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Abstract

Let G = (G,w) be a positive-weighted connected graph, that is, a con-
nected graph G endowed with a function w from the edge set of G to the
set of positive real numbers, and let {1, . . . , n} be its vertex set. For any
subgraph H of G, we define the weight of H to be the sum of the weights
of the edges of H and, for any i, j ∈ {1, . . . , n}, we define Di,j(G) to be
the minimal weight of any path in G with endpoints i and j. Obviously
the Di,j(G) form a symmetric n×n matrix with zero diagonal entries and
positive off-diagonal entries. It is well-known that a symmetric matrix
with zero diagonal entries and positive off-diagonal entries comes from
a positive-weighted connected graph if and only if its entries satisfy the
triangle inequalities. In this paper we consider some particular classes
of graphs: paths, caterpillars, cycles, bipartite graphs, complete graphs,
planar graphs; for each of these classes, we give a criterion to establish
whether, given a symmetric n × n matrix D with zero diagonal entries
and positive off-diagonal entries, there exists a positive-weighted graph
G = (G,w) in the class we have fixed, with vertex set equal to {1, . . . , n}
and such that Di,j(G) = Di,j for every i, j ∈ {1, . . . , n}.

1 Introduction

For any graph G, let E(G), V (G) and L(G) be respectively the set of the edges, the
set of the vertices and the set of the leaves of G. A weighted graph G = (G,w) is a
graph G endowed with a function w : E(G) → R. For any edge e, the real number
w(e) is called the weight of the edge. We say that G is positive-weighted if all the
weights of the edges are positive.

Definition 1.1. Let G = (G,w) be a weighted simple finite connected graph; for
any subgraph H of G, we define w(H) to be the sum of the weights of the edges of
H and, for any i, j ∈ V (G), we define Di,j(G) to be the minimal weight of any simple
(i.e. without repeated vertices) path in G with endpoints i and j. We say that a
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path H with endpoints i and j realizes Di,j(G) if w(H) = Di,j(G). We call Di,j(G)
the 2-weight of G for {i, j} or, if G is positive-weighted, the distance between i and
j in G.

Throughout the paper the word “graph” will mean “simple finite connected
graph” and the word “matrix” will mean “real matrix”. Observe that in the case G
is a weighted tree, Di,j(G) is the weight of the unique path joining i and j.

If S is a subset of V (G), the 2-weights Di,j(G) with i, j ∈ S form a symmetric
matrix. Equivalently, we can speak of the family of the 2-weights of (G, S) or of the
2-dissimilarity family of (G, S).

We can wonder when a symmetric matrix is the matrix of 2-weights of some
weighted graph and of some subset of the set of its vertices. We say that a symmetric
n×n matrix D is graphlike (p-graphlike) if there exist a weighted graph (respectively
a positive-weighted) graph G = (G,w) and a subset {1, . . . , n} of the set of its vertices
such that Di,j(G) = Di,j for any i, j ∈ {1, . . . , n}. In this case, we say that G realizes
the matrix. If the graph is a weighted (positive-weighted) tree T = (T, w) we say
that the matrix is treelike (respectively p-treelike).

The first contribution to the characterization of graphlike matrices dates back to
1965 and it is due to Hakimi and Yau; see [9]:

Theorem 1.1. (Hakimi-Yau) A symmetric n × n matrix D with zero diagonal
entries and positive off-diagonal entries is p-graphlike if and only if its entries satisfy
the triangle inequalities, i.e. if and only if Di,j ≤ Di,k +Dk,j for any distinct i, j, k ∈
{1, . . . , n}.

In the same years, also a criterion for a metric on a finite set to be p-treelike was
established; see [5, 16, 18].

Theorem 1.2. (Buneman-SimoesPereira-Zaretskii) Let D be a symmetric n×n
matrix with zero diagonal entries and positive off-diagonal entries such that its entries
satisfy the triangle inequalities. It is p-treelike if and only if the Di,j satisfy the so-
called 4-point condition, i.e., for all distinct i, j, k, h ∈ {1, . . . , n}, the maximum
of

{Di,j +Dk,h, Di,k +Dj,h, Di,h +Dk,j}
is attained at least twice.

Also the case of not necessarily positive weights has been studied. In 1972 Hakimi
and Patrinos proved the following theorem (see [8]):

Theorem 1.3. (Hakimi-Patrinos) A symmetric matrix D with zero diagonal en-
tries is always graphlike.

In [4], Bandelt and Steel proved a result, analogous to Theorem 1.2, for general
weighted trees:

Theorem 1.4. (Bandelt-Steel) For any symmetric matrix D with zero diagonal
entries, there exists a weighted tree T with leaves 1, . . . , n such that Di,j(T ) = Di,j
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for any i, j ∈ {1, . . . , n} if and only if, for any distinct a, b, c, d ∈ {1, . . . , n}, we have
that at least two among

Da,b +Dc,d, Da,c +Db,d, Da,d +Db,c

are equal.

