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Abstract

The H-force number of a hamiltonian graph G is the smallest number
k with the property that there exists a set W ⊆ V (G), |W | = k, such
that each cycle passing through all vertices of W is hamiltonian. In this
paper, we determine the H-force number of circulant graphs.

1 Introduction

Throughout this paper, we consider graphs without loops or multiple edges; for
terminology not defined here, we refer to [5].

In research of hamiltonian graphs, there are several concepts setting a kind of strat-
ification within this family of graphs, such as the number of different cycle lengths
(and the related notion of pancyclicity), the number of edges that can be prescribed
in a certain way such that it is possible to route a hamiltonian cycle through them
(see [13], [10] or [7] for the case of 4-connected planar graphs). Another way of clas-
sifying hamiltonian graphs involves the notion of k-hamiltonicity: an n-vertex graph
G = (V,E) is called k-hamiltonian if, for all sets U ⊆ V , 0 ≤ |U | ≤ k, the graph
G− U (obtained from G by deleting all vertices of U) is hamiltonian. In particular,
a graph is 1-hamiltonian if it is hamiltonian and the graph that results from deletion
of any vertex is also hamiltonian. There are several sufficient conditions for graphs
to be 1-hamiltonian (see [3], [4] or [12]); in many cases, these conditions are similar
to the classical conditions for hamiltonian connectivity.

Yet another concept of developing a hierarchy within hamiltonian graphs was defined
first in [6] in the following way: let G = (V,E) be a hamiltonian graph and let
W ⊆ V , W �= ∅. A cycle in G is a W -cycle if it contains all vertices of W . We say
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that W enforces a hamiltonian cycle in G (or, W is an H-force set) if each W -cycle of
G is hamiltonian. The H-force number h(G) is the cardinality of the smallest H-force
set in G.

Note that if a graph G = (V,E) is 1-hamiltonian, then h(G) = |V |, and vice versa.
Thus, it is natural to consider graphs with H-force number less than their orders. The
graphs with small H-force number were studied in [6], where there was presented,
among other results, the complete characterization of graphs with H-force number
two (or three in the case of 3-connected graphs, and four for 3-connected planar
graphs, respectively).

In general, determining the H-force number of a hamiltonian graph is a difficult
problem even for special graphs. In the papers [15] and [14], the H-force numbers of
several special families of hamiltonian graphs were determined. In [9], an upper and
a lower bound of H-force number were given using the cycle extendability property.
Note also that the concepts of H-force set and H-force number were extended to
hamiltonian digraphs and hypertournaments in [16] and [11].

In this paper, we deal with circulant graphs, defined as follows: for a finite set
{a1, a2, . . . , am}, 1 ≤ ai ≤ n of positive integers (the set of parameters), the circulant
graph Cn(a1, a2, . . . , am) has vertex set [0, n− 1] = {0, 1, . . . , n− 1} and two vertices
u and v of Cn(a1, a2, . . . , am) are adjacent if u− v ≡ ±ai(mod n).

2 Several properties of circulant graphs

In this section, we describe several properties which we will use in the sequel. Let
G = Cn(a1, a2, . . . , am). The basic properties of G were studied in [1], [2], [8]. The
following has been proved: G is bipartite if and only if every parameter is odd and
n is even; G is connected if and only if gcd(n, a1, . . . , am) = 1 and G is hamiltonian
if and only if G is connected. Note that circulant graphs are vertex transitive which
yields that if there is a cycle C−u on all n−1 vertices of V (G)−{u} (a cycle missing
one vertex), then there is a cycle C−v on all n − 1 vertices of V (G) − {v}, for each
v ∈ V (G). In this paper, we will use the following isomorphisms several times:

1. The graph Cn(a1, . . . , ai, . . . , am) is isomorphic to the graph Cn(a1, . . . , n −
ai, . . . , am).

2. Let gcd(n, a) = 1. Then the graph Cn(a) is isomorphic to the graph Cn(1).

3. Let gcd(n, a) = 1. Then the graph Cn(a, b) is isomorphic to the graph Cn(1, c),
where c ≡ a−1b(mod n), a−1 being the multiplicative inverse of a modulo n.

Subsequently we assume, that ai ≤ n− 2 for each i ∈ [1, m], ai �= aj and ai �= n− aj
for all i, j ∈ [1, m], i �= j. Note that, in the following, all arithmetic on the vertices
is assumed to be modulo n.

