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Abstract

We give a classification of singly even self-dual [56, 28, d] codes with
d ∈ {10, 12} constructed from Hadamard matrices of order 28.

1 Introduction

A (binary) [n, k] code C is a k-dimensional vector subspace of Fn
2 , where F2 is the

field of 2 elements. All codes in this note are binary. The parameter n is called
the length of C. The elements of C are called codewords and the weight wt(x) of
a codeword x is the number of non-zero coordinates. An [n, k, d] code is an [n, k]
code with minimum (non-zero) weight d. The dual code C⊥ of C is defined as
C⊥ = {x ∈ F

n
2 | x · y = 0 for all y ∈ C} under the standard inner product x · y. A

code C is self-dual if C = C⊥. A code is doubly even if all codewords have weight
divisible by four, and singly even if all weights are even and there is at least one
codeword x with wt(x) ≡ 2 (mod 4). A doubly even self-dual code of length n exists
if and only if n ≡ 0 (mod 8), while a singly even self-dual code of length n exists if
and only if n is even. The minimum weight d(C) of a self-dual code C of length n is
bounded by d(C) ≤ 4�n/24�+4 unless n ≡ 22 (mod 24) when d(C) ≤ 4�n/24�+6 [8].
A self-dual code meeting the upper bound is called extremal.

A HadamardmatrixH of order n is an n×n (1,−1)-matrix such thatHHT = nIn,
where HT is the transpose of H and In is the identity matrix of order n. It is known
that the order n is necessarily 1, 2, or a multiple of four. Two Hadamard matrices
H and H ′ are said to be equivalent if there are (0,±1)-monomial matrices P,Q with
H ′ = PHQ. All Hadamard matrices of orders up to 32 were classified (see [6] for
order 28 and [5] for order 32).

Two codes C and C ′ are equivalent if one can be obtained from the other by
permuting the coordinates. It is a fundamental problem to classify self-dual codes of
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modest length and determine the largest minimum weight among self-dual codes of
that length. For example, the largest minimum weight among singly even self-dual
codes of length 56 is 10 or 12 [3]. In this note, we give a partial classification of
singly even self-dual [56, 28, d] codes with d ∈ {10, 12}. Extremal doubly even self-
dual codes of lengths 40 and 56 constructed from Hadamard matrices of orders 20
and 28 were classified in [2] and [7], respectively (see Proposition 2 for the construc-
tion). Extremal singly even self-dual codes of length 40 constructed from Hadamard
matrices of order 20 were classified in [4] (see Proposition 3 for the construction).
The aim of this note is to demonstrate the following theorem.

Theorem 1. There is no extremal singly even self-dual code of length 56 constructed
from Hadamard matrices of order 28. There are 944 inequivalent singly even self-dual
[56, 28, 10] codes constructed from Hadamard matrices of order 28.

All computer calculations in this note were done with the help of Magma [1].

2 Weight enumerators of singly even self-dual [56, 28, 10]codes

In this section, we give the possible weight enumerators of singly even self-dual
[56, 28, 10] codes.

Let C be a singly even self-dual code of length n. Let C0 denote the doubly even
subcode of C. The shadow S of C is defined to be C⊥

0 \ C. Let Ai and Bi be the
numbers of vectors of weight i in C and S, respectively. The weight enumerators WC

and WS of C and S are given by
∑n

i=0Aiy
i and

∑n−d(S)
i=d(S) Biy

i, respectively, where

d(S) denotes the minimum weight of S. If we write

WC =

�n/8�∑
j=0

aj(1 + y2)n/2−4j(y2(1− y2)2)j ,

for suitable integers aj , then

WS =

�n/8�∑
j=0

(−1)jaj2
n/2−6jyn/2−4j(1− y4)2j ,

[3, (10), (11)].