Weighted graphs have applications in several disciplines, such as biology, psy-
chology, archeology, engineering, computer science. Phylogenetic trees are positive-
weighted trees whose vertices represent species and the weight of an edge is given
by how much the DNA sequences of the species represented by the vertices of the
edge differ; biologists often know the “distances” (that is, how much the DNA dif-
fers) between only some of the species, and they are interested in reconstructing all
the evolutionary tree from these data. There is a wide literature concerning graph-
like dissimilarity families and treelike dissimilarity families, in particular concerning
methods to reconstruct weighted trees from their dissimilarity families; these meth-
ods are used by biologists to reconstruct phylogenetic trees; see [13] and [17]. Also
archeologists represent evolutions of manuscripts by positive-weighted trees. See for
example [6], [15] for overviews on phylogenetic trees. Weighted graphs can represent
hydraulic webs or railway webs where the weight of an edge is given by the length or
the cost (or the difference between the earnings and the cost) of the line represented
by that edge or, finally, computer or social networks. It is possible that sometimes
we know the distances between some nodes of the network but not the “form” of the
network and it can be interesting to have criteria to establish it from the distances.

Finally we want to mention that recently k-weights of weighted graphs for k ≥ 3
have been introduced and studied: given a positive-weighted connected graph G =
(G,w) and i1, . . . , ik ∈ V (G), we define Di1,...,ik(G) to be the minimum of w(R)
where R is a connected subgraph whose vertex set contains i1, . . . , ik. In particular
there are some results concerning the characterization of families of k-weights; see for
instance [1, 2, 10, 11, 12, 14]. The study of k-weights for k ≥ 3 is motivated by the
fact that they are more reliable statistically than 2-weights and so the reconstruction
of weighted trees from them can be more accurate than the reconstruction from 2-
weights. We quote only three theorems. Let n, k ∈ N − {0}. We say that a family
of positive real numbers {DI}I∈({1,...,n}

k ) is ip-l-treelike if and only if there exists a

weighted tree T with all the weights of the edges nonnegative, all the weights of
the internal edges positive and leaf set {1, . . . , n} such that DI(T ) = DI for any
I ∈

({1,...,n}
k

)
.

Theorem 1.5. (Herrmann, Huber, Moulton, Spillner, [10]). Let n, k ∈ N −
{0}. Let {DI}I∈({1,...,n}

k ) be a family of positive real numbers. If n ≥ 2k, the family

is ip-l-treelike if and only if its restriction to every 2k-subset of {1, . . . , n} is ip-l-
treelike.

Theorem 1.6. (Pachter-Speyer, [14]). Let k, n ∈ N with 3 ≤ k ≤ (n + 1)/2. A
positive-weighted tree T with leaves 1, . . . , n and no vertices of degree 2 is determined
by the values DI(T ), where I varies in

({1,...,n}
k

)
.
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Theorem 1.7. (Baldisserri-Rubei, [1]) Let n ∈ N, n ≥ 3. Let {DI}I∈({1,...,n}
n−1 ) be

a family of positive real numbers and let us denote D1,...,i−1,i+1,...,n by Dî.
There exists a positive weighted graph G = (G,w) with exactly n vertices, 1, . . . , n,

and with Dî(G) = Dî for any i = 1, . . . , n if and only if the following two conditions
hold:

(i)

(n− 2)Dî ≤
∑

j=1,...,n, j �=i

Dĵ (1)

for any i ∈ {1, . . . , n},
(ii) if the maximum in {Dî}i∈{1,...,n} is achieved at least twice, the inequalities (1)

are strict.

In this paper we consider some particular classes of graphs: paths, caterpillars,
cycles, bipartite graphs, complete graphs, planar graphs; for each of these classes, we
give a criterion to establish whether, given a symmetric n × n matrix D with zero
diagonal entries and positive off-diagonal entries and such that its entries satisfy
the triangle inequalities, there exists a positive-weighted graph G = (G,w) in the
class we have fixed, with V (G) = {1, . . . , n} and such that Di,j(G) = Di,j for any
i, j ∈ {1, . . . , n}. This kind of problem can arise, for example, in phylogenetics,
because we can wonder if an evolutionary history can be represented by a caterpillar.

2 Some definitions and some remarks

We now present some notation.
Let R be the set of real numbers and define R+ = {x ∈ R| x > 0}. Let N be

the set of nonnegative integers. Throughout the paper, let n ∈ N − {0, 1} and let
[n] = {1, . . . , n}.

We say that a square matrix is a predistance matrix if it is symmetric, all its
diagonal entries are zero and its off-diagonal entries are positive. We say that a pre-
distance matrix D is a distance matrix if its entries satisfy the triangle inequalities,
that is Di,j ≤ Di,k +Dk,j for any i, j, k ∈ [n]. By Theorem 1.1, this is equivalent to
be p-graphlike.

Let G be a graph. For any v, v′ ∈ V (G), we denote the edge joining v and v′ by
e(v, v′). Moreover, let V i(G) denote the set of the vertices of G of degree i and let
V ≥i(G) = ∪j≥iV

j(G). We say that an edge of a graph is pendant if it is incident to
a leaf. A path is defined to be a tree with at most 2 leaves. Finally, let T be a tree;
for any v, v′ ∈ V (T ), we denote the unique path in T joining v and v′ by p(v, v′).

Definition 2.1. • A tree C is a caterpillar if there is a path S in C such that
V (S) = V ≥2(C). We call S the spine of the caterpillar.

• A graph P with n vertices is a cycle if we can rename the vertices by i1, . . . , in
in such a way that E(P ) = {e(i1, i2), . . . , e(in−1, in), e(in, i1)}.

