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Abstract

The converse of a tournament is obtained by reversing all arcs. If a
tournament is isomorphic to its converse, it is called self-converse. Eplett
provided a necessary and sufficient condition for a sequence of integers
to be realisable as the score sequence of a self-converse tournament. In
this paper we extend this result to generalised tournaments.

1 Introduction and results

A generalised tournament G = (V (G), α) is a set V (G) = {1, . . . , n} of vertices
along with a function α : V (G)×V (G) → [0, 1], such that α(i, j)+α(j, i) = 1 for all
(i, j) ∈ V (G)× V (G), i �= j, and α(i, i) = 0 for all i ∈ V (G). If G = (V (G), α) and
α ∈ {0, 1}, then we say that G is a (non-generalised) tournament. Given a vertex
i ∈ V (G), the outdegree of i is defined as di =

∑
j∈V (G) α(i, j). The sequence (di)

n
i=1

of outdegrees of G is called the score sequence of G.
A natural question is to ask for a condition that characterises those sequences

which can be realised as the score sequence of some generalised tournament.

Condition I. A sequence (di)
n
i=1 of non-negative real numbers is said to satisfy

condition I if

∑
i∈J

di ≥
(|J |

2

)

for all J ⊆ {1, 2, . . . , n}, with equality for J = {1, . . . , n}.
If (di)

n
i=1 is the score sequence of some generalised tournament, then one can

easily see that condition I must be satisfied, since the subtournament induced by J
has

(|J |
2

)
pairs of vertices, each of which contributes at least 1 to the score sum.

One of the classical results in graph theory is the sufficiency of condition I for non-
generalised tournaments, i.e. showing that if (di)

n
i=1 satisfies condition I, then there
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is a tournament with score sequence (di)
n
i=1. More precisely, Landau [2] showed that

a non-decreasing sequence (di)
n
i=1 consisting of non-negative integers is the score

sequence of some tournament if and only if condition I is satisfied. Subsequently
Moon [3] extended this to the setting of generalised tournaments, showing that a
non-decreasing sequence (di)

n
i=1 consisting of non-negative reals is the score sequence

of some generalised tournament if and only if condition I is satisfied.
In this paper we study a related problem for the class of self-converse generalised

tournaments. Two generalised tournaments G1 = (V (G1), α1) and G2 = (V (G2), α2)
are isomorphic if there exists a bijection ρ : V (G1) → V (G2) such that α1(i, j) =
α2(ρ(i), ρ(j)) for all i, j ∈ V (G1). The converse of a generalised tournament G =
(V (G), α) is the tournament G′ = (V (G), α′) where α′(i, j) = 1 − α(i, j) for all
i, j ∈ V (G). One should think of the converse G′ as being obtained by reversing all
arcs of G. A generalised tournament G is self-converse if G and G′ are isomorphic.

The following condition is central in the study of which sequences are realisable
by self-converse generalisted tournaments.

Condition II. A non-decreasing sequence (di)
n
i=1 of non-negative real numbers is

said to satisfy condition II if

di + dn+1−i = n− 1

for all i = 1, 2, . . . , n.

It is a two-line argument that any self-converse generalised tournament must
have a score sequence satisfying condition II. Eplett proved sufficiency, but only for
non-generalised tournaments.

Theorem 1 ([1]). A non-decreasing sequence (di)
n
i=1 of non-negative integers is the

score sequence of some self-converse (non-generalised) tournament if and only if
conditions I and II are satisfied.

As we shall show, Eplett’s result does extend in the natural way to real sequences
and self-converse generalised tournaments. The following is our main result.

Theorem 2. A non-decreasing sequence (di)
n
i=1 of non-negative real numbers is the

score sequence of some self-converse generalised tournament if and only if conditions
I and II are satisfied.

In the remainder of this section, we will outline the ideas behind the proof of
Theorem 2. (Indeed, after reading the introduction, hopefully one should be able to
fill in the missing details.) The details follow in Section 2. It should be mentioned
that the ideas are very similar to those in [4], in which Moon’s result is derived from
Landau’s result, but some technical details differ.