Suppose that C is a singly even self-dual [56, 28, 10] code. Since the minimum
weight is 10, we have

a0 = 1, a1 = −28, a2 = 238, a3 = −672, a4 = 525.
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Then the weight enumerator of the shadow S is written as:

−a7
16384

+

(
7a7
8192

+
a6
256

)
y4 +

(−91a7
16384

− 3a6
64

− a5
4

)
y8

+

(
8400 +

91a7
4096

+
33a6
128

+
5a5
2

)
y12

+

(
620928− 1001a7

16384
− 55a6

64
− 45a5

4

)
y16 + · · · .

Since the shadow contains no zero-vector, a7 = 0.

• Suppose that d(S) = 4.
This gives that a6 = 256 and a5 is divisible by four, say a5 = 4α. Therefore,
the possible weight enumerators of C and S are as follows:

WC
56,1 =1 + (308 + 4α)y10 + (4246− 8α)y12 + (40852− 28α)y14 + · · · ,

W S
56,1 =y4 + (−12− α)y8 + (8466 + 10α)y12 + (620708− 45α)y16 + · · · ,

respectively, where α is an integer.

• Suppose that d(S) ≥ 8.
This gives that a6 = 0 and a5 is divisible by four, say a5 = 4α. Therefore, the
possible weight enumerators of C and S are as follows:

WC
56,2 =1 + (308 + 4α)y10 + (3990− 8α)y12 + (42900− 28α)y14 + · · · ,

W S
56,2 =− αy8 + (8400 + 10α)y12 + (620928− 45α)y16 + · · · ,

respectively, where α is an integer.

3 Self-dual codes from Hadamard matrices

In this section, we review methods for constructing self-dual codes from Hadamard
matrices. Then we give a condition that singly even self-dual codes of length 56
constructed from Hadamard matrices of order 28 have minimum weight at least 10.

A generator matrix of a code C is a matrix whose rows generate C. Let Jn denote
the n× n all-one matrix and let 1n denote the all-one vector of length n. Let M be
an n× n (1,−1)-matrix and let x be a (1,−1)-vector of length n. Throughout this
note, we regard M = (M + Jn)/2 as a binary matrix and we regard x = (x+ 1n)/2
as a binary vector.

Proposition 2 (Tonchev [9]). Let H be a Hadamard matrix of order n ≡ 4 (mod 8)
such that the number of coordinates equal to +1 in each row and column is congruent
to 3 (mod 4). Then the code with generator matrix

(
In H

)
is a doubly even self-

dual code of length 2n.
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Proposition 3 (Harada and Tonchev [4]). Let H be a Hadamard matrix of order
n ≡ 4 (mod 8) such that the number of coordinates equal to +1 in each row and
column is congruent to 1 (mod 4). Then the code with generator matrix

(
In H

)
is a singly even self-dual code of length 2n.

Starting from a particular Hadamard matrix, one can transform it into many
different Hadamard matrices by negating rows and columns such that the number of
coordinates equal to +1 in each row and column is congruent to 3 (mod 4) (resp. 1
(mod 4)). Hence, doubly even (resp. singly even) self-dual codes are constructed from
Hadamard matrices by Proposition 2 (resp. Proposition 3). Extremal doubly even
self-dual codes of lengths 40 and 56 constructed by Proposition 2 from Hadamard
matrices of orders 20 and 28 were classified in [2] and [7], respectively. Extremal
singly even self-dual codes of length 40 constructed by Proposition 3 from Hadamard
matrices of order 20 were classified in [4]. In this note, we give a classification of
singly even self-dual [56, 28, d] codes with d ∈ {10, 12} constructed by Proposition 3
from Hadamard matrices of order 28.

Without loss of generality, we may assume that the particular Hadamard matrix
of order n has the following form

H =

⎛
⎜⎜⎜⎝

−1 1 · · · 1
1
... D
1

⎞
⎟⎟⎟⎠ . (1)