• A graph G is complete if, for any i, j ∈ V (G), we have that e(i, j) ∈ E(G).
The complete graph with n vertices is usually denoted by Kn.



A. BALDISSERRI ET AL. /AUSTRALAS. J. COMBIN. 70 (2) (2018), 185–201 189

• A graph B is a bipartite graph on two subsets X and Y of V (B) if X ∩ Y = ∅,
X ∪ Y = V (B) and E(B) ⊂ {e(x, y) | x ∈ X, y ∈ Y }. A bipartite graph B on
X and Y is complete if, for any i ∈ X, j ∈ Y , we have that e(i, j) ∈ E(B).
The complete bipartite graph on two sets, one of cardinality m and one of
cardinality n, is usually denoted by Km,n.

Remark 2.1. Let B be a graph and let X, Y, P,Q ⊂ V (B) such that B is a bipartite
graph on X and Y and is a bipartite graph on P and Q; then we can easily show
that X = P and Y = Q or vice versa.

Definition 2.2. Let G = (G,w) a positive-weighted graph; we say that an edge e of
G is useful if there exist i, j ∈ V (G) such that all the paths realizing Di,j(G) contain
the edge e. We say that an edge e is useless if it is not useful, that is, if every distance
of the graph is realized by at least a path which does not contain e. Finally, we say
that a graph G is pruned if all its edges are useful.

Definition 2.3. Let D be a predistance n × n matrix. We say that it is pathlike
(cyclelike, caterpillarlike, planar-graphlike) if there exists a positive-weighted path
(respectively, a positive-weighted cycle, a positive-weighted caterpillar, a positive-
weighted planar graph) G = (G,w) with V (G) = [n] such that Di,j(G) = Di,j for any
i, j ∈ [n]. Analogously, we say that the matrix is bigraphlike on two subsets X and Y
of [n] if there exists a positive-weighted bipartite graph B = (B,w) with V (B) = [n]
on X, Y such that Di,j(B) = Di,j for any i, j ∈ [n].

Finally we say that it is complete-graphlike (complete-bigraphlike) if there exists
a pruned positive-weighted complete graph (respectively, a pruned positive-weighted
complete bipartite graph) G = (G,w) with V (G) = [n] such that Di,j(G) = Di,j for
any i, j ∈ [n].

To be precise we should say “p-pathlike, p-caterpillarlike....” to point out that we
are considering positive-weighted graphs, but, since we will consider only positive-
weighted graphs and so no confusion can arise, for simplicity we will omit the letter
“p”.

Remark 2.2. Let G = (G,w) be a positive-weighted graph with V (G) = [n] and let
i, j ∈ [n] with i 
= j; if Di,j(G) is realized by a path H in G, then, for any distinct
k, t ∈ V (H), the distance Dk,t(G) is realized by the path in H with endpoints k and t.

Proof. Suppose, contrary to our claim, that there exist k, t ∈ V (H) such that any
path realizing Dk,t(G) is not contained in H . Call J one of the paths realizing Dk,t(G)
and call H ′ the path joining k with t contained in H . Then we would have:

w(H ′) > Dk,t(G) = w(J); (2)

moreover,

w(H) = Di,j(G) ≤ w((H −H ′) ∪ J) ≤ w(H −H ′) + w(J);

thus w(H ′) ≤ w(J), which is absurd because it contradicts (2).
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Definition 2.4. Let D be a distance n × n matrix; we say that an entry Di,j with
i 
= j is indecomposable if Di,j < Di,z +Dz,j for any z ∈ [n]− {i, j}.

Remark 2.3. Let G = (G,w) be a positive-weighted graph such that V (G) = [n].
For any i, j ∈ [n] with i 
= j, the distance Di,j(G) is indecomposable if and only if
E(G) contains the edge e(i, j) and e(i, j) is useful. In this case we have that Di,j(G)
is realized only by the edge e(i, j) and, in particular, Di,j(G) = w(e(i, j)).

Proof. Suppose that Di,j(G) is indecomposable; if it were realized by a path joining
i with j different from e(i, j), it would contain another vertex z ∈ [n]− {i, j}, then,
by Remark 2.2, we would have that Di,j(G) = Di,z(G) + Dz,j(G), which is absurd.
So Di,j(G) can be realized only by e(i, j), thus e(i, j) ∈ E(G) and e(i, j) useful.
Conversely, suppose to have a useful edge e(i, j) ∈ E(G): by definition, there exist
two vertices a, b ∈ V (G) such that all the paths realizing Da,b(G) contain e(i, j).
Then Di,j(G) is realized by the edge e(i, j) (by Remark 2.2) and it can be realized
only by the edge e(i, j), so it is indecomposable.

3 Paths and caterpillars

In this section we give a characterization of pathlike matrices and a characterization
of caterpillarlike ones. The first is rather simple and perhaps well-known to experts;
we write it here because we need it for the characterization of cyclelike matrices (see
Section 4).

Proposition 3.1. Let D be a predistance n × n matrix and let x, y ∈ [n] be such
that x 
= y and Dx,y = maxi,j∈[n], i �=j{Di,j}; the matrix is pathlike if and only if
Di,j = |Di,x −Dj,x| for any distinct i, j ∈ [n]− {x}.

