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Abstract

A thrackle is a drawing of a graph in which each pair of edges meets pre-
cisely once. Conway’s Thrackle Conjecture asserts that a planar thrackle
drawing of a graph cannot have more edges than vertices, which is equiv-
alent to saying that no connected component of the graph contains more
than one cycle. We prove that a thrackle drawing containing a standard
musquash (standard n-gonal thrackle) cannot contain any other cycle of
length three or five.

1 Introduction

Let G be a finite simple graph with n vertices and m edges. A thrackle drawing
of G on the plane is a drawing T : G → R2, in which every pair of edges meets
precisely once, either at a common vertex or at a point of proper crossing (see [11]
for definitions of a drawing of a graph and a proper crossing). The notion of thrackle
was introduced in the late sixties by John Conway, in relation with the following
conjecture.

Conway’s Thrackle Conjecture. For a thrackle drawing of a graph on the plane,
one has m ≤ n.

Despite considerable effort, the conjecture remains wide open. At present, there
are three main approaches to investigating the Conjecture. The first one, which was
pioneered in [11], is to relax the definition of the thrackle: instead of requiring that
the edges meet exactly once, one requires that every pair of edges meets an odd
number of times (either at a proper crossing or at a common vertex). The resulting
graph drawing is called a generalised thrackle. Generalised thrackles are much more
flexible than “genuine” thrackles and are easier to study (in particular, one can use
methods of low-dimensional homology theory as in [4, 5, 6]). This approach can
produce upper bounds for the number of edges; the best known one is currently
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m < 1.4n − 1.4 obtained in [10]. This improves earlier upper bounds of [5, 9, 11].
However, it seems unlikely that this method alone could lead to the full resolution
of the Conjecture, since generalised thrackles are much more flexible than thrackles.

The second approach is to prove the Conjecture within specific classes of drawings:
straight line thrackles ([8, §4]; see also an elegant proof by Perles in [14]), monotone
thrackles [14], outerplanar and alternating thrackles [7], and spherical thrackles [3].
The philosophy of this approach is the fact that sometimes topological results can be
proved using geometry. This leads to the natural question, what is the best thrackle
drawing of a given graph? The answer to this cannot be a straight-edge drawing, as
any even cycle of length at least six can be thrackled, but no such cycle has straight-
line thrackle drawing. However, we know no example of a thrackle which cannot be
deformed to a spherical thrackle (a thrackle on the sphere whose edges are arcs of
great circles). Moving further in this direction, one can show that any thrackle can
be drawn on the punctured sphere endowed with the hyperbolic metric, with the
vertices at infinity, and with geodesic edges.

The third approach is the study of thrackles with small number of vertices. A
folklore fact is that the Thrackle Conjecture is true for graphs having at most 11
vertices. In [9] it is shown that no bipartite graph of up to 11 vertices (in particular,
no graph containing two non-disjoint 6-cycles) can be thrackled. It is further proved
that for any ε > 0, the inequality m < (1 + ε)n for a thrackled graph would follow
from the claim that a finite number (depending on ε) of certain graphs (dumbbells)
cannot be thrackled.

Note that a complete classification of graphs that can be drawn as thrackles,
assuming Conway’s Thrackle Conjecture, was given in [15].

The simplest example of a thrackled cycle is the standard n-musquash, where
n ≥ 3 is odd: distribute n vertices evenly on a circle and then join by an edge every
pair of vertices at the maximal distance from each other. This defines a musquash in
the sense of Woodall [15]: n-gonal musquash is a thrackled n-cycle whose successive
edges e0, . . . , en−1 intersect in the following manner: if the edge e0 intersects the
edges ek1 , . . . , ekn−3 in that order, then for all j = 1, . . . , n− 1, the edge ej intersects
the edges ek1+j, . . . , ekn−3+j in that order, where the edge subscripts are computed
modulo n. A complete classification of musquashes was obtained in [1, 2]: every
musquash is either isotopic to a standard n-musquash, or is a thrackled 6-cycle.

Conway’s Thrackle Conjecture is equivalent to the fact that no connected com-
ponent of a thrackled graph G may contain more than one cycle (and to the fact
that no figure-eight graph can be thrackled). We prove the following.

