(\left(i_{k}, j\right)\right)\right| \\
\geq & 3 b_{j}+\left(m-b_{j-1}-b_{j}\right)+\left(m-2 b_{j}\right) \\
= & 2 m-b_{j-1}
\end{aligned}
$$

where $X_{j}=\{0,1, \ldots, m-1\} \backslash\left\{i_{1}, i_{2}, \ldots, i_{b_{j}}\right\}, Y_{j}=X_{j} \backslash\left\{i_{1}-1, i_{2}-1, \ldots, i_{b_{j}}-1\right\}$ and $\sum_{i \in X_{j}}|f((i, j-1))| \geq m-b_{j-1}-b_{j}$. Note that $b_{0}=0$ and $b_{j} \leq\left\lfloor\frac{m}{2}\right\rfloor$ for each $j \in\{1,2, \ldots, n-1\}$. Therefore, we have $a_{0}+a_{1} \geq 2 m-b_{0}=2 m$ and for each $j \in\{2,3, \ldots, n-1\}, a_{j-1}+a_{j} \geq 2 m-b_{j-1} \geq 2 m-\left\lfloor\frac{m}{2}\right\rfloor=\left\lceil\frac{3 m}{2}\right\rceil$. So, this claim is true.

Therefore, it follows from Claim 4 that if n is odd, then

$$
\begin{aligned}
\gamma_{r 3}\left(P_{m} \square P_{n}\right) & =\omega(f)=a_{0}+\sum_{k=1}^{\frac{n-1}{2}}\left(a_{2 k-1}+a_{2 k}\right) \\
& \geq m+\frac{n-1}{2}\left\lceil\frac{3 m}{2}\right\rceil
\end{aligned}
$$

implying that if both m and n are odd, then

$$
\begin{aligned}
\gamma_{r 3}\left(P_{m} \square P_{n}\right) & \geq m+\frac{(3 m+1)(n-1)}{4} \\
& =m n-\frac{m-1}{2}\left\lfloor\frac{n-1}{2}\right\rfloor
\end{aligned}
$$

if n is even, then

$$
\begin{aligned}
\gamma_{r 3}\left(P_{m} \square P_{n}\right) & =\omega(f)=\left(a_{0}+a_{1}\right)+\sum_{k=1}^{\frac{n-2}{2}}\left(a_{2 k}+a_{2 k+1}\right) \\
& \geq 2 m+\frac{n-2}{2}\left\lceil\frac{3 m}{2}\right\rceil
\end{aligned}
$$

implying that if m is odd and n is even, then

$$
\begin{aligned}
\gamma_{r 3}\left(P_{m} \square P_{n}\right) & \geq 2 m+\frac{(3 m+1)(n-2)}{4} \\
& =m n-\frac{m-1}{2}\left\lfloor\frac{n-1}{2}\right\rfloor .
\end{aligned}
$$

As a consequence, we have that if m is odd, then

$$
\gamma_{r 3}\left(P_{m} \square P_{n}\right) \geq m n-\frac{m-1}{2}\left\lfloor\frac{n-1}{2}\right\rfloor ;
$$

and if both m and n are even, then

$$
\gamma_{r 3}\left(P_{m} \square P_{n}\right) \geq 2 m+\frac{n-2}{2}\left\lceil\frac{3 m}{2}\right\rceil=\frac{3 m n+2 m}{4}
$$

which completes our proof.
Note that $\gamma_{r 3}\left(P_{m} \square P_{n}\right)=\gamma_{r 3}\left(P_{n} \square P_{m}\right)$. Therefore, we have the following corollary.
Corollary 3.2. For any integers $m, n \geq 2$,

$$
\gamma_{r 3}\left(P_{m} \square P_{n}\right) \geq \begin{cases}m n-\left\lfloor\frac{m-1}{2}\right\rfloor \frac{n-1}{2}, & \text { if } n \text { is odd, } \\ \frac{3 m n+2 n}{4}, & \text { if both } m \text { and } n \text { are even with } n \geq m .\end{cases}
$$

As an immediate consequence of Lemma 3.1 and Corollary 3.2, we have the following result.

Corollary 3.3. For integers $m, n \geq 2$,

$$
\gamma_{r 3}\left(P_{m} \square P_{n}\right) \geq \begin{cases}m n-\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor, & \text { if } m \text { is odd, or if } n \text { is odd, } \\ \frac{3 m n+2 \max \{m, n\}}{4}, & \text { if both } m \text { and } n \text { are even. }\end{cases}
$$

Lemma 3.4. For integers $m, n \geq 2$,

$$
\gamma_{r 3}\left(P_{m} \square P_{n}\right) \leq \begin{cases}m n-\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor, & \text { if } m \text { or } n \text { is odd, } \\ \frac{3 m n+2 \max \{m, n\}}{4}, & \text { if both } m \text { and } n \text { are even. }\end{cases}
$$