Proof. =⇒ Very easy to prove.
⇐= First note that Da,x 
= Db,x for any distinct a, b ∈ [n] − {x}; otherwise we

would have:
Da,b = |Da,x −Db,x| = 0,

which is absurd because, by assumption, the off-diagonal entries are positive. Let
us denote the elements of [n] − {x, y} by i1, i2, . . . , in−2 in such a way that Dij ,x <
Dij+1,x for any j = 1, . . . , n − 3 and let S = (S, w) be the positive-weighted path
defined as follows (see Figure 1): let S be the path with V (S) = [n] and E(S) =
{e(x, i1), e(i1, i2), . . . , e(in−2, y)} and define the weights of the edges as in Figure 1.
It is easy to check that Di,j(S) = Di,j for any distinct i, j ∈ [n].

x i1 i2 in−2
y

Di1,x Di2,x −Di1,x Dy,x −Din−2,x

Figure 1: a positive-weighted path realizing the matrix D
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Before studying caterpillarlike matrices, we introduce a definition and we state a
theorem that will be useful later:

Definition 3.1. Let D be a predistance n × n matrix. We say that it is a median
matrix if, for any distinct a, b, c ∈ [n], there exists a unique element m ∈ [n] such
that

Di,j = Di,m +Dj,m

for any distinct i, j ∈ {a, b, c}.

Observe that the entries of a median matrix satisfy the triangle inequalities. The
theorem below, probably well-known to experts, was suggested to us by an anony-
mous referee in October 2014; later we have found it also in [7]; we defer to [3] for
a shorter proof. Observe that Theorem 1.2 characterizes predistance n× n-matrices
D such that there exists a positive-weighted tree T = (T, w), with [n] ⊆ V (T ), such
that Di,j(T ) = Di,j for any i, j ∈ [n], while the following theorem characterizes pre-
distance n×n-matrices D such that there exists a positive-weighted tree T = (T, w),
with [n] = V (T ), such that Di,j(T ) = Di,j for any i, j ∈ [n].

Theorem 3.1. Let D be a predistance n×n matrix. There exists a positive-weighted
tree T = (T, w), with V (T ) = [n], such that Di,j(T ) = Di,j for any i, j ∈ [n] if and
only if the 4-point condition (see Theorem 1.2 for the definition) holds and the matrix
D is median.

Now, consider a positive-weighted caterpillar C = (C,w) with V (C) = [n].

1 2

3 4

5

6

7

8

9

10

11 12

151617181314

2 3 1 2.5 1 3.5

1 1.3 3.2 2.1 2.5

1 2 1 3 1 2

Figure 2: a positive-weighted caterpillar C = (C,w) with V (C) = [18]

Given a vertex x ∈ V (C), we can define

tx =
1

2
minz,y∈V (C)−{x}{Dx,y(C) +Dx,z(C)−Dy,z(C)};

it is easy to show that, if x ∈ L(C), then tx is the weight of the pendant edge
associated to x and that tx = 0 if and only if x /∈ L(C), that is, x is a vertex of the
spine of C.
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Remark 3.1. Let C = (C,w) be a positive-weighted caterpillar with V (C) = [n]
and let x1, x2 ∈ V (C) be such that p(x1, x2) is the spine of C. Let X1 (respectively
X2) be the set of the leaves of C adjacent to x1 (respectively x2) (for example, in
Figure 2, we have that {x1, x2} = {2, 11} and, if we take for instance x1 = 2 and
x2 = 11, we have that X1 = {1, 3, 14} and X2 = {12}). If we consider two distinct
vertices a, b ∈ V (C) such that

Da,b(C)− ta − tb = maxi,j∈[n], i �=j{Di,j(C)− ti − tj},

we have that a ∈ X1 ∪ {x1} and b ∈ X2 ∪ {x2} or vice versa.

Proof. It is sufficient to note that, for any distinct i, j ∈ V (C),

Di,j(C)− ti − tj = w(p(i, j)),

where i is defined as follows: it is equal to i if i /∈ L(C), while it is the vertex adjacent
to i if i ∈ L(C); analogously j.

Lemma 3.1. Let C = (C,w) be a positive-weighted tree with V (C) = [n]; call a, b
two distinct vertices of C such that

Da,b(C)− ta − tb = maxi,j∈[n], i �=j{Di,j(C)− ti − tj}.

The tree C is a caterpillar if and only if for any distinct i, j ∈ [n] − {a, b} we have
that

Da,b(C) +Di,j(C) ≥ max{Da,i(C) +Db,j(C), Da,j(C) +Db,i(C)}. (3)

Proof. If C is a caterpillar, then, using Remark 3.1 it is easy to check that (3) holds
for any distinct i, j ∈ [n] − {a, b}. Now, suppose that C is not a caterpillar, then
there must be a vertex c with degree grater than 1 which is not in p(a, b).

a
b

c

d

a b

c

d

a b

c

d

Figure 3: cases (1), (2) and (3)

We have three cases:

1. p(a, c) ∩ p(a, b) = {a};

2. p(a, c) ∩ p(a, b) = p(a, b);

3. {a} � p(a, c) ∩ p(a, b) � p(a, b).
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Here we study the third case; the other ones are analogous. Call d a vertex such
that p(c, d) ∩ p(c, a) = {c} (see Figure 3), we have that

Da,b(C) +Dc,d(C) < Da,c(C) +Db,d(C)

and
Da,b(C) +Dc,d(C) < Da,d(C) +Db,c(C),

which is absurd.