Let H3(Γ,Λ) and H1(Γ,Λ) be the Hadamard matrices obtained from H in form (1)
by negating columns i ∈ Γ ⊂ {1, 2, . . . , n} and negating rows j ∈ Λ ⊂ {1, 2, . . . , n}
such that the number of coordinates equal to +1 in each row and column is congruent
to 3 (mod 4) and 1 (mod 4), respectively. It is easy to see that |Γ| and |Λ| are even.
We remark that Λ is uniquely determined for a given set Γ. We often denote the
matrices H3(Γ,Λ) and H1(Γ,Λ) by H3(Γ) and H1(Γ), respectively, without listing Λ.
Let C3(H,Γ,Λ) and C1(H,Γ,Λ) denote the doubly even self-dual code and the singly
even self-dual code constructed by Propositions 2 and 3 from H3(Γ,Λ) and H1(Γ,Λ),
respectively. Similar to the matrices H3(Γ,Λ) and H1(Γ,Λ), we often denote the
codes C3(H,Γ,Λ) and C1(H,Γ,Λ) by C3(H,Γ) and C1(H,Γ), respectively, without
listing Λ.

From now on, we assume that n = 28. Throughout this note, X denotes the set
{1, 2, . . . , 28}. We say that the set of four rows of a Hadamard matrix of order 28 is
a Hall set if the four rows can be converted to the following form

⎛
⎜⎜⎝

1 1 1 1 16 16 16 16

1 1 −1 −1 16 16 −16 −16

1 −1 1 −1 16 −16 16 −16

1 −1 −1 1 −16 16 16 −16

⎞
⎟⎟⎠ ,

by permuting and negating rows and columns.
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Proposition 4. Let C be a singly even self-dual code of length 56 constructed by
Proposition 3 from a Hadamard matrix H of order 28. If the minimum weight of C
is at least 10, then H is equivalent to H1 or H2 given in [7, p. 160].

Proof. Let H be a Hadamard matrix of order 28 in form (1). Let Γ be a subset of
X such that |Γ| is even. Let ri be the i-th row of H. Let r3i and r1i be the i-th rows
of H3(Γ) and H1(Γ), respectively. Let xΓ be the vector of F28

2 whose support is Γ.
Then we have

r3i =ri + xΓ + (xΓ · ri + γ)128,

r1i =ri + xΓ + (xΓ · ri + γ + 1)128,

where γ = 0 if |Γ| ≡ 0 (mod 4) and γ = 1 otherwise. Hence, for A ⊂ X such that
|A| is even, we obtain ∑

i∈A
r3i =

∑
i∈A

r1i . (2)

Let {ri1 , ri2, ri3 , ri4} be a Hall set of H . Then ri1 + ri2 + ri3 + ri4 has weight 4
or 24 [7]. If C3(H,Γ,Λ) is extremal, that is, it has minimum weight 12, then we
obtain [7]

|Λ ∩ {i1, i2, i3, i4}| =
{

1 or 3 if wt(ri1 + ri2 + ri3 + ri4) = 4,
0, 2 or 4 if wt(ri1 + ri2 + ri3 + ri4) = 24.

(3)

In addition, Kimura [7] showed that there is no (Γ,Λ) satisfying (3) for all Hadamard
matrices H such that H is not equivalent to H1 and H2 given in [7, p. 160]. In other
words, if H is not equivalent to H1 and H2 in [7], then C3(H,Γ) has a codeword
of weight 8 for all Γ and H . Hence, by (2), if H is not equivalent to H1 and H2

in [7], then C1(H,Γ) has a codeword of weight 8 for all Γ and H . This completes
the proof.

4 Singly even self-dual [56, 28, d] codes with d ∈ {10, 12} from
Hadamard matrices

In this section, we give a classification of singly even self-dual [56, 28, d] codes with
d ∈ {10, 12} constructed by Proposition 3 from Hadamard matrices of order 28. By
Proposition 4, it is sufficient to consider only Hadamard matrices H1 and H2 given
in [7, p. 160].