The proof is carried out in two steps. First, an extension to the case when the
score sequence is rational, then to the case when it is real.

Lemma 3. A non-decreasing sequence (di)
n
i=1 of non-negative rational numbers is the

score sequence of some self-converse generalised tournament if and only if conditions
I and II are satisfied.



E. THÖRNBLAD/AUSTRALAS. J. COMBIN. 70 (3) (2018), 329–335 331

The idea behind the proof of Lemma 3 can be described as a “blow-up followed
by a shrink-down”. More precisely, given a rational non-decreasing sequence (di)

n
i=1

satisfying conditions I and II, we consider instead a related sequence containing mn
integral elements, where m is chosen so that mdi is integral for all i = 1, . . . , n.
We show that this sequence satisfies the conditions of Theorem 1, so there exists a
self-converse tournament H having this sequence as its score sequence. After this
we will divide the mn vertices of H into n clusters of m vertices. Each cluster will
correspond to a vertex in a generalised tournament G, the edge weights between
the vertices of which are obtained by averaging over the edge weights between the
corresponding clusters in H . Finally we show that that the score sequence of G is
indeed (di)

n
i=1 and that G is self-converse.

In order to carry out the extension to real sequences, we need the following
approximation result.

Lemma 4. Let (di)
n
i=1 be a non-decreasing sequence of non-negative reals satisfying

conditions I and II. Then there exist non-decreasing sequences (d
(m)
i )ni=1 of non-

negative rationals satisfying conditions I and II (for each m ≥ 1) such that d
(m)
i → di

as m → ∞, for each i = 1, 2, . . . , n.

Let us make two observations which are helpful in the proof of Lemma 4. First,
since we assume that the sequence is non-decreasing, condition I need only be checked
for J = {1, 2, . . . , k} for k = 1, 2, . . . , n. Second, if condition II is satisfied, then
condition I need only be checked for J = {1, 2, . . . , k} for k = 1, 2, . . . , �n/2	. These
observations simplify the proof; the idea is then to do a small perturbation of the
sequence (di)

n
i=1 so that it becomes rational, taking care not to disturb the validity

of condition I or II.
Given Lemma 3 and Lemma 4, the proof of Theorem 2 is not difficult. Given

a real sequence (di)
n
i=1, we will approximate it by rational sequences (d

(m)
i )ni=1 as

in Lemma 4. By Lemma 3 we can find generalised self-converse tournaments on n
vertices with rational edge weights and scores sequences (d

(m)
i )ni=1. The final step is

to note that the set of edge weights is compact, so we may select a subsequence of the
generalised tournaments such that all edge weights converge. The limit object will
be a well-defined self-converse generalised tournament with score sequence (di)

n
i=1.

2 Proofs

Proof of Lemma 3. As mentioned, the necessity of condition I and condition II is
immediate. For sufficiency, let (di)

n
k=1 be a non-decreasing sequence of rational num-

bers satisfying conditions I and II. Our proof follows the roadmap outlined after the
statement of the lemma. Since the di are rational, there exist ki, mi ∈ N (with no
common factors) such that di = ki/mi. Denote by m the lowest common multiple of
mi. (If some ki = 0, we may take mi = 1; this may happen for at most one i.)

Let us assume that m,n are both odd; the other cases require only minor mod-
ifications and are left to the reader. We first construct an (n×m)-array which will
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contain the outdegrees of our blow-up. For i = 1, . . . , n and � = 1, . . . , m, let

ci,� = mdi +
m− 1

2
.

(For m even, we can let the second term be m/2−1 for � = 1, 2, . . . , m/2 and m/2 for
� = m/2 + 1, . . . , m.) Since we assume that the sequence (di)

n
i=1 be non-decreasing,

also ci,� is non-decreasing in i. It is clear that ci,� ∈ N for all i = 1, . . . , m and
� = 1, . . . , n.