Now we are ready to give a characterization of caterpillarlike predistance matrices:

Theorem 3.2. Let D be a predistance n×n matrix. Let a, b be two distinct elements
of [n] such that

Da,b − ta − tb = maxi,j∈[n], i �=j{Di,j − ti − tj};

the matrix is caterpillarlike if and only if the following conditions hold:

(i) the entries of the matrix satisfy the 4–point condition;

(ii) the matrix is median;

(iii) Da,b +Di,j ≥ max{Da,i +Db,j, Da,j +Db,i} for any distinct i, j ∈ [n]− {a, b}.

Proof. It follows immediately from Theorem 3.1 and Lemma 3.1.

4 Cycles

Let P = (P,w) be a positive-weighted cycle such that V (P ) = [n]. Observe that in
case P is not pruned, there is at most one useless edge e. So, if we delete e, we obtain
a positive-weighted path P̃ = (P̃ , w̃) with V (P̃ ) = [n] and with the same distance
matrix.

Suppose now that P is pruned: by Remark 2.3, for any i ∈ V (P ), the vertices
x and y adjacent to i are exactly the ones such that Di,x(P) and Di,y(P) are inde-
composable, so it is possible to recover the order of the vertices of the cycle starting
from the 2-weights.

Definition 4.1. Let P be a cycle with [n] as vertex set. We say that the vertex set
is sequentially ordered if i and i+ 1 are adjacent for any i ∈ [n− 1] and n and 1 are
adjacent.

Definition 4.2. LetD be a distance n×nmatrix such that for any i ∈ [n], there exist
exactly two elements x, y ∈ [n] − {i} for which Di,x and Di,y are indecomposable.
We define a subset H of [n] and we rename the elements of [n] by the following
algorithm:

rename 1 and 2 two elements of [n] such that D1,2 = mini,j with i �=j{Di,j} and
define H = {1, 2}; observe that D1,2 must be indecomposable; rename 3 the unique
element in [n]−{1, 2} such that D2,3 is indecomposable and put 3 in H ; recursively,
call i+ 1 the unique element in [n]−{i− 1, i} such that Di,i+1 is indecomposable; if
i+ 1 ∈ H stop the algorithm, otherwise put i+ 1 in H .
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Observe that the algorithm above terminates because at each step we stop the
algorithm if i+1 ∈ H , while we continue the algorithm only if i+1 
∈ H and in this
case we put i+ 1 in H ; so, if the algorithm does not stop, H increases, but since [n]
is finite, the subset H cannot increase forever.

Theorem 4.1. Let D be a distance n × n matrix; there exists a pruned positive-
weighted cycle P = (P,w) with V (P ) = [n] realizing the matrix if and only if the
following conditions hold:

(i) for any i ∈ [n] there are exactly two elements x, y ∈ [n] such that Di,x and Di,y

are indecomposable;

(ii) if H is the set described in Definition 4.2, then the cardinality of H is n;

(iii) if the elements of [n] are renamed as in Definition 4.2, then, for any a, b ∈ [n]
with a < b, we have that

Da,b = min

{
b−1∑
i=a

Di,i+1,
n−1∑
i=b

Di,i+1 +D1,n +
a−1∑
i=1

Di,i+1

}
. (4)

Proof. Suppose that there exists a pruned positive-weighted cycle P = (P,w) with
V (P ) = [n] such that Di,j(P) = Di,j for any i, j ∈ [n]. It is easy to check that
conditions (i) and (ii) hold. Moreover, if we rename the vertices as in Definition 4.2,
the vertex set is sequentially ordered. Since P is pruned, for any i ∈ [n − 1] the
2-weight Di,i+1(P) is realized by e(i, i + 1) and the 2-weight D1,n(P) is realized by
e(1, n) (see Remark 2.3). Obviously, for any two vertices a, b ∈ [n], with a < b, a
subgraph realizing the 2-weight Da,b(P) is a path with endpoints a and b and in the
cycle there are exactly two different paths with endpoints a and b. Their weights are
the numbers at the second member of (4), so we get condition (iii).

On the other hand, let D be a predistance n× n matrix satisfying conditions (i),
(ii) and (iii). By conditions (i) and (ii) we can rename all the elements of [n] as
in Definition 4.2. Let P = (P,w) be the positive-weighted cycle with V (P ) = [n],
with the vertex set sequentially ordered, and such that w(e(i, i+1)) = Di,i+1 for any
i ∈ [n− 1] and w(e(1, n)) = D1,n (see Figure 4).

We have to prove that Da,b(P) = Da,b for any distinct a, b ∈ [n] with a < b;
obviously a subgraph realizing Da,b(P) is a path with endpoints a and b and in the
cycle there are exactly two different paths with endpoints a and b. By the definition
of P, their weights are the two numbers at the second member of (4), so we have
that

Da,b(P) = min

{
b−1∑
i=a

Di,i+1,
n−1∑
i=b

Di,i+1 +D1,n +
a−1∑
i=1

Di,i+1

}
= Da,b,

where the last equality holds by (4). Observe that P is pruned, in fact, if an edge
e(a, b) (with a and b adjacent vertices) were useless, then Da,b(P) would not be
indecomposable, which is absurd because we have constructed P in such a way that
two vertices are adjacent if and only if Da,b is indecomposable.
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1
D1,2

2 D2,3

3
D3,4

4 D4,5

5 ...

