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On star-packings having a large matching
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Abstract

Let G be a graph, and let f : V (G) → {2, 3, . . .} be a function. A family
P of vertex-disjoint subgraphs of G is an f -star-packing if each element
of P is a star of order at least 2 and for x ∈ ⋃

P∈P V (P ), the degree of x
in the graph

⋃
P∈P P is at most f(x). In this paper we prove that G has a

maximum f -star-packing P such that |P| is equal to the matching number
of G. As an application of our result, we show a corollary concerning a
bound on the number of components of order 2 in a path-factor.

1 Introduction

In this paper, we consider only finite undirected simple graphs. Let G be a graph.
We let V (G) and E(G) denote the vertex set and the edge set of G, respectively. For
terms and symbols not defined here, we refer the reader to [4].

A family P of vertex-disjoint connected subgraphs of G is called a packing. We let
V (P) =

⋃
P∈P V (P ) and E(P) =

⋃
P∈P E(P ). For each x ∈ V (P), let dP(x) denote

the degree of x in the graph
⋃

P∈P P . A packing P of G is perfect if V (P) = V (G). A
packing P of G is called a matching if each element of P is a complete graph of order
2. For a function f : V (G) → {2, 3, . . .}, a packing P is called an f -star-packing if
each element of P is a star and 1 ≤ dP(x) ≤ f(x) for all x ∈ V (P). A matching
M (resp. an f -star-packing P) of G is maximum if there is no matching M′ (resp.
no f -star-packing P ′) of G with |V (M′)| > |V (M)| (resp. |V (P ′)| > |V (P)|). The
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cardinality of a maximum matching of G, denoted by α′(G), is called the matching
number of G.

Note that a matching of a graph G is an f -star-packing for any function f :
V (G) → {2, 3, . . .}. Note also that for an f -star-packing P, since edges from distinct
elements of P form a matching, we have |P| ≤ α′(G). Thus it is natural to seek for a
maximum f -star packing P with |P| = α′(G). In other words, we are interested in the
existence problem of a maximum f -star packing containing a maximum matching.
Our main result is the following.

Theorem 1.1 Let G be a graph, and let f : V (G) → {2, 3, . . .} be a function. Then
G has a maximum f -star-packing P with |P| = α′(G).

Now we consider a special kind of f -star-packing. A perfect f -star-packing of a
graph G is called a path-factor if f(x) = 2 for all x ∈ V (G). Note that each element
of a path-factor is a path of order 2 or 3. A min-max theorem concerning an f -star-
packing is known (see Theorem 7.9 in [2]). In particular, a necessary and sufficient
condition for the existence of a path-factor is given as follows (here i(G) denotes the
number of isolated vertices of a graph G):

Theorem A (Akiyama, Avis and Era [1]) A graph G has a path-factor if and
only if i(G− S) ≤ 2|S| for all S ⊆ V (G).

Berge [3] gave the following theorem concerning a maximum matching (here
odd(G) denotes the number of components having odd order of a graph G).

Theorem B (Berge [3]) Let G be a graph, and let α be a real number with 0 ≤
α ≤ |V (G)|

2
. Then α′(G) ≥ α if and only if odd(G − S) ≤ |S| + |V (G)| − 2α for all

S ⊆ V (G).

By Theorems 1.1, A and B, we obtain the following corollary concerning the
existence of a path-factor which contains at least as many components of order 2 as
required.

Corollary 1.2 Let G be a graph, and let t be a real number with 0 ≤ t ≤ |V (G)|
2

.
Then G has a path-factor P such that the number of elements of order 2 is at least
t if and only if i(G− S) ≤ 2|S| and odd(G− S) ≤ |S|+ |V (G)|−2t

3
for all S ⊆ V (G).

2 Proof of Theorem 1.1

Let M be a maximum matching of G, and let P be a maximum f -star-packing of
G. We choose M and P so that

(P1) |E(P) ∩ E(M)| is as large as possible.
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Set P1 = {P ∈ P : |V (P )| ≥ 3} and P2 = P −P1. Let Z = {x ∈ V (P) : dP(x) ≥ 2}.
Note that Z ⊆ V (P1). Let M1 be the set of edges in E(M) incident with a vertex
in Z, and let M2 = E(M) − M1. Let H be the subgraph of G induced by the set
(M2 − E(P2)) ∪ (E(P2)−M2).

Claim 2.1 For each component C of H, we have |E(C) ∩M2| ≤ |E(C) ∩ E(P2)|.

Proof. Since M2 and E(P2) are sets of independent edges of G, C is a path or a
cycle. By way of contradiction, we suppose that |E(C) ∩M2| > |E(C) ∩ E(P2)|. It
follows that C is a path of even order and, if we write C = u1u2 · · ·u2m (m ≥ 1), then
u2i−1u2i ∈ M2 (1 ≤ i ≤ m) and u2iu2i+1 ∈ E(P2) (1 ≤ i ≤ m − 1). Furthermore,
u1, u2m ∈ (V (P1) − Z) ∪ (V (G) − V (P)). Let P i be the path u2iu2i+1 for each
i (1 ≤ i ≤ m− 1), and let Qi be the path u2i−1u2i for each i (1 ≤ i ≤ m). Note that
P i ∈ P2 and E(P) ∩ (

⋃
1≤i≤mE(Qi)) = ∅.

We first suppose that {u1, u2m}∩(V (G)−V (P)) 
= ∅. If {u1, u2m} ⊆ V (G)−V (P),
then Q1 = (P − {P 1, . . . , Pm−1}) ∪ {Q1, . . . , Qm} is an f -star-packing of G with
|V (Q1)| > |V (P)|, which contradicts the maximality of P. Thus, without loss of
generality, we may assume that u1 belongs to an element R of P1. Then Q2 =
(P − {R,P 1, . . . , Pm−1}) ∪ {R − u1, Q

1, . . . , Qm} is an f -star-packing of G with
|V (Q2)| > |V (P)|, which contradicts the maximality of P. Consequently, {u1, u2m}⊆
V (P1)− Z.

For i ∈ {1, 2m}, let Ri be the element of P1 containing ui. If R1 
= R2m, let
Q3 = (P−{R1, R2m, P 1, . . . , Pm−1})∪{R1−u1, R

2m−u2m, Q
1, . . . , Qm}; if R1 = R2m

and |V (R1)| ≥ 4, letQ3 = (P−{R1, P 1, . . . , Pm−1})∪{R1−{u1, u2m}, Q1, . . . , Qm}; if
R1 = R2m and |V (R1)| = 3, letQ3 = (P−{R1, P 1, . . . , Pm−1})∪{vu1u2, Q

2, . . . , Qm}
where v is the vertex in Z ∩ V (R1). In each case, Q3 is an f -star-packing of G with
|V (Q3)| = |V (P)| and |E(Q3) ∩ E(M)| > |E(P) ∩ E(M)|, which contradicts (P1)
(note that this argument works even if m = 1). �

It follows from Claim 2.1 that |M2| =
∑

C |E(C) ∩ M2| + |M2 ∩ E(P2)| ≤∑
C |E(C) ∩ E(P2)| + |M2 ∩ E(P2)| = |P2|, where C runs over all components of

H . Furthermore, we have |M1| ≤ |Z| = |P1|. Consequently,

|P| = |P1|+ |P2| ≥ |M1|+ |M2| = |M| = α′(G).

As we mentioned before the statement of Theorem 1.1, we have |P| ≤ α′(G). There-
fore, |P| = α′(G).
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