Subsequently we use one construction of a hamiltonian cycle in circulant graphs on
two parameters, C̃. Let G = Cn(a, b) be a hamiltonian circulant graph. If gcd(n, a) =
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1 or gcd(n, b) = 1, then G ∼= Cn(1, c) (isomorphism 3) and C̃ = (0, 1, . . . , n−1, 0) is a
hamiltonian cycle of Cn(1, c). Now let gcd(n, a) = g ≥ 2 and gcd(n, b) ≥ 2. A graph
Cn(a) has g isomorphic hamiltonian components Gi, i ∈ [0, g − 1] on n

g
vertices. Let

C0 = (0, a, 2a, . . . , 0) be a hamiltonian cycle in G0. A cycle C0 can be transformed
to a hamiltonian cycle Ci = (ib, ib + a, ib+ 2a, . . . , ib) in Gi, i ∈ [1, g − 1]. Now

C̃ =
g−1⋃
i=0

Ci −
g−2⋃
i=1

{(ib, ib + a), (ib+ a, ib+ 2a)} −(0, a)− e

+
� g−2

2 �⋃
i=0

{(2ib, (2i+ 1)b), ((2i+ 1)b+ 2a, (2i+ 2)b+ 2a)} +
g−2⋃
i=0

(ib + a, (i + 1)b + a),

where e = ((g − 1)b+ a, (g − 1)b+ 2a) for odd g and e = ((g − 1)b, (g − 1)b+ a) for
even g, is a hamiltonian cycle of G (Fig. 1). In the next, the cycle C̃ is called special
hamiltonian cycle.
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Fig. 1: Special hamiltonian cycle C̃ in C30(5, 3)

Lemma 1. For a non-hamiltonian cycle C of G, every H-force set of G contains a
vertex of V (G) \ V (C).

Lemma 2. Let G = Cn(a) be a hamiltonian circulant graph. Then h(G) = 1.

Proof. Let G = Cn(a) be a hamiltonian circulant graph. Then G is isomorphic to a
cycle (isomorphism 2) which implies h(G) = 1.

3 Bipartite circulant graphs on two parameters

In this section, we establish the H-force number for bipartite hamiltonian circulant
graphs on two parameters.

Let G = Cn(a, b) be a bipartite hamiltonian circulant graph, thus both its parameters
are odd, n is even and gcd(n, a, b) = 1. Note that, if there is a cycle on n−2 vertices
V (G)−{u, u+ a} (for such a cycle, we will use the notation C−{u,u+a} and we will say
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that a cycle misses two adjacent vertices), then due to vertex transitivity of circulant
graphs, there is a cycle on n − 2 vertices V (G) − {v, v + a} (a cycle C−{v,v+a}) for
each v of V (G).

Lemma 3. Let G = Cn(a, b) be a bipartite hamiltonian circulant graph and let
gcd(n, a) = 1 or gcd(n, b) = 1. Then h(G) = n

2
.

Proof. Let G = Cn(a, b) be a bipartite hamiltonian circulant graph and let gcd(n, a)
= 1 or gcd(n, b) = 1. Then G ∼= G′ = Cn(1, c) (isomorphism 3). Obviously h(G′) ≤ n

2

(both bipartite sets of G′ are H-force sets) and moreover, there is the cycle C−{0,c} =
(1, 2, . . . , c − 1, n − 1, n − 2, . . . , c + 1, 1) of G′ missing exactly two vertices 0 and c
(Fig. 2). The cycle C−{0,c} can be transformed to a cycle C−{2i,2i+c} of G′ missing
exactly two vertices 2i and 2i + c, where i ∈ [

0, n
2
− 1

]
. Note that c is odd, so all

2i, 2i+c are distinct. By Lemma 1, at least one vertex of the pair of vertices 2i, 2i+c
belongs to any H-force set, and thus h(G) = n

2
.
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Fig. 2: C−{0,5} in C18(5, 7)

Lemma 4. Let G = Cn(a, b) be a bipartite circulant graph and let gcd(n, a, b) = 1.
Then h(G) = n

2
.