D1,n

n
Dn,n−1

n− 1

Figure 4: A cycle realizing the matrix

Now we can give a characterization of cyclelike distance matrices.

Theorem 4.2. A distance n×n matrix is cyclelike if and only if either it is pathlike
or it satisfies conditions (i), (ii) and (iii) of Theorem 4.1.

Proof. Suppose there exists a positive-weighted cycle P = (P,w) with V (P ) = [n]
realizing the matrix; if P is pruned, then by Theorem 4.1 the matrix must satisfy
conditions (i),(ii) and (iii). If P is not pruned, then we can delete the unique useless
edge and we obtain a positive-weighted path realizing the matrix, so the matrix is
pathlike.

Conversely, suppose there exists a positive-weighted path S = (S, w) with V (S) =
[n] realizing the matrix. If i, j are the endpoints of the path, we can add to the path
an edge e(i, j) with weight any real number greater than or equal to Di,j: it is easy to
check that the positive-weighted cycle with n vertices we have obtained realizes the
matrix D, so the matrix is also cyclelike. Finally, if the matrix satisfies conditions
(i),(ii) and (iii) of Theorem 4.1, it is cyclelike by Theorem 4.1.

5 Complete graphs and bipartite graphs

An immediate consequence of Remark 2.3 is the following characterization of the
complete-graphlike distance matrices:

Lemma 5.1. Let D be a distance n× n matrix; it is complete-graphlike if and only
if Di,j is indecomposable for any distinct i, j ∈ [n].

Proof. Suppose there exists a pruned positive-weighted complete graph G = (G,w)
with V (G) = [n] realizing the matrix; thus e(i, j) is useful for any distinct i, j ∈ [n];
so, by Remark 2.3, Di,j(G) is indecomposable for any distinct i, j ∈ [n]. On the
other hand, suppose Di,j is indecomposable for any distinct i, j ∈ [n]; by Theorem
1.1, there exists a positive-weighted graph G = (G,w) with V (G) = [n] realizing
the matrix; moreover, since Di,j is indecomposable for any distinct i, j ∈ [n], then,
by Remark 2.3, we have that e(i, j) ∈ E(G) and e(i, j) is useful for any distinct
i, j ∈ [n].
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Now we want to characterize bigraphlike predistance matrices; first of all, given
a positive-weighted bipartite graph G = (G,w) on X, Y ⊂ V (G), we show that it is
possible to recover X and Y from the 2-weights of G.

Proposition 5.1. Let B = (B,w) be a positive-weighted bipartite graph on X and
Y with V (B) = [n]; let x ∈ X and y ∈ Y ; then:

X = {x} ∪
{
i ∈ [n]− {x, y} | ∃ j1, . . . , jt ∈ [n], with t odd, such that

x 
= j1 
= j2 
= · · · 
= jt 
= i, Dx,i(B) = Dx,j1(B) +Dj1,j2(B) + · · ·+Djt,i(B)

and the elements of the sum are indecomposable
}

(5)

and

Y =
{
i ∈ [n]− {x} | either Dx,i is indecomposable or ∃ j1, . . . , jt ∈ [n] with t even,

such that x 
= j1 
= j2 
= · · · 
= jt 
= i, Dx,i(B) = Dx,j1(B)+Dj1,j2(B)+ · · ·+Djt,i(B)

and the elements of the sum are indecomposable
}
. (6)

Proof. Let us prove (5); the other equality can be proved analogously. Call R the
second member of (5); we want to prove that X = R.

- X ⊂ R : let i ∈ X−{x}; observe thatDx,i(B) is not indecomposable: otherwise
by Remark 2.3, we would have e(x, i) ∈ E(B), which is absurd; so we can write
Dx,i(B) as

Dx,j1(B) +Dj1,j2(B) + · · ·+Djt,i(B)
for some j1, . . . , jt with Dx,j1(B), Dj1,j2(B), . . . , Djt,i(B) indecomposable. By
Remark 2.3, the 2-weights Dx,j1(B), Dj1,j2(B), . . . , Djt,i(B) are realized respec-
tively by e(x, j1), e(j1, j2), . . . , e(jt, i); thus the path given by the union of these
edges realizes Dx,i(B) and, since x, i ∈ X , we have that t is necessarily odd.

- R ⊂ X : if i ∈ R then there exist j1, . . . , jt ∈ [n] with t odd such that
Dx,i(B) = Dx,j1(B)+Dj1,j2(B)+ · · ·+Djt,i(B) and the elements of the sum are
indecomposable. By Remark 2.3, the 2-weights Dx,j1(B), Dj1,j2(B), . . .Djt,i(B)
are realized respectively only by the edges e(x, j1), e(j1, j2),...,e(jt, i), which
implies that Dx,i(B) is realized by the path given by these edges; so, since t is
odd, i ∈ X.