Theorem. Let T (G) be a thrackle drawing of a graph G such that the drawing of a
cycle c ⊂ G is a standard musquash. Then G contains no 3- and no 5-cycles (except
possibly for c itself).

Note that a thrackled graph can never contain a 4-cycle [11]. So the theorem
may be rephrased as follows: if there is a counter-example to Conway’s thrackle
conjecture that is a figure-eight graph comprised of a standard n-musquash and an
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m-cycle sharing a common vertex, then m is at least 6.

In this paper, we will consider thrackles up to isotopy, which is to be understood
as follows. We regard graph drawing as being drawn on the 2-sphere S2. Then two
drawings T1(G), T2(G) of a graph G are isotopic if there is a homeomorphism h of
S2 with T2(G) = h(T1(G)). Hence an isotopy amounts to a continuous deformation
in the plane, combined eventually with an inversion. This notion is more convenient
than simple planar deformation as it allows statements such as the following: up to
isotopy, the only thrackle drawing of the 5-cycle is the standard 5-musquash.

2 Proof of the Theorem

In this section we give the proof of the Theorem assuming some technical lemmas
that we establish later in Section 3.

Suppose that in a thrackle drawing T (G) of a graph G, a cycle c is thrackled
as a standard musquash. Then n := l(c) is odd, where l(c) denotes the length of c.
Suppose that the graph G contains another cycle c′ with l(c′) = 3 or l(c′) = 5. For
convenience, we can remove from G all the other edges and vertices; that is, we may
assume that G = c ∪ c′.

The first step is to reduce the proof to the case when G is a figure-eight graph
consisting of cycles c and c′, of the same lengths as before, sharing a common vertex
and such that T (c) is still a standard musquash. As both c and c′ are odd, they cannot
be disjoint in G [11, Lemma 2.1(ii)], and so c ∩ c′ is a nonempty union of vertices
and paths. Repeatedly using the vertex-splitting operation shown in Figure 1(a), we
obtain a new thrackle drawing such that c∩c′ is a union of vertices, without changing
the lengths of the cycles c, c′ and without violating the fact that c is thrackled as a
standard musquash. Next, we can perturb the drawing in a neighbourhood of every
vertex at which T (c) and T (c′) meet without crossing, to replace a vertex of degree
four by four crossings (Figure 1(b)).

(a)

c c′ c c′

(b)

Figure 1: (a) vertex splitting; (b) replacing a vertex of degree 4 by four crossings.

Now c∩c′ is a set of vertices at each of which the drawings of the cycles c, c′ cross.
Counting the number of crossings of the closed curves T (c) and T (c′) we find that
the number of such vertices must be odd [11]. If there are at least three of them,
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then since l(c′) ≤ 5, we arrive at a contradiction with [7, Theorem 3]. So c ∩ c′ is a
single vertex, hence G = c ∪ c′ is a figure-eight graph, with common vertex v say.

In the second step, we fix a positive orientation on T (c), and to every domain
D of the complement R2 \ T (c), assign a non-negative integer label, the rotation
number of the closed oriented curve T (c) around a point of D. The labels change
from 0 for the outer domain to 1

2
(n−1) for the innermost n-gonal domain (Figure 2).
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Figure 2: Labels (rotation numbers) for a standard 7-musquash.

We need the following two lemmas in which we consider the mutual position of
a standard musquash and an edge or a 2-path attached to it.

Lemma 2.1. The endpoints of a curve crossing all the edges of a standard musquash
exactly once and not passing through the vertices (so that the resulting drawing is a
thrackle) lie in domains whose labels differ by one.

For the purposes of the proof of the Theorem, we will not need Lemma 2.1 in its
full generality; we will only require special cases. The proof of Lemma 2.1 is quite
involved, and the proof of the conclusions we require could be simpler. On the other
hand, Lemma 2.1 may be of a certain independent interest and may be useful for the
further study of thrackles containing musquashes. We also observe that Lemma 2.1
generalises Theorem 3 of [7].

