On star-packings having a large matching

Yoshimi Egawa
Department of Applied Mathematics
Tokyo University of Science
1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601
Japan

Michitaka Furuya
College of Liberal Arts and Sciences
Kitasato University
1-15-1 Kitasato, Minami-ku, Sagamihara, Kanagawa 252-0373
Japan
michitaka.furuya@gmail.com

Abstract

Let G be a graph, and let $f: V(G) \rightarrow\{2,3, \ldots\}$ be a function. A family \mathcal{P} of vertex-disjoint subgraphs of G is an f-star-packing if each element of \mathcal{P} is a star of order at least 2 and for $x \in \bigcup_{P \in \mathcal{P}} V(P)$, the degree of x in the graph $\bigcup_{P \in \mathcal{P}} P$ is at most $f(x)$. In this paper we prove that G has a maximum f-star-packing \mathcal{P} such that $|\mathcal{P}|$ is equal to the matching number of G. As an application of our result, we show a corollary concerning a bound on the number of components of order 2 in a path-factor.

1 Introduction

In this paper, we consider only finite undirected simple graphs. Let G be a graph. We let $V(G)$ and $E(G)$ denote the vertex set and the edge set of G, respectively. For terms and symbols not defined here, we refer the reader to [4].

A family \mathcal{P} of vertex-disjoint connected subgraphs of G is called a packing. We let $V(\mathcal{P})=\bigcup_{P \in \mathcal{P}} V(P)$ and $E(\mathcal{P})=\bigcup_{P \in \mathcal{P}} E(P)$. For each $x \in V(\mathcal{P})$, let $d_{\mathcal{P}}(x)$ denote the degree of x in the graph $\bigcup_{P \in \mathcal{P}} P$. A packing \mathcal{P} of G is perfect if $V(\mathcal{P})=V(G)$. A packing \mathcal{P} of G is called a matching if each element of \mathcal{P} is a complete graph of order 2. For a function $f: V(G) \rightarrow\{2,3, \ldots\}$, a packing \mathcal{P} is called an f-star-packing if each element of \mathcal{P} is a star and $1 \leq d_{\mathcal{P}}(x) \leq f(x)$ for all $x \in V(\mathcal{P})$. A matching \mathcal{M} (resp. an f-star-packing \mathcal{P}) of G is maximum if there is no matching \mathcal{M}^{\prime} (resp. no f-star-packing \mathcal{P}^{\prime}) of G with $\left|V\left(\mathcal{M}^{\prime}\right)\right|>|V(\mathcal{M})|$ (resp. $\left.\left|V\left(\mathcal{P}^{\prime}\right)\right|>|V(\mathcal{P})|\right)$. The
cardinality of a maximum matching of G, denoted by $\alpha^{\prime}(G)$, is called the matching number of G.

Note that a matching of a graph G is an f-star-packing for any function f : $V(G) \rightarrow\{2,3, \ldots\}$. Note also that for an f-star-packing \mathcal{P}, since edges from distinct elements of \mathcal{P} form a matching, we have $|\mathcal{P}| \leq \alpha^{\prime}(G)$. Thus it is natural to seek for a maximum f-star packing \mathcal{P} with $|\mathcal{P}|=\alpha^{\prime}(G)$. In other words, we are interested in the existence problem of a maximum f-star packing containing a maximum matching. Our main result is the following.

Theorem 1.1 Let G be a graph, and let $f: V(G) \rightarrow\{2,3, \ldots\}$ be a function. Then G has a maximum f-star-packing \mathcal{P} with $|\mathcal{P}|=\alpha^{\prime}(G)$.

Now we consider a special kind of f-star-packing. A perfect f-star-packing of a graph G is called a path-factor if $f(x)=2$ for all $x \in V(G)$. Note that each element of a path-factor is a path of order 2 or 3 . A min-max theorem concerning an f-starpacking is known (see Theorem 7.9 in [2]). In particular, a necessary and sufficient condition for the existence of a path-factor is given as follows (here $i(G)$ denotes the number of isolated vertices of a graph G):

Theorem A (Akiyama, Avis and Era [1]) A graph G has a path-factor if and only if $i(G-S) \leq 2|S|$ for all $S \subseteq V(G)$.