Remark 5.1. Let B = (B,w) be a positive-weighted bipartite graph on X and Y
with V (B) = [n]. Let x, y ∈ [n], with x 
= y, be such that

Dx,y(B) = mini,j∈[n], i �=j{Di,j(B)};

hence, obviously, Dx,y(B) is indecomposable, and then, by Remark 2.2, e(x, y) ∈
E(B) and Dx,y(B) is realized only by the path with unique edge e(x, y).
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Now we are ready to give a characterization of bigraphlike predistance matrices.

Theorem 5.1. Let D be a distance n × n matrix and let x, y ∈ [n], with x 
= y, be
such that Dx,y = mini,j∈[n], i �=j{Di,j}; define

X = {x} ∪
{
i ∈ [n]− {x, y} | ∃ j1, . . . , jt ∈ [n], with t odd, such that

x 
= j1 
= j2 
= · · · 
= jt 
= i, Dx,i = Dx,j1 +Dj1,j2 + · · ·+Djt,i

and the elements of the sum are indecomposable
}

and

Y =
{
i ∈ [n]−{x} | either Dx,i is indecomposable or ∃ j1, . . . , jt ∈ [n], with t even,

such that x 
= j1 
= j2 
= · · · 
= jt 
= i, Dx,i = Dx,j1 +Dj1,j2 + · · ·+Djt,i

and the elements of the sum are indecomposable
}
.

The matrix D is bigraphlike if and only if the following conditions hold:
(1) X ∩ Y = ∅
(2) for any distinct a, b ∈ X (respectively Y ), there exists z ∈ Y (respectively X)

such that:
Da,b = Da,z +Dz,b.

Proof. Suppose there exist two subsets of [n], X ′ and Y ′, and a positive-weighted
bipartite graph B = (B,w) on X ′ and Y ′ with V (B) = [n] realizing the matrix. By
Proposition 5.1 we have that X = X ′ and Y = Y ′ (or vice versa), so X ∩Y = ∅. Let
a, b ∈ X; a path realizing Da,b(B) must contain a vertex z ∈ Y , so, by Remark 2.2,
we have that Da,b(B) = Da,z(B) + Dz,b(B). If both a and b are elements of Y , the
proof is analogous.

Now, suppose that D satisfies (1) and (2). Let B = (B,w) be the positive-
weighted bipartite graph on X and Y such that:

- V (G) = [n];

- E(G) = {(a, b) | a ∈ X, b ∈ Y };

- w(e(a, b)) = Da,b for any a ∈ X and b ∈ Y .

We want to prove that Da,b(B) = Da,b for any distinct a, b ∈ [n]. Let p be a path
realizing Da,b(B) and let j1, . . . , jt ∈ [n] be such that p is given by e(a, j1), e(j1, j2),
. . . , e(jt, b); then we have that

Da,b(B) = w(e(a, j1))+w(e(j1, j2))+· · ·+w(e(jt, b)) = Da,j1+Dj1,j2+· · ·+Djt,b ≥ Da,b,
(7)

where the last inequality follows from the triangle inequalities.
If a ∈ X and b ∈ Y (or vice versa), then

Da,b(B) ≤ w(e(a, b)) = Da,b, (8)
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so, from (7) and (8), we get Da,b(B) = Da,b.
If both a and b are in X (if they are in Y , we can argue analogously), by assump-

tion, there exists z ∈ Y such that Da,z +Db,z = Da,b; we have that

Da,b(B) ≤ Da,z +Db,z = Da,b, (9)

where the inequality holds because the path given by e(a, z) and e(z, b) contains a
and b as vertices and its weight is equal to Da,z +Db,z; so, from (7) and (9), we get,
also in this case, that Da,b(B) = Da,b.

Finally we also give a characterization of complete-bigraphlike matrices:

Remark 5.2. Let D be a distance matrix which is bigraphlike on X, Y ⊂ [n]. The
matrix is complete-bigraphlike on X and Y if and only if Di,j is indecomposable for
any i ∈ X, j ∈ Y .

Proof. Let B = (B,w) be a positive-weighted complete bipartite graph on X and Y ,
with V (B) = [n], realizing the matrix. If it is pruned, then e(i, j) is useful for any
i ∈ X, j ∈ Y ; so, by Remark 2.3, Di,j(B) is indecomposable for any i ∈ X, j ∈ Y . On
the other hand, if Di,j is indecomposable for any i ∈ X and j ∈ Y , then, by Remark
2.3, e(i, j) ∈ E(B) and e(i, j) is useful for any i ∈ X, j ∈ Y .

6 Planar graphs

In this section we characterize planar-graphlike matrices. We start with two defini-
tions and a famous theorem by Kuratowski.

Definition 6.1. Let G be a graph and let e(u, v) be an edge of G. We say that a
graph G′ is obtained from G by a subdivision of the edge e(u, v) if V (G′) is the union
of V (G) and a new vertex z and E(G′) is E(G) − {e(u, v)} ∪ {e(u, z), e(z, v)}. We
say that a graph G′ is a subdivision of a graph G if it is the graph resulting from the
subdivision of some edges in G.

Theorem 6.1. (Kuratowski) A finite graph is planar if and only if it does not
contain a subgraph that is a subdivision of K5 or of K3,3.