Consider a graph G′ consisting of an odd cycle c and an edge e = vu attached to
a vertex v ∈ c. Suppose that G′ is thrackled in such a way that T (c) is a standard
musquash. There are two possibilities for the starting segment of T (vu): its interior
may either lie in a domain with the label 1, or in the outer domain of T (c). In the
first case, as T (vu) cannot cross the drawings of the two edges of c incident to v, but
has to cross the drawings of all the other edges of c, the vertex u lies in the outer
domain (and what is more, by isotopy and Reidemeister moves we can transform
T (e) to a straight line segment, as on the left in Figure 3). In the second case, we
can perturb the drawing of the edge e in a neighbourhood of v to obtain a thrackle
drawing of the disjoint union of c and e, with T (c) still being the standard musquash,
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and the starting point of T (e) lying in the outer domain (so that v is no longer a
vertex of c), as on the right in Figure 3. Then by Lemma 2.1, the other endpoint u
lies in a domain with the label 1.

u

v

1

0

1

0

v

1

0

v

Figure 3: Two possible cases for attaching an edge to a musquash.

Now consider a graph G′ consisting of an odd cycle c and a 2-path p = vuw
attached to a vertex v ∈ c. We suppose that G′ is thrackled in such a way that T (c)
is a standard musquash and that the starting segment of T (vu) lies in the outer
domain of T (c). A possible thrackle drawing is shown in Figure 4. Perturbing the
drawing of the edge vu in a neighbourhood of v, as on the right in Figure 3, we
obtain a thrackle drawing of the disjoint union of c and p, with the starting point of
T (p) lying in the outer domain. Then the point u lies in a domain labelled 1, and
then w, the other endpoint of p, lies in a domain with the label either 0 or 2. The
following lemma, which will be crucial for the proof of the Theorem for l(c′) = 5,
states that the second case cannot occur.

Lemma 2.2. Let a graph G′ consist of an odd cycle c and a 2-path p = vuw attached
to a vertex v ∈ c. Let T (G′) be a thrackle drawing, with T (c) a standard musquash,
such that the starting segment of T (vu) lies in the outer domain of T (c). Then u
lies in a domain labelled 1 and w lies in the outer domain of T (c).

Remark 1. Combining Lemma 2.1 and Lemma 2.2 one can generalise Lemma 2.2
to the case when p is a 3-path: if p = vv1v2v3, then v1 and v3 lie in domains labelled
1, and v2, in the outer domain. It would be very interesting to know, if the direct
generalisation of this fact for longer paths p is still true: is it so that a path attached
to a vertex of a standard musquash and starting at the outer domain cannot get “too
deep” in the musquash (most optimistically, does it always ends in a domain labelled
either 0 or 1)?

Returning to the proof of the Theorem, we have a figure-eight graph G consisting
of an odd cycle c and an odd cycle c′ of length 3 or 5 that share a common vertex v,
and a thrackle drawing T (G) such that T (c) is a standard musquash. From the above
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v

u

w

Figure 4: A standard 7-musquash with a 2-path attached.

argument, or by [11, Lemma 2.2], the drawings of c and c′ cross at their common
vertex v. Of the two edges of c′ incident to v, one goes to the inner domain of the
musquash T (c) (the interior of its starting segment lies in a domain labelled 1) and
then ends in the outer domain, as on the left in Figure 3. The other edge goes to
the outer domain. Hence by Lemma 2.1 and Lemma 2.2, because c′ has length 3 or
5, we obtain the following key fact.

Corollary. All the vertices of c′ other than v lie in domains labelled 0 or 1, half in
the outer domain and the other half, in the union of domains labelled 1.

The third step in the proof of the Theorem is the operation of edge removal [7,
Section 4], which will enable us to eventually shorten c to a thrackled cycle of the
same length as c′.

The operation of edge removal is inverse to Woodall’s edge insertion operation
[15, Figure 14]. Let T (H) be a thrackle drawing of a graph H and let v1v2v3v4 be a
3-path in H such that deg v2 = deg v3 = 2. Let A = T (v1v2) ∩ T (v3v4). Removing
the drawing of the edge v2v3, together with the segments Av2 and Av3 of T (v1v2)
and T (v3v4) from the point A to T (v2) and T (v3), respectively, we obtain a drawing
of a graph with a single edge v1v4 in place of the 3-path v1v2v3v4 (Figure 5). (In
what follows, to make the notation less cumbersome, we will use the vertex name vi
to denote the point T (vi), when there is no risk of confusion).