We need to show that the entries in the matrix (ci,�) satisfy condition I and
condition II. The fact that the ci,� satisfy condition I can be shown algebraically; this
is done in [4] in greater generality. A more intuitive argument might be the following.
Since (di)

n
i=1 satisfies Moon’s condition, there exists a generalised tournament with

score sequence (di)
n
i=1. Now consider the blow-up of this tournament, formed by

copying each of the n vertices into m identical vertices, letting each cluster of m
vertices form a regular subtournament, each vertex of which has score (m−1)/2. (If
m were even, we would let each cluster form a near-regular subtournament with scores
m/2 − 1, m/2 − 1, . . . , m/2− 1, m/2, m/2, . . . , m/2.) This proves the existence of a
generalised tournament with outdegrees ci,� = mdi +

m−1
2

, implying that condition I
must be satisfied.

Next we show that ci,� satisfies ci,� + cn+1−i,m+1−� = mn − 1 for all i = 1, . . . , n
and � = 1, . . . , m. This corresponds precisely to condition II. Since ci,� is constant
for i fixed, we may take � = 1. We have

ci,1 + cn+1−i,m = m(di + dn+1−i) +m− 1 = m(n− 1) +m− 1 = mn− 1,

so condition II is satisfied.
By Theorem 1, there exists a (non-generalised) self-converse tournament H on

mn vertices with outdegrees ci,�. Denote by vi,� the vertex of H with outdegree ci,�.
Let ρ be an isomorphism H → H ′. By the proof of Theorem 1 in [1], we may assume
that the cycle decomposition of ρ consists of �mn/2	 transpositions and a single fixed
point (which must be a vertex with outdegree c�n/2�,· = (mn−1)/2). In other words,
we may assume that

ρ(vi,�) = vn+1−i,m+1−�

for all i = 1, . . . , n and � = 1, . . . , m.
We define now a generalised tournament G = (V (G), α) on n vertices w1, . . . , wn

as follows. For i, j = 1, 2, . . . , n, let

α(wi, wj) =
1

m2

m∑
�=1

m∑
k=1

αH(vi,�, vj,k)

where αH denotes the edge weight function of H (which is an indicator function and
can only take values in {0, 1}). Note that

α(wi, wj) + α(wj, wi) =
1

m2

m∑
�=1

m∑
k=1

(αH(vi,�, vj,k) + αH(vj,k, vi,�) = 1
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so α is a valid weight function, i.e. G is well-defined. We claim that G has score
sequence (di)

n
i=1. To see this, note that

n∑
j=1
j �=i

α(wi, wj) =
1

m2

n∑
j=1
j �=i

m∑
�=1

m∑
k=1

αH(vi,�, vj,k)

=
1

m2

m∑
�=1

n∑
i=1
i �=j

m∑
k=1

αH(vi,�, vj,k)

=
1

m2

m∑
�=1

mdi

= di.

Finally we need to show that G is self-converse. Let ρG : V (G) → V (G′) be the
bijection ρG(wi) = wn+1−i. It suffices to show that α(wi, wj) = 1−α(wn+1−i, wn+1−j),
the latter being equal to α′(ρG(wi), ρG(wj)).

Using the fact that H is self-converse, we have, for any i �= j,

α(wi, wj) =
1

m2

m∑
�=1

m∑
k=1

αH(vi,�, vj,k)

=
1

m2

m∑
�=1

m∑
k=1

(1− αH(vn+1−i,m+1−�, vn+1−j,m+1−k))

= 1− 1

m2

m∑
�=1

m∑
k=1

αH(vn+1−i,m+1−�, vn+1−j,m+1−k)

= 1− α(wn+1−i, wn+1−j).

Hence G and G′ are isomorphic, so G is self-converse. This completes the proof.