Definition 6.2. Let G be a subdivision of K5. We say that a vertex of G is a true
vertex if it is a vertex of K5. We call verges of G the paths that are subdivisions of
the edges of K5.

Proposition 6.1. Let G = (G,w) be a pruned positive-weighted graph with V (G) =
[n]. Let us denote Di,j(G) by Di,j for any i, j ∈ [n].

(i) G contains a subdivision of K5 ⇐⇒ there exists Q ∈
(
[n]
5

)
such that for any

distinct a, b ∈ Q, either Da,b is indecomposable or there exists a sequence of distinct
elements (x1, . . . , xr) in [n] −Q (depending on {a, b}) such that Da,x1 , . . . , Dxr,b are
indecomposable and, if {a, b} 
= {a′, b′}, the sequence of {a, b} does not intersect the
sequence of {a′, b′}.
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(ii) G contains a subdivision of K3,3 ⇐⇒ there exist disjoint A,B ∈
(
[n]
3

)
such

that for any a ∈ A and b ∈ B, either Da,b is indecomposable or there exists a
sequence of distinct elements (x1, . . . , xr) in [n]− A−B (depending on {a, b}) such
that Da,x1 , . . . , Dxr,b are indecomposable and, if {a, b} 
= {a′, b′}, the sequence of {a, b}
does not intersect the sequence of {a′, b′}.

Proof. Let us prove (i) (the proof of (ii) is analogous).
Sufficiency: By Remark 2.3, if Di,j is indecomposable, then e(i, j) ∈ E(G). For

any a, b ∈ Q, let ca,b be the following path: the path given only by the edge e(a, b) if
Da,b is indecomposable, the path given by the edges e(a, x1), e(x1, x2),..., e(xr, b) if
Da,b is not indecomposable and (x1, . . . , xr) is a sequence as in the statement of the
proposition.

The union of the paths ca,b for a, b ∈ Q gives a subgraph that is a subdivision of
K5.

Necessity: Let G′ be a subdivision of K5 in G. Let Q be the set of the true
vertices of G′. Since G is pruned, every edge is useful, in particular, for any x, y ∈ [n]
such that e(x, y) is in a verge of G′, we have that e(x, y) is useful, so, by Remark 2.3,
the 2-weight Dx,y is indecomposable and then we get our statement.

Theorem 6.2. Let D be a distance n× n matrix. It is planar-graphlike if and only
if the following conditions hold:

(a) there does not exist Q ∈
(
[n]
5

)
such that, for any distinct a, b ∈ Q, either

Da,b is indecomposable or there exists a sequence of distinct elements (x1, . . . , xr) in
[n] − Q (depending on {a, b}) such that Da,x1 , . . . , Dxr ,b are indecomposable and, if
{a, b} 
= {a′, b′}, the sequence of {a, b} does not intersect the sequence of {a′, b′};

(b) there do not exist disjoint A,B ∈
(
[n]
3

)
such that, for any a ∈ A and b ∈ B, ei-

ther Da,b is indecomposable or there exists a sequence of distinct elements (x1, . . . , xr)
in [n] − A − B (depending on {a, b}) such that Da,x1, . . . , Dxr,b are indecomposable
and, if {a, b} 
= {a′, b′}, the sequence of {a, b} does not intersect the sequence of
{a′, b′}.

Proof. Necessity: Let G be a positive-weighted planar graph realizing the matrix.
By eliminating a useless edge, then another one and so on, we get a pruned positive-
weighted planar graph realizing the matrix. So we can conclude by Proposition 6.1
and Theorem 6.1.

Sufficiency: Let G be a positive-weighted graph realizing the matrix; by eliminat-
ing a useless edge, then another one and so on, we get a pruned positive-weighted
graph realizing the matrix; by conditions (a) and (b) and using Proposition 6.1 and
Theorem 6.1, we can conclude that it is planar.

7 A final remark and open problems

It is well-known that, if a predistance n × n matrix D is the distance matrix of a
positive-weighted tree with vertex set equal to [n], then this tree must be unique,
see for intance §2.3 of the book [6]. So, if a n × n matrix is represented by a
positive-weighted path with vertex set equal to [n] or a positive-weighted caterpillar



A. BALDISSERRI ET AL. /AUSTRALAS. J. COMBIN. 70 (2) (2018), 185–201 200

with vertex set equal to [n], this path (respectively caterpillar) must be unique;
furthermore it is easy to prove that if a matrix is given by a pruned positive-weighted
cycle or a pruned positive-weighted bipartite graph, this must be unique. It would
be interesting to see, for instance, if a complete-bigraphlike matrix can be realized
also by a positive-weighted graph that is not complete bipartite and analogously for
the other kinds of graphs we have considered.

Moreover, in this paper we have considered only few kinds of graphs, but it would
be interesting to characterize distance matrices coming from other kinds of graphs
and the relative problem of unicity; for instance one could consider the following
kinds of graphs:

- hypercube graphs,
- Petersen graphs,
- Kneser graphs,
- regular graphs, or k-regular graphs for some k,
- k-connected graphs for some k.
Finally it would be interesting to study the analogous problem for graphs whose

vertex set contains [n] but it is not necessarily equal to [n] and for graphs with not
necessarily positive weights, that is to study when a symmetric matrix is the matrix
of 2-weights of a weighted bipartite graph or of a weighted cycle and so on.
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