Proof. If m or n is odd, then we provide a $3 \operatorname{RDF} f: V\left(P_{m} \square P_{n}\right) \rightarrow \mathcal{P}(\{1,2,3\})$ defined by

$$
f((i, j))= \begin{cases}\{1,2\}, & \text { if } i=2 k-1 \text { for } 1 \leq k \leq\left\lfloor\frac{m}{2}\right\rfloor \text { and } \\ & j=2 l-1 \text { for } 1 \leq l \leq\left\lfloor\frac{n}{2}\right\rfloor \\ \emptyset, & \text { if } i=2 k-1 \text { for } 1 \leq k \leq\left\lfloor\frac{m}{2}\right\rfloor \text { and } \\ & j=2 l \text { for } 1 \leq l \leq\left\lfloor\frac{n-1}{2}\right\rfloor, \text { or } \\ & \text { if } i=2 k \text { for } 1 \leq k \leq\left\lfloor\frac{m-1}{2}\right\rfloor \text { and } \\ & j=2 l-1 \text { for } 1 \leq l \leq\left\lfloor\frac{n}{2}\right\rfloor, \\ \{3\}, & \text { otherwise, }\end{cases}
$$

and hence

$$
\begin{aligned}
\gamma_{r 3}\left(P_{m} \square P_{n}\right) & \leq \omega(f) \\
& =2\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor+m n-\left(\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor+\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\right) \\
& =m n-\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor .
\end{aligned}
$$

If both m and n are even, then we also provide a $3 \mathrm{RDF} g: V\left(P_{m} \square P_{n}\right) \rightarrow$ $\mathcal{P}(\{1,2,3\})$ defined by

$$
g((i, j))= \begin{cases}\{1,2\}, & \text { if } i \in\{1,3, \ldots, \min \{n-3, m-1\}\} \\ & \text { and } j=2 k-1 \text { for } 1 \leq k \leq \frac{n-i-1}{2}, \text { or } \\ & \text { if } i \in\{2,4, \ldots, \min \{n-2, m-1\}\} \\ & \text { and } j=2 k \text { for } \frac{n-i}{2} \leq k \leq \frac{n-2}{2}, \text { or } \\ & \text { if } m \geq n+1, i=2 l \text { for } \frac{n}{2} \leq l \leq \frac{m-2}{2} \\ & \text { and } j=2 k \text { for } 0 \leq k \leq \frac{n-2}{2} ; \\ \{3\}, & \text { if } i=0 \text { and } 0 \leq j \leq n-1, \text { or } \\ & \text { if } j=0 \text { and } 1 \leq i \leq \min \{n-1, m-1\}, \text { or } \\ & \text { if } i \in\{2,4, \ldots, \min \{n-4, m-4\}\} \\ & \text { and } j=2 k \text { for } 1 \leq k \leq \frac{n-i-2}{2}, \text { or } \\ & \text { if } i \in\{1,3, \ldots, \min \{n-1, m-1\}\} \\ & \text { and } j=2 k-1 \text { for } \frac{n-i+1}{2} \leq k \leq \frac{n}{2}, \text { or } \\ & \text { if } m \geq n+1, i=2 l+1 \text { for } \frac{n}{2} \leq l \leq \frac{m-2}{2} \\ & \text { and } j=2 k+1 \text { for } 0 \leq k \leq \frac{n-2}{2} ; \\ \emptyset, & \text { otherwise. }\end{cases}
$$

and hence

$$
\omega(g)= \begin{cases}2 n+\left(\frac{m-2}{2}\right)\left(\frac{3 n}{2}\right)=\frac{3 m n+2 n}{4}, & \text { if } n \geq m \\ 2 n+\left(\frac{n-2}{2}\right)\left(\frac{3 n}{2}\right)+\left(\frac{m-n}{2}\right)\left(\frac{3 n+2}{2}\right)=\frac{3 m n+2 m}{4}, & \text { if } m \geq n\end{cases}
$$

Therefore, if both m and n are even, then $\gamma_{r 3}\left(P_{m} \square P_{n}\right) \leq \omega(g)=\frac{3 m n+2 \max \{m, n\}}{4}$, which completes our proof.

Using Corollary 3.3 and Lemma 3.4, we can derive the following result.
Theorem 3.5. For any integers $m, n \geq 2$,
(1) If m is odd, or n is odd, then

$$
\gamma_{r 3}\left(P_{m} \square P_{n}\right)=m n-\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor .
$$

(2) If both m and n are even, then

$$
\gamma_{r 3}\left(P_{m} \square P_{n}\right)=\frac{3 m n+2 \max \{m, n\}}{4}
$$