Berge [3] gave the following theorem concerning a maximum matching (here $\operatorname{odd}(G)$ denotes the number of components having odd order of a graph $G)$.

Theorem B (Berge [3]) Let G be a graph, and let α be a real number with $0 \leq$ $\alpha \leq \frac{|V(G)|}{2}$. Then $\alpha^{\prime}(G) \geq \alpha$ if and only if odd $(G-S) \leq|S|+|V(G)|-2 \alpha$ for all $S \subseteq V(G)$.

By Theorems 1.1, A and B, we obtain the following corollary concerning the existence of a path-factor which contains at least as many components of order 2 as required.

Corollary 1.2 Let G be a graph, and let t be a real number with $0 \leq t \leq \frac{|V(G)|}{2}$. Then G has a path-factor \mathcal{P} such that the number of elements of order 2 is at least t if and only if $i(G-S) \leq 2|S|$ and $\operatorname{odd}(G-S) \leq|S|+\frac{|V(G)|-2 t}{3}$ for all $S \subseteq V(G)$.

2 Proof of Theorem 1.1

Let \mathcal{M} be a maximum matching of G, and let \mathcal{P} be a maximum f-star-packing of G. We choose \mathcal{M} and \mathcal{P} so that
(P 1$)|E(\mathcal{P}) \cap E(\mathcal{M})|$ is as large as possible.

Set $\mathcal{P}_{1}=\{P \in \mathcal{P}:|V(P)| \geq 3\}$ and $\mathcal{P}_{2}=\mathcal{P}-\mathcal{P}_{1}$. Let $Z=\left\{x \in V(\mathcal{P}): d_{\mathcal{P}}(x) \geq 2\right\}$. Note that $Z \subseteq V\left(\mathcal{P}_{1}\right)$. Let M_{1} be the set of edges in $E(\mathcal{M})$ incident with a vertex in Z, and let $M_{2}=E(\mathcal{M})-M_{1}$. Let H be the subgraph of G induced by the set $\left(M_{2}-E\left(\mathcal{P}_{2}\right)\right) \cup\left(E\left(\mathcal{P}_{2}\right)-M_{2}\right)$.

Claim 2.1 For each component C of H, we have $\left|E(C) \cap M_{2}\right| \leq\left|E(C) \cap E\left(\mathcal{P}_{2}\right)\right|$.
Proof. Since M_{2} and $E\left(\mathcal{P}_{2}\right)$ are sets of independent edges of G, C is a path or a cycle. By way of contradiction, we suppose that $\left|E(C) \cap M_{2}\right|>\left|E(C) \cap E\left(\mathcal{P}_{2}\right)\right|$. It follows that C is a path of even order and, if we write $C=u_{1} u_{2} \cdots u_{2 m}(m \geq 1)$, then $u_{2 i-1} u_{2 i} \in M_{2}(1 \leq i \leq m)$ and $u_{2 i} u_{2 i+1} \in E\left(\mathcal{P}_{2}\right)(1 \leq i \leq m-1)$. Furthermore, $u_{1}, u_{2 m} \in\left(V\left(\mathcal{P}_{1}\right)-Z\right) \cup(V(G)-V(\mathcal{P}))$. Let P^{i} be the path $u_{2 i} u_{2 i+1}$ for each $i(1 \leq i \leq m-1)$, and let Q^{i} be the path $u_{2 i-1} u_{2 i}$ for each $i(1 \leq i \leq m)$. Note that $P^{i} \in \mathcal{P}_{2}$ and $E(\mathcal{P}) \cap\left(\bigcup_{1 \leq i \leq m} E\left(Q^{i}\right)\right)=\emptyset$.