Unlike edge insertion, edge removal does not necessarily result in a thrackle draw-
ing. Consider the triangular domain 4 bounded by the arcs T (v2v3), Av2 and v3A
and not containing the vertices v1 and v4. We have the following Lemma.

Lemma 2.3 ([7, Lemma 3]). Edge removal results in a thrackle drawing if and only
if 4 contains no vertices of T (G).

It follows that edge removal is always possible on (every edge of) a standard
musquash. The resulting thrackled cycle is outerplanar (all the vertices lie on the
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v3 v2

v1 v4

A

v1 v4

A

Figure 5: The edge removal operation.

boundary of a single domain) and as such, is Reidemeister equivalent to a standard
musquash by [7, Theorem 1]. In fact, by the following lemma, it is even isotopic to
a standard musquash (which will be important for the argument that follows) – see
Figure 6.

Lemma 2.4. The edge removal operation on a standard musquash of length n ≥ 5
results in a standard (n− 2)-musquash.

e

Figure 6: The edge removal operation on the edge e of the standard 9-musquash
results in a standard 7-musquash.

What is more, for our thrackle drawing T (G), edge removal is always possible on
T (c) as long as c is longer than c′. To see that, we first consider the case when l(c′) =
3. We cannot remove either of the two edges of c incident to the common vertex
v (as deg v = 4) and neither can we remove the edges whose respective triangular
domains contain the vertices of c′, by Lemma 2.3. But by the Corollary, the two
vertices of c′ other than v lie in domains labelled 0 and 1, one in each. Clearly, the
vertex lying in the outer domain does not belong to any triangular domain, while
the vertex lying in a domain labelled 1 belongs to exactly two triangular domains,
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which prohibits the removal of two edges. Hence if l(c) ≥ 5, there is always an edge
of c which can be removed. By Lemma 2.3, after edge removal, the resulting drawing
is again a thrackle drawing of the figure-eight graph consisting of an odd cycle c∗

of length l(c) − 2 and the cycle c′, and by Lemma 2.4, the drawing of c∗ is again a
standard musquash. Repeatedly using this argument we obtain a thrackle drawing
of a figure-eight graph consisting of two 3-cycles, which is a contradiction (as can
be seen by inspection or by [5, Lemma 5(b)]). This completes the proof in the case
l(c′) = 3. The proof in the case l(c′) = 5 is almost identical, up to the second last
step. This time by the Corollary, from among the four vertices of c′ other than v, two
lie in the outer domain of T (c), and the other two, in the union of domains labelled
1. Together with the two edges of c incident to v this gives at most six edges of
c spared from removal. Therefore, by repeatedly edge-removing we get a thrackled
figure-eight graph consisting of two 5-cycles.

The proof is then completed by the following Lemma.

Lemma 2.5. A figure-eight graph consisting of two 5-cycles has no thrackle drawing.

3 Proof of the Lemmas

Proof of Lemma 2.1: Let c be an odd cycle of length n and let T (c) be its standard
musquash drawing. We assume the edges of T (c) to be straight line segments and
the vertices to be the vertices of a regular n-gon inscribed in the unit circle C
bounding the closed unit disc D. Let γ = AB be a simple curve crossing every
edge of T (c) exactly once and not passing through the vertices. We can assume that
both endpoints of γ lie inside C, and that γ meets C in a finite collection of proper
crossings A1, A2, . . . , Ak labelled in the direction from A to B, where k ≥ 0 is even.
Then γ = AA1 ∪

⋃k−1
j=1 AjAj+1 ∪ AkB, the arcs AA1, A2A3, . . . , AkB lie in D, and

the arcs A1A2, A3A4, . . . , Ak−1Ak, outside C. For each arc in this decomposition,
consider the set of edges of T (c) it crosses. The arcs lying outside C do not meet
T (c) at all. An arc lying in D crosses an edge of T (c) if and only if its endpoints lie
on the opposite sides of that edge. Therefore the set of edges of T (c) such an arc is
crossing depends only on its endpoints, and we lose no generality by replacing that
arc by a straight line segment with the same endpoints. Note also that γ cannot
completely lie inside C (so that k ≥ 1), as no straight line crosses all the edges of
T (c) (since one of the half-planes, determined by such a straight line, must contain
more than the half of the vertices of T (c) and hence contain two vertices adjacent
in c).