4.1 Case H2 in [7]

Suppose that H is a Hadamard matrix in form (1) obtained from H2 given in [7,
p. 160] by negating the first row and the i-th columns (i = 2, 3, . . . , 28). Let Γ be
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a subset of X. Let {ri1, ri2 , ri3, ri4} be a set of four distinct rows of H1(Γ). Our
exhaustive search shows that the only sets

Γ1 ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10},
Γ2 ={1, 11, 12, 13, 14, 15, 16, 17, 18, 19},
Γ3 =X \ Γ1,

Γ4 =X \ Γ2

are the subsets Γ satisfying wt(ri1 + ri2 + ri3 + ri4) 
= 4 for all i1, i2, i3, i4 with
1 ≤ i1 < i2 < i3 < i4 ≤ 28. We verified that the four singly even self-dual codes
C1(H,Γk) (k = 1, 2, 3, 4) have the following weight enumerator

1 + 3y6 + 197y10 + 4446y12 + 44361y14 + 309738y16 + 1577375y18 + · · · .
Therefore, there is no singly even self-dual [56, 28, d] code with d ∈ {10, 12} con-
structed by Proposition 3. In addition, we verified that these codes are equivalent.

4.2 Case H1 in [7]

Suppose that H is a Hadamard matrix in form (1) obtained from H1 given in [7,
p. 160] by negating the first row and the i-th columns (i = 2, 3, . . . , 28).

Lemma 5. The codes C1(H,Γ,Λ) and C1(H,X \ Γ, X \ Λ) are the same.

Proof. It follows from the fact that H1(Γ,Λ) = H1(X \ Γ, X \ Λ).

Hence, without loss of generality, we may assume that Γ satisfies the condition

|Γ| ≤ 14. (4)

Although the following proposition is somewhat trivial, we give a proof for the
sake of completeness.

Proposition 6. Suppose that C1(H,Γ,Λ) has minimum weight at least 10 satisfy-
ing (4).

(i) If 1 ∈ Γ and 1 ∈ Λ, then

(|Γ|, |Λ|) ∈ {(a, b) | a ∈ {10, 14}, b ∈ {10, 14, 18, 22, 26}}.

(ii) If 1 ∈ Γ and 1 
∈ Λ, then

(|Γ|, |Λ|) ∈ {(a, b) | a ∈ {4, 8, 12}, b ∈ {8, 12, 16, 20, 24}}.

(iii) If 1 
∈ Γ and 1 ∈ Λ, then

(|Γ|, |Λ|) ∈ {(a, b) | a ∈ {8, 12}, b ∈ {4, 8, 12, 16, 20}}.
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(iv) If 1 
∈ Γ and 1 
∈ Λ, then

(|Γ|, |Λ|) ∈ {(a, b) | a ∈ {2, 6, 10, 14}, b ∈ {2, 6, 10, 14, 18}}.

Proof. Since C1(H,Γ,Λ) are self-dual,

(
I28 H(Γ,Λ)

)
and

(
H(Γ,Λ)

T
I28

)

are generator matrices of C1(H,Γ,Λ). Since C1(H,Γ,Λ) has minimum weight at

least 10, the weight of every row of H1(Γ,Λ) and H1(Γ,Λ)
T
is at least 9.

(i) Suppose that 1 ∈ Γ and 1 ∈ Λ. Then the weights of the first rows of H1(Γ,Λ)

and H1(Γ,Λ)
T

are |Γ| − 1 and |Λ| − 1, respectively. Hence, we have that
|Γ| ≥ 10, |Λ| ≥ 10 and |Γ| ≡ |Λ| ≡ 2 (mod 4). The result follows.

(ii) Suppose that 1 ∈ Γ and 1 
∈ Λ. Then the weight of the first row of H1(Γ,Λ)
is 29− |Γ|. Hence, we have that |Γ| ≤ 20 and |Γ| ≡ 0 (mod 4). The weight of
the first row of H1(Γ,Λ)T is 1 + |Λ|. Hence, we have that |Λ| ≥ 8 and |Λ| ≡ 0
(mod 4). The result follows.

(iii) Suppose that 1 
∈ Γ and 1 ∈ Λ. Then the weight of the first row of H1(Γ,Λ) is
|Γ| + 1. Hence, we have that |Γ| ≥ 8 and |Γ| ≡ 0 (mod 4). The weight of the

first row of H1(Γ,Λ)
T
is 29 − |Λ|. Hence, we have that |Λ| ≤ 20 and |Λ| ≡ 0

(mod 4). The result follows.