Proof. Let G = Cn(a, b) be a bipartite hamiltonian circulant graph. Obviously
h(G) ≤ n

2
(both bipartite sets are H-force sets of G). If gcd(n, a) = 1 or gcd(n, b) = 1,

then by previous Lemma h(G) = n
2
. Let gcd(n, a) = g ≥ 2 and gcd(n, b) ≥ 2. More-

over, let C̃ be the special hamiltonian cycle of G described above. We use this
cycle to construct a cycle C−{0,b}, where E(C−{0,b}) = E(C̃) −(0, b) −(0, n − a)
−(b, n−a+ b) +(n−a, n−a+ b) (Fig. 3). The cycle C−{0,b} can be transformed to a
cycle C−{2i,2i+b} of G missing exactly two vertices 2i and 2i+ b where i ∈ [

0, n
2
− 1

]
.

By Lemma 1, at least one vertex of pair of vertices 2i, 2i+ b belongs to any H-force
set, thus h(G) = n

2
.
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Fig. 3: C−{0,3} in C30(5, 3)

The next lemma will be used in the proof of Theorem 9.

Lemma 5. Let G = Cn(a, b) be a bipartite circulant graph with special hamiltonian
cycle C̃. Then there is k ∈ {b, c ≡ ab−1(mod n)} such that for every i ∈ [

0, n
2
− 1

]
,

a cycle C−{2i,2i+k} contains at least one edge of C̃.

Proof. Let Cn(a, b) be a bipartite circulant graph with special hamiltonian cycle C̃.

1. Let gcd(n, a) = 1 or gcd(n, b) = 1 and let C−{2i,2i+c} be the cycle of G described

in Lemma 3. Then
∣∣∣E(C̃) ∩ E(C−{2i,2i+c})

∣∣∣ ≥ n − 4, for every i ∈ [
0, n

2
− 1

]
.

Note that the smallest such graph is isomorphic to C6(1, 3).

2. Let gcd(n, a) ≥ 2 and gcd(n, b) ≥ 2 and let C−{i,i+b} be the cycle of G described

in Lemma 4. Then
∣∣∣E(C̃) ∩ E(C−{2i,2i+b})

∣∣∣ ≥ n−4 ≥ 2, for every i ∈ [0, n− 1].

Note that the smallest such graph is isomorphic to C30(3, 5).

4 Non-bipartite circulant graphs on two parameters

In this section, we establish the H-force number for a non-bipartite hamiltonian
circulant graph on two parameters.

Lemma 6. Let G = Cn(a, b) be a non-bipartite hamiltonian circulant graph and let
gcd(n, a) = 1 or gcd(n, b) = 1. Then h(G) = n.

Proof. Let G = Cn(a, b) be a non-bipartite hamiltonian circulant graph and let
gcd(n, a) = 1 or gcd(n, b) = 1. Then G ∼= G′ = Cn(1, c) (isomorphism 3). Denote
d = n− c. We assume that c is even (if c is odd, then n is also odd and n− c is even,
thus Cn(1, c) ∼= Cn(1, n− c) (isomorphism 1) and we denote G′ = Cn(1, n− c)). We
can see that n ≡ d(mod n). In the next we prove that there is a cycle C−0.
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1. Let c ≤ n+2
2
. Then C−0 = P1 ∪ P2, where

P1 = (1 + d, 1, 2, 2 + d, 3 + d, 3, 4, 4 + d, 5 + d, . . . , n− 2, n− 1, c− 1),
P2 = (c − 1, c, c + 1, . . . , 1 + d) with V (P1) = [1, c− 1] ∪ [d+ 1, n− 1] and
V (P2) = [c− 1, d+ 1]; note that all four vertex sets are non-empty (Fig. 4a).

2. Let n+2
2

< c ≤ 2
3
n. Then d ≤ n−2

2
< n+2

2
. If d is even, then h(G) = n (previous

case). Now we assume that d is odd. Then C−0 = P1 ∪ P2 ∪ P3 ∪ P4, where
P1 = (1, 2, . . . , c− d),
P2 = (c− d, c, c+ 1, c+ 1− d, c+ 2− d, c+ 2, . . . , d− 1, d, 2d),
P3 = (2d, 2d+ 1, . . . , n− 1, c− 1),
P4 = (c−1, c−2, . . . , d+1, 1), with V (P1) = [1, c− d], V (P2) = [c− d, d]∪[c, 2d],
V (P3) = [2d, n− 1] ∪ {c− 1} and V (P4) = [d+ 1, c− 1]; note that all four
vertex sets are non-empty (Fig. 4b).

3. Let 2
3
n < c. Then d ≤ n

3
< n+2

2
. If d is even, then h(G) = n (first case). Now

we assume that d is odd. Let k =
⌊
2c−n−1
n−c−1

⌋
and note that k ≥ 1 (c > 2

3
n).