An arc AjAj+1 lying in D, with both endpoints on C, crosses an even number of
consecutive edges of T (c): the points Aj, Aj+1 split C into two segments, hence
splitting the set of vertices of T (c) into two subsets; the arc AjAj+1 crosses all the
edges incident to the vertices of the smaller of these two subsets. As a subset of c,
the union of edges crossed by AjAj+1 is an even path.

The picture is more complicated for the arcs AA1, AkB having one endpoint in the
interior of D. Let XY be an arc lying in D, with exactly one endpoint Y on C, and
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let S ⊂ c be the union of edges of T (c) which XY crosses. Then both S and its
complement c\S is a finite collection of paths. Denote O1(XY ) the number of paths
(which are connected components) of odd length in S, and O0(XY ) the number of
paths of odd length in c \ S. We have the following key lemma.

Lemma 3.1. If X lies in a domain labelled s, then O1(XY ) = s and O0(XY ) = s±1.

Assuming Lemma 3.1, we can complete the proof of Lemma 2.1 as follows. Let
S1, S2 be the unions of edges of c crossed by the arcs AA1, BAk, respectively. Since γ
crosses every edge of T (c) exactly once, the (interiors of the) sets S1, S2 are disjoint,
and the union of S1 ∪ S2 and the sets of edges of T (c) which are crossed by the arcs
AjAj+1 is the whole cycle c. So, since the union of edges which are crossed by an
arc AjAj+1 is an even path in c (which can be empty), every connected component
of the complement c \ (S1 ∪ S2) must be a path of even length. For this to be
true, S1 has to contain at least as many odd paths as c \ S2 does, and vice versa,
so O1(AA1) ≥ O0(BAk) and O1(BAk) ≥ O0(AA1). Thus, if the points A,B lie in
domains labelled s1, s2, respectively, then by Lemma 3.1 we get s1 ≥ s2 − 1 and
s2 ≥ s1 − 1, so s1 − 1 ≤ s2 ≤ s1 + 1. As s1 6= s2, since γ has an odd number of
crossings with the closed curve T (c), we obtain s2 = s1 ± 1, as claimed. 2

Proof of Lemma 3.1: Our argument above shows that we can assume XY to be
a straight line segment, so the proof of the lemma reduces to a question in plane
geometry: we have to find the edges of T (c) which are crossed by XY . We can
further assume that s 6= 0. Indeed, if s = 0 we can take X to also lie on C and the
above arguments for the arcs AjAj+1 show that the union of edges of T (c) crossed
by XY is an even path of c (which can be empty), so O1(XY ) = 0 and O0(XY ) = 1.

Let n = 2m+1. We place the vertices of T (c) at the points eπi/n, e3πi/n, . . . , e(2n−1)πi/n

in C = R2 and label the edges of T (c) in such a way that the jth edge joins the vertices
e(2mj+1)πi/n and e(2m(j+1)+1)πi/n where j = 0, 1, . . . , n−1. From the symmetry and by
a slight perturbation, we can assume that the point X lies in the open angle {z ∈ C :
arg z ∈ (0, π

n
)}, as in Figure 7.

First consider the case when the point Y lies on the radius of C passing through X.
Then X = reiα, Y = eiα, where 0 < r < 1, 0 < α < π

n
. The segment XY crosses

the edge j of T (c) if and only if it crosses the line containing that edge, given by

{z ∈ C : Im(z(e−(2m(j+1)+1)πi/n − e−(2mj+1)πi/n)) + sin(π/n) = 0}.

Hence it crosses the edge j when we have − Im(eiα−(2m(j+1)+1)πi/n − eiα−(2mj+1)πi/n)
∈ (sin(π

n
), 1

r
sin(π

n
)) which is equivalent to

sin
π

n
< (−1)j

(
sin
(
α +

jπ

n

)
+ sin

(
α +

(j − 1)π

n

))
<

1

r
sin

π

n
,

which is equivalent again to the following condition (obtained by dividing by cos π
2n

):

sin
π

2n
< (−1)j sin

(
α +

(2j − 1)π

2n

)
<

1

r
sin

π

2n
. (3.1)



G. MISEREH ET AL. /AUSTRALAS. J. COMBIN. 70 (2) (2018), 168–184 177

X
Y

0

n−1

n−2
n−3

3
2

0

1
2

1

4
3

n−2

n−1

Figure 7: Labelling the edges of a musquash.