4 The k-rainbow domination number $(k \geq 4)$

We now determine the exact value of $\gamma_{r k}\left(P_{m} \square P_{n}\right)$ for $k \geq 4$.
Theorem 4.1. For any integers $m, n \geq 1$ and $k \geq 4$,

$$
\gamma_{r k}\left(P_{m} \square P_{n}\right)=m n
$$

Proof. Let f be a $\gamma_{r k}\left(P_{m} \square P_{n}\right)$-function such that $\mid\left\{(i, j) \in V\left(P_{m} \square P_{n}\right): f((i, j))=\right.$ $\emptyset\} \mid$ is minimum and let $a_{j}=\sum_{i=0}^{m-1}|f((i, j))|$ for each $j \in\{0,1, \ldots, n-1\}$.
Claim 5. If $f((i, j))=\emptyset$, where $i, j \geq 1$, then $|f((i-1, j))| \geq 2$.
Proof of Claim 5. Suppose, to the contrary, that $|f((i-1, j))| \leq 1$. Without loss of generality, we may assume that $f((i-1, j))=\emptyset$ or $\{1\}$. Note that f is a $\gamma_{r k}\left(P_{m} \square P_{n}\right)-$ function. Therefore, $f((i, j-1))=\{1,2, \ldots, k\}$ or $\{2,3, \ldots, k\}$. Define a function $g: V\left(P_{m} \square P_{n}\right) \rightarrow \mathcal{P}(\{1,2, \ldots, k\})$ by

$$
g(v)= \begin{cases}\{1\}, & \text { if } v=(i, j-1),(i, j), \\ f(v) \cup\{1\}, & \text { if } v=(i+1, j-1), \\ f(v), & \text { otherwise }\end{cases}
$$

We observe that g is a $k \operatorname{RDF}$ of $P_{m} \square P_{n}$ with weight $\omega(g) \leq \omega(f)-(k-4) \leq$ $\omega(f)=\gamma_{r k}\left(P_{m} \square P_{n}\right)$, implying that g is also a $\gamma_{r k}\left(P_{m} \square P_{n}\right)$-function. Moreover, clearly $\left|\left\{(i, j) \in V\left(P_{m} \square P_{n}\right): f((i, j))=\emptyset\right\}\right|-\mid\left\{(i, j) \in V\left(P_{m} \square P_{n}\right): g((i, j))=\right.$ $\emptyset\} \mid=1$ or 2 , a contradiction to the choice of f. So, this claim is true.

Using the similar method to Claim 2 of Lemma 3.1, we have that for each i and $j, f((i, 0)) \neq \emptyset$ and $f((0, j)) \neq \emptyset$. This implies that $a_{0} \geq m$. Moreover, it follows from Claim 5 that for each $j \in\{1,2, \ldots, n-1\}, a_{j} \geq m$. Therefore,

$$
\gamma_{r k}\left(P_{m} \square P_{n}\right)=\omega(f)=\sum_{j=0}^{n-1} a_{j} \geq m n .
$$

On the other hand, it is easy to see that $\gamma_{r k}\left(P_{n} \square P_{m}\right) \leq m n$. As a result, we have $\gamma_{r k}\left(P_{m} \square P_{n}\right)=m n$, which completes our proof.

Acknowledgments

This work was supported by Research Foundation of Education Bureau of Jiangxi Province of China (No. GJJ150561), Doctor Fund of East China University of Technology (No. DHBK2015319), Natural Science Foundation of Fujian Province (No. 2016J01025), Science Foundation for the Education Department of Fujian Province (No. JA15295) and Science Foundation of Minjiang University (No. MYK15004).

References

[1] J. Amjadi, A. Bahremandpour, S. M. Sheikholeslami and L. Volkmann, The rainbow domination number of a digraph, Kragujevac J. Math. 37 (2013), 257268.
[2] B. Brešar, M. A. Henning and D.F. Rall, Rainbow domination in graphs, Taiwanese J. Math. 12 (2008), 213-225.
[3] N. Dehgardi, S. M. Sheikholeslami and A. Khodkar, Bounding the paireddomination number of a tree in terms of its annihilation number, Filomat 28 (2014), 523-529.
[4] O. Favaron, Signed domination in regular graphs, Discrete Math. 158 (1996), 287-293.
[5] S. Fujita and M. Furuya, Rainbow domination numbers on graphs with given radius, Discrete Appl. Math. 166 (2014), 115-122.
[6] G. Hao and J. Qian, On the rainbow domination number of digraphs, Graphs Combin. 32 (2016), 1903-1913.
[7] G. Hao and J. Qian, Bounds on the domination number of a digraph, J. Comb. Optim. 35 (2018), 64-74.
[8] T. W. Haynes, S. T. Hedetniemi and P. J. Slater (Eds.), Domination in Graphs: Advanced Topics, Marcel Dekker, Inc., New York, 1998.
[9] S. M. H. Moghaddam, A. Khodkar and B. Samadi, New bounds on the signed domination numbers of graphs, Australas. J. Combin. 61 (2015), 273-280.
[10] Z. Stepień and M. Zwierzchowski, 2-rainbow domination number of Cartesian products: $C_{n} \square C_{3}$ and $C_{n} \square C_{5}$, J. Comb. Optim. 28 (2014), 748-755.
[11] Y. Wu and N. Jafari Rad, Bounds on the 2-rainbow domination number of graphs, Graphs Combin. 29 (2013), 1125-1133.
(Received 12 June 2017; revised 17 Jan 2018)

[^0]: * Corresponding author.