Then C−0 consists of two parts:

• The first part of C−0 consists of k paths Pi, where
P1 = (1, 2, . . . , d) and
Pi = ((i− 1)(d− 1) + 2, . . . , (i− 1)(d− 1) + d = i(d− 1) + 1), i ∈ [2, k].
Now we merge these paths to the one path P by edges (1, d + 1) and
((i−1)(d−1)+2, (i−2)(d−1)+1), i ∈ [3, k] (note that the first vertex is
the initial vertex of Pi and the second vertex is the final vertex of Pi−2).
Now P has end vertices k(d − 1) + 1 and (k − 1)(d − 1) + 1; obviously
V (P ) = [1, k(d− 1) + 1].

• The second part of C−0 forms a path P ∗ = C∗ − (k(d − 1) + 1, k(d −
1) + 2), where C∗ is a cycle of the graph G∗ = Cm(1, d), m = n − k(d −
1), which misses exactly one vertex 0 (a cycle from one of the previous
cases). Denote every vertex j of P ∗ as k(d − 1) + j. Now V (P ∗) =
[k(d− 1) + 1, n− 1].

The cycle C−0 = P ∪ P ∗ + ((k − 1)(d− 1) + 1, k(d− 1) + 2) (Fig. 4c).

The cycle C−0 can be transformed to a cycle C−i of G′ missing exactly one vertex
i where i ∈ [0, n− 1]. By Lemma 1, every vertex belongs to every H-force set; thus
h(G) = n.

Lemma 7. Let G = Cn(a, b) be a non-bipartite circulant graph and let gcd(n,a,b) = 1.
Then h(G) = n.

Proof. Let G = Cn(a, b) be a non-bipartite circulant graph and let gcd(n, a, b) =
1. If gcd(n, a) = 1 or gcd(n, b) = 1 then, by the previous lemma, h(G) = n.
Let gcd(n, a) = g ≥ 2 and gcd(n, b) = f ≥ 2. A graph Cn(a) has g isomorphic
hamiltonian components Gi on

n
g
vertices, i ∈ [0, g − 1]. Let C0 = (0, a, 2a, . . . , 0) be

a hamiltonian cycle in G0. The cycle C0 can be transformed to a hamiltonian cycle
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Ci = (ib, ib + a, ib + 2a, . . . , ib) in Gi where i ∈ [1, g − 1]. In what follows we prove
that in G there exists a cycle C−b.
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Fig. 4: C−0 in C18(1, 8), C27(1, 16) and C25(1, 20)

1. Let n
g
be odd. The cycle

C−b
01 = (0, a, a + b, 2a + b, 2a, 3a, 3a + b, 4a + b, . . . , (n

g
− 1)a, 0) contains all

vertices of C0 and C1, except one vertex b. Now C−b = (C̃ −C1 ∪C2)∪C−b
01 −

{(a+ b, 2a + b)}+ {(a+ b, a + 2b), (2a+ b, 2a+ 2b)} (Fig. 5a).

2. Let n
g
and n

f
be even. This means that n is even, one of a, b is odd (G is

hamiltonian), and one is even (G is non-bipartite). Without lost of gener-
ality, assume that a is even and b is odd. Then g is even. Let k be the
smallest integer such that −b ≡ (g − 1)b + ka(mod n). This is equal to
−b ≡ k a

g
(mod n

g
) and it means that k is odd. The path P−b

01 = (0, a, a +

b, 2a+ b, 2a, 3a, . . . , ka, (k+1)a, . . . , n−a, n−a+ b, n−2a+ b, . . . , ka+ b) con-

tains all vertices of C0 and C1 except of one vertex b. For i ∈
[
2, n

g
− 1

]
,

we let Pi = Ci − {(ib+ (k − 1)a, ib+ ka)}. Now C−b = P−b
01 ∪

n
g
−1⋃

i=2

Pi +

g
2
−1⋃

i=1

{((2i− 1)b+ ka, 2ib+ ka), (2ib+ (k−1)a, (2i+ 1)b+ (k − 1)a)} (Fig. 5b).

The cycle C−b can be transformed to a cycle C−i of G missing exactly one
vertex i where i ∈ [0, n− 1]. By Lemma 1, every vertex belongs to every
H-force set, thus h(G) = n.
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Fig. 5: C−b in C45(5, 6) and C60(6, 5)

The next lemma will be used in the proof of Theorem 9.