If j = 0, the left-hand inequality of (3.1) is false since α − π
2n
∈ (− π

2n
, π
2n

). For all

the other values of j, we have sin(α + (2j−1)π
2n

) > 0, and so, to satisfy (3.1), j must

be nonzero even. Denote s(j) = sin(α + (2j−1)π
2n

). From the fact that 0 < α < π
n
, it

follows that

sin
π

2n
< s(2m) < s(2) < s(2m− 2) < s(4) < · · · < s(2M) < 1,

where M := b(m + 1)/2c. As all the crossings of the radial segment XY with the
edges of T (c) have the same orientation, the fact that X lies in a domain labelled
s implies that there must be exactly s crossings. Hence the set of the values of j
satisfying (3.1) is the set of the first s terms of the sequence (2m, 2, 2m−2, 4, . . . , 2M),
that is, {2, 4, . . . , 2b s

2
c, 2m− 2b s−1

2
c, . . . , 2m− 2, 2m}.

We now consider the general case when Y does not necessarily lie on the radius of C
passing through X. For Y ∈ C, let V (Y ) be the n-dimensional row-vector over Z2

whose components are labelled from 0 to n− 1, such that V (Y )j = 1, if XY crosses
the edge j of T (c), and V (Y )j = 0 otherwise. As we have just shown, if XY lies on
a radius of C, then

V (Y ) = (0, (0, 1)bs/2c, 0n−2s−1, (0, 1)b(s+1)/2c), (3.2)

where the superscript denotes the number of consecutive repeats of the sequence.

The number O1(XY ) (respectively, O0(XY )) is the number of odd sequences of
consecutive ones (respectively, zeros) in the vector V (Y ) (counted in the cyclic order,
so that if V (Y )n−1−a = · · · = V (Y )n−1 = V (Y )0 = · · · = V (Y )b for some a, b ≥ 0,
we count it as a single sequence of length a + b + 2). For the vector V (Y ) in (3.2)
we have O1(XY ) = s and O0(XY ) = s− 1.

When Y ∈ C moves in the positive direction, the vector V (Y ) only changes when Y
passes through the vertices of T (c). Initially Y lies between the vertices e(2n−1)πi/n
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and eπi/n, so when Y passes through the vertex eπi/n, the resulting vector V (Y )
is obtained from the one in (3.2) by adding the vector (1, 0, . . . , 0, 1), which gives
V (Y ) = ((1, 0)b(s+2)/2c, 0n−2s−1, (1, 0)b(s−1)/2c, 0), so O1(XY ) = s and O0(XY ) =
s− 1.

When Y keeps moving, every time when it passes through the vertex e(2j+1)πi/n, j =
1, . . . , n − 1, we add to V (Y ) the vector (0n−2j−1, 12, 02j−1) for j = 1, . . . , n−1

2
, and

the vector (02n−2j−1, 12, 02j−n−1) for j = n+1
2
, . . . , n − 1, as the number of crossings

of XY with the two edges incident to that vertex changes from 0 to 1 or vice versa.
Then a routine check shows that O1(XY ) and O0(XY ) take the values shown in

Interval for j V (Y ) O1 O0[
1, b s−12 c

]
((1, 0)b

s+2
2 c, 0n−2s−1, (1, 0)b

s−1
2 c−j , (0, 1)j , 0) s s− 1[

b s−12 c+ 1, n−3
2 − b

s
2c
]

((1, 0)b
s+2
2 c, 0n−2j−3−2b

s
2 c, 12(j−b

s−1
2 c), (0, 1)b

s−1
2 c, 0) s s+ 1[

n−3
2 − b

s
2c+ 1, n−3

2

]
((1, 0)

n−1
2 −j , (0, 1)j−

n−3
2 +b s2 c, 1n−2s−1, (0, 1)b

s−1
2 c, 0) s s− 1

n−1
2 (0, (1, 0)b

s
2 c, 1n−2s−1, (1, 0)b

s+1
2 c) s s− 1[

n+1
2 , n−1

2 + b s+1
2 c
]