We first suppose that $\left\{u_{1}, u_{2 m}\right\} \cap(V(G)-V(\mathcal{P})) \neq \emptyset$. If $\left\{u_{1}, u_{2 m}\right\} \subseteq V(G)-V(\mathcal{P})$, then $\mathcal{Q}_{1}=\left(\mathcal{P}-\left\{P^{1}, \ldots, P^{m-1}\right\}\right) \cup\left\{Q^{1}, \ldots, Q^{m}\right\}$ is an f-star-packing of G with $\left|V\left(\mathcal{Q}_{1}\right)\right|>|V(\mathcal{P})|$, which contradicts the maximality of \mathcal{P}. Thus, without loss of generality, we may assume that u_{1} belongs to an element R of \mathcal{P}_{1}. Then $\mathcal{Q}_{2}=$ $\left(\mathcal{P}-\left\{R, P^{1}, \ldots, P^{m-1}\right\}\right) \cup\left\{R-u_{1}, Q^{1}, \ldots, Q^{m}\right\}$ is an f-star-packing of G with $\left|V\left(\mathcal{Q}_{2}\right)\right|>|V(\mathcal{P})|$, which contradicts the maximality of \mathcal{P}. Consequently, $\left\{u_{1}, u_{2 m}\right\} \subseteq$ $V\left(\mathcal{P}_{1}\right)-Z$.

For $i \in\{1,2 m\}$, let R^{i} be the element of \mathcal{P}_{1} containing u_{i}. If $R^{1} \neq R^{2 m}$, let $\mathcal{Q}_{3}=\left(\mathcal{P}-\left\{R^{1}, R^{2 m}, P^{1}, \ldots, P^{m-1}\right\}\right) \cup\left\{R^{1}-u_{1}, R^{2 m}-u_{2 m}, Q^{1}, \ldots, Q^{m}\right\}$; if $R^{1}=R^{2 m}$ and $\left|V\left(R^{1}\right)\right| \geq 4$, let $\mathcal{Q}_{3}=\left(\mathcal{P}-\left\{R^{1}, P^{1}, \ldots, P^{m-1}\right\}\right) \cup\left\{R^{1}-\left\{u_{1}, u_{2 m}\right\}, Q^{1}, \ldots, Q^{m}\right\}$; if $R^{1}=R^{2 m}$ and $\left|V\left(R^{1}\right)\right|=3$, let $\mathcal{Q}_{3}=\left(\mathcal{P}-\left\{R^{1}, P^{1}, \ldots, P^{m-1}\right\}\right) \cup\left\{v u_{1} u_{2}, Q^{2}, \ldots, Q^{m}\right\}$ where v is the vertex in $Z \cap V\left(R^{1}\right)$. In each case, \mathcal{Q}_{3} is an f-star-packing of G with $\left|V\left(\mathcal{Q}_{3}\right)\right|=|V(\mathcal{P})|$ and $\left|E\left(\mathcal{Q}_{3}\right) \cap E(\mathcal{M})\right|>|E(\mathcal{P}) \cap E(\mathcal{M})|$, which contradicts (P1) (note that this argument works even if $m=1$).

It follows from Claim 2.1 that $\left|M_{2}\right|=\sum_{C}\left|E(C) \cap M_{2}\right|+\left|M_{2} \cap E\left(\mathcal{P}_{2}\right)\right| \leq$ $\sum_{C}\left|E(C) \cap E\left(\mathcal{P}_{2}\right)\right|+\left|M_{2} \cap E\left(\mathcal{P}_{2}\right)\right|=\left|\mathcal{P}_{2}\right|$, where C runs over all components of H. Furthermore, we have $\left|M_{1}\right| \leq|Z|=\left|\mathcal{P}_{1}\right|$. Consequently,

$$
|\mathcal{P}|=\left|\mathcal{P}_{1}\right|+\left|\mathcal{P}_{2}\right| \geq\left|M_{1}\right|+\left|M_{2}\right|=|\mathcal{M}|=\alpha^{\prime}(G)
$$

As we mentioned before the statement of Theorem 1.1, we have $|\mathcal{P}| \leq \alpha^{\prime}(G)$. Therefore, $|\mathcal{P}|=\alpha^{\prime}(G)$.

Acknowledgment

This work was supported by JSPS KAKENHI Grant number 26800086 (to M.F.).

References

[1] J. Akiyama, D. Avis and H. Era, On a $\{1,2\}$-factor of a graph, TRU Math. 16 (1980), 97-102.
[2] J. Akiyama and M. Kano, Factors and factorizations of graphs, Lecture Notes in Mathematics 2031, Springer, 2010.
[3] C. Berge, Sur le couplage maximum d'un graphe, C. R. Acad. Sci. Paris 247 (1958), 258-259.
[4] R. Diestel, Graph Theory (4th edition), Graduate Texts in Mathematics 173, Springer, 2010.