(iv) Suppose that 1 
∈ Γ and 1 
∈ Λ. Then the weights of the first rows of H1(Γ,Λ)

and H1(Γ,Λ)
T
are 27 − |Γ| and 27 − |Λ|, respectively. Hence, we have that

|Γ| ≤ 18, |Λ| ≤ 18 and |Γ| ≡ |Λ| ≡ 2 (mod 4). The result follows.

This completes the proof.

By considering all subsets Γ satisfying the conditions given in Proposition 6, we
found all distinct singly even self-dual [56, 28, d] codes with d ∈ {10, 12} constructed
from H1. Our computer search shows that no extremal singly even self-dual code
is constructed from H1. The singly even self-dual [56, 28, 10] codes have 16 distinct
weight enumerators. The weight enumerators were determined by calculating the
numbers of codewords of weights 10 and 12. For each weight enumerator, we checked
whether codes are equivalent or not. Then 944 inequivalent singly even self-dual
[56, 28, 10] codes are constructed from H1.

4.3 Results

By Proposition 4, there are no other singly even self-dual [56, 28, d] codes with
d ∈ {10, 12} constructed from Hadamard matrices of order 28. Hence, there is
no extremal singly even self-dual code and there are 944 inequivalent singly even
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self-dual [56, 28, 10] codes constructed from Hadamard matrices of order 28. This
completes the proof of Theorem 1.

We denote the 944 codes by C56,i (i = 1, 2, . . . , 944). For the 16 distinct weight
enumerators, the values (i, α) in WC

56,i are listed in Table 1. For each (i, α), we list in
Table 1 the number N(i, α) of the inequivalent codes and we list in Table 2 the set Γ of
one code as an example. All the sets Γ for the 944 codes can be obtained electronically
from “http://www.math.is.tohoku.ac.jp/~mharada/Paper/F2-56-d10.txt”.

Table 1: Weight enumerators

(i, α) N(i, α) (i, α) N(i, α) (i, α) N(i, α) (i, α) N(i, α)

(1,−18) 1 (2,−2) 6 (2,−10) 230 (2,−18) 29
(1,−24) 4 (2,−4) 10 (2,−12) 180 (2,−20) 11
(1,−22) 1 (2,−6) 94 (2,−14) 138 (2,−22) 1
(2, 0) 1 (2,−8) 160 (2,−16) 77 (2,−24) 1

Table 2: Sets Γ for some codes C56,i

Codes Sets Γ (i, α)

C56,1 {1, 4, 5, 8} (1,−18)
C56,2 {1, 2, 3, 4} (1,−24)
C56,6 {1, 2, 4, 6, 7, 9, 10, 12, 14, 15, 16, 20} (1,−22)
C56,7 {1, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 20} (2, 0)
C56,8 {1, 2, 3, 5, 6, 7, 8, 10, 12, 13, 14, 17} (2,−2)
C56,14 {1, 2, 3, 4, 6, 11, 14, 15} (2,−4)
C56,24 {1, 3, 4, 5, 6, 8, 9, 11} (2,−6)
C56,118 {1, 2, 3, 5, 6, 7, 9, 11} (2,−8)
C56,278 {1, 2, 3, 4, 5, 6, 7, 11} (2,−10)
C56,508 {1, 2, 3, 4, 5, 6, 7, 8} (2,−12)
C56,688 {1, 2, 3, 4, 5, 6, 8, 9} (2,−14)
C56,826 {1, 2, 3, 4, 5, 7, 9, 11} (2,−16)
C56,903 {1, 2, 4, 5, 6, 7, 8, 11} (2,−18)
C56,932 {1, 3, 5, 6, 7, 9, 11, 14} (2,−20)
C56,943 {1, 2, 3, 6, 7, 11, 14, 17} (2,−22)
C56,944 {1, 2, 4, 5, 6, 8, 10, 11, 12, 13, 14, 15} (2,−24)
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