(0, (1, 0)b
s
2 c, 1n−2s−1, (1, 0)b

s+1
2 c+

n−1
2 −j , (0, 1)j−

n−1
2 ) s s− 1[

n+1
2 + b s+1

2 c, n− 2− b s2c
]

(0, (1, 0)b
s
2 c, 12(n−b

s
2 c−1−j), 02j−n+1−2b s+1

2 c, (0, 1)b
s+1
2 c) s s+ 1[

n− 1− b s2c, n− 1
]

(0, (1, 0)n−1−j , (0, 1)b
s
2 c−n+1+j , 0n−2s−1, (0, 1)b

s+1
2 c) s s− 1

Table 1: O1(XY ) and O0(XY ).

Table 1 and the required result follows. Note that the last three rows follow from
the first three by symmetry. 2

Proof of Lemma 2.4: Let c be an odd cycle of length n. Choose a direction
on c and label the edges 0, 1, . . . , n − 1 in consecutive order. According to [2], the
standard musquash is uniquely determined by its crossing diagram, that is, by the
order of crossings on every edge with the other edges. For the standard musquash
T (c), this order on the edge labelled i is

i+ n− 3, i+ n− 5, . . . , i+ 4, i+ 2, i+ n− 2, i+ n− 4, . . . , i+ 5, i+ 3, (3.3)

where the labels are computed modulo n [2]. By Lemma 2.3, the edge removal
operation on any edge results in a thrackle drawing T (c∗) of a cycle of length n− 2.
Without loss of generality we assume that we remove the edge labelled n − 2. We
keep the labels 0, 1, . . . , n−4 for the edges of c∗ which are unaffected by the removal,
and we label n− 3 the single edge of c∗ formed by the segments of edges n− 3 and
n− 1 of c as the result of the edge removal.

The proof now is just a routine verification that the order of crossings for every edge
of T (c∗) is the same as that given by (3.3), with n replaced by n− 2, and with the
labels computed modulo n− 2. We consider three cases.

Suppose an edge i of T (c) crosses all the three edges n− 3, n− 2, n− 1 (that is, 1 ≤
i ≤ n−5). If i is even, then from (3.3) the order of crossings is i−3, i−5, . . . , 1, n−1,
n− 3, . . . , i+ 4, i+ 2, i− 2, i− 4, . . . , 2, 0, n− 2, n− 4, . . . , i+ 5, i+ 3, so the crossings
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with n − 3 and n − 1 are consecutive. Hence the crossing order on the edge i of
T (c∗) is obtained by deleting the labels n − 1 and n − 2, which results in the same
sequence as in (3.3), with n replaced by n− 2. If i is odd, then the order of crossings
is i−3, i−5, . . . , 2, 0, n−2, . . . , i+4, i+2, i−2, i−4, . . . , 1, n−1, n−3, . . . , i+5, i+3,
and the proof follows by a similar argument.

Suppose now an edge i of T (c) crosses only two of the three edges n− 3, n− 2, n− 1,
so that i = 0 or i = n − 4. When i = 0, by (3.3) the crossing order is n − 3, n −
5, . . . , 4, 2, n−2, n−4, . . . , 5, 3. The crossing order on the edge 0 of T (c∗) is obtained
by deleting the labels n − 3 and n − 2, which results in the same sequence, with n
replaced by n− 2. Similarly, for i = n− 4, (3.3) gives n− 7, n− 9, . . . , 0, n− 2, n−
6, n − 8, . . . , 1, n − 1. The crossing order on the edge n − 4 of T (c∗) is obtained
by deleting the labels n − 1 and n − 2. The resulting sequence is the same as that
obtained from (3.3) by replacing n by n− 2, and then reducing modulo n− 2.

And finally, the crossing order on the edge n−3 of T (c∗) is the crossing order on the
edge n−3 of T (c), up to but excluding the crossing with the edge n−1, followed by the
crossing order on the edge n−1 of T (c) starting from but excluding the crossing with
the edge n− 3. From (3.3) we obtain the sequence n− 