Lemma 8. Let G = Cn(a, b) be a non-bipartite circulant graph with special hamil-
tonian cycle C̃. Then for every i ∈ [0, n− 1], there exists a cycle C−i containing at
least one edge of C̃.

Proof. Let Cn(a, b) be a non-bipartite circulant graph with special hamiltonian cy-
cle C̃.

1. Let gcd(n, a) = 1 or gcd(n, b) = 1 and let C−i be a cycle of G described

in Lemma 6. Then
∣∣∣E(C̃) ∩ E(C−i)

∣∣∣ ≥ ⌊
n
2

⌋
, for every i ∈ [0, n− 1] (edges

(i, i+1) ∈ E(C−i)). Note that the smallest such graph is isomorphic to C4(1, 2).

2. Let g = gcd(n, a) ≥ 2 and gcd(n, b) ≥ 2 and let C−i be a cycle of G described

in Lemma 7. Then
∣∣∣E(C̃) ∩ E(C−i)

∣∣∣ ≥ n − n
g
, for every i ∈ [0, n− 1]. Note

that the smallest such graph is isomorphic to C6(2, 3).
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5 H-force number for circulant graphs

Theorem 9. Let G = Cn(a1, a2, . . . , am) be a hamiltonian circulant graph. Then

h(G) =

⎧⎨
⎩

1, if m = 1;
n, if m ≥ 2 and G is non-bipartite;
n
2
, if m ≥ 2 and G is bipartite.

Proof. Let G = Cn(a1, a2, . . . , am) be a hamiltonian circulant graph. Ifm = 1 orm =
2, then the assertion is true by Lemma 2 or by Lemmas 3, 4, 6 and 7, respectively.
Let m ≥ 3. Note that in the case when n is even and there are two parameters such
that one is even and the second one is odd, we assume that a1 is even and a2 is
odd. Let Gt = Cn(a1, . . . , at) and gt = gcd(n, a1, . . . , at), t ∈ [1, m]. Obviously, Gt

has gt hamiltonian components isomorphic to the graph C n
gt
(a1
gt
, . . . , at

gt
). We shall

prove by induction that in the component of Gt which contains a vertex 0, there is a

hamiltonian cycle C̃t and one of cycles from S =

{
C−0

t , C−a2
t , C

−{0,a2}
t , C

−{0,a1a−1
2 }

t

}
,

which contains one edge from C̃t. If t ≤ 3, then the assertion is true by Lemmas
3,4,6,7 and by Lemmas 5 and 8. Now we assume that the assertion is true for
every graph G3, . . . , Gt. If gt = gt+1, there is nothing to show, since Gt and Gt+1

have the same components. Now assume gt+1 < gt. Let k = gt
gt+1

. In Gt there
are k components connected into one component of Gt+1. Denote these components
by Zu1 , . . . , Zuk

, for ur = (r − 1)at+1, r ∈ [1, k]. By induction, the component
Zu1 (0 ∈ V (Zu1)) contains a cycle from S, which contains one edge from C̃t. A
hamiltonian cycle of Zu1 can be transformed to a hamiltonian cycle of Zur , r ∈ [2, k]
in the following way: if (at+1, i2, . . . , i n

gt
, at+1) is a hamiltonian cycle of Zu1, then

((r− 1)at+1, i2 + (r− 1)at+1, . . . , i n
gt
+ (r− 1)at+1, (r− 1)at+1) is a hamiltonian cycle

of Zur , r ∈ [2, k]. Now we will merge together a cycle of Zu1 and hamiltonian cycles
of Zur , r ∈ [2, k] into one cycle in a new component of Gt+1. This can be done by
induction.

At first, we replace the edges (i, i′) ∈ E(Zu1) and (i+at+1, i
′+at+1) ∈ E(Zu2) by two

new edges (i, i+at+1) and (i′, i′+at+1) to obtain a new cycle. If we have constructed
a cycle through all components Zu1, . . . , Zur , r ≤ k (this cycle has at least one edge
(j, j′) of a hamiltonian cycle of Zur), we can build a cycle through all vertices of
Zu1 , . . . , Zur+1.

The cycle from S can be transformed to a cycle C−i (C−{2i,2i+a2}) of G where i ∈
[0, n− 1] (i ∈ [

0, n
2
− 1

]
). By Lemma 1, every vertex (at least one vertex of every pair

of vertices 2i, 2i+a2) belongs to every H-force set, and thus h(G) = n (h(G) ≥ n
2
).
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