Proof of Lemma 4. Let (di)
n
i=1 be a non-decreasing sequence of non-negative reals

satisfying conditions I and II. Let

n′ = max{k ∈ {1, 2, . . . , �n/2	} : dk < (n− 1)/2}.

(We may assume this exists; if not, then all scores are equal to (n− 1)/2 and hence
rational, so no approximation is necessary.)

For each m ≥ 1, we choose the sequence (d
(m)
k )nk=1 as follows. Define first d

(m)
k =

dk = (n− 1)/2 for all k = n′ + 1, . . . , 
n/2�. Pick some rational d
(m)
n′ in the interval

(dn′,min{(n − 1)/2, dn′ + 1/m}). Proceed inductively; having picked d
(m)
k for some

1 < k ≤ n′ we pick a rational d
(m)
k−1 in the interval (dk−1,min{d(m)

k , dk−1 + 1/m}).
Proceed until we have picked rationals d

(m)
n′ , . . . , d

(m)
1 . For i = 
n/2� + 1, . . . , n, we

define d
(m)
i = n− 1− d

(m)
n+1−i.
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By construction we have d
(m)
1 ≤ d

(m)
2 ≤ · · · ≤ d

(m)
n and that condition II is met.

To see that condition I is met, note that

k∑
i=1

d
(m)
i ≥

k∑
i=1

di ≥
(
k

2

)

for any k = 1, 2, . . . , �n/2	, which is enough by the observations after the statement

of the lemma in Section 1. By construction we have |di − d
(m)
i | < 1/m for each

i = 1, 2, . . . , n, so d
(m)
i → di as m → ∞.

Proof of Theorem 2. Let (di)
n
i=1 be a non-decreasing sequence of non-negative reals

satisfying conditions I and II. By Lemma 4, for each i = 1, 2, . . . , n, we can find
rationals d

(m)
i converging to di as m → ∞, such that (d

(m)
i )ni=1 satisfies conditions I

and II for each m ≥ 1.
By Lemma 3, there exists tournaments Gm = (V (Gm), αm) with score sequences

(d
(m)
i )ni=1, respectively. We may assume that V (Gm) = {1, 2, . . . , n}, that vertex i

has outdegree d
(m)
i for each m ≥ 1 and that ρ : {1, 2, . . . , n} → {1, 2, . . . n} defined

by ρ(i) = n+ 1− i is an isomorphism between Gm and its converse G′
m.

The edge weights of each tournament are defined by the numbers {αm(i, j) :

i, j = 1, . . . , n, i �= j} which may be seen as an element of the compact set [0, 1](
n
2).

By passing to a subsequence, we may assume that αm(i, j) converges as m → ∞, for
all i, j = 1, 2, . . . , n.

Let G = (V (G), α) be the generalised tournament with V (G) = {1, 2, . . . , n} and
α(i, j) = limm→∞ αm(i, j). We should verify that this is a well-defined generalised
tournament, that it has the appropriate score sequence, and that it is self-converse.

To see that it is well-defined, note that

α(i, j) + α(j, i) = lim
m→∞

αm(i, j) + lim
m→∞

αm(j, i) = lim
m→∞

(αm(i, j) + αm(j, i)) = 1,

for any i, j = 1, 2, . . . , n with i �= j, so G is well-defined. (Also α(i, j) ∈ [0, 1] and
α(i, i) = 0.) By construction it holds that the score sequence of G is (di)

n
i=1. Finally

we claim that ρ : {1, 2, . . . , n} → {1, 2, . . . , n} defined by ρ(i) = n + 1 − i is an
isomorphism between G and G′. To see this, note that

α(i, j) = lim
m→∞

αm(i, j) = lim
m→∞

α′
m(ρ(i), ρ(j)) = lim

m→∞
(1− αm(ρ(i), ρ(j)))

= 1− lim
m→∞

αm(ρ(i), ρ(j))

= 1− α(ρ(i), ρ(j))

= α′(ρ(i), ρ(j)).

This completes the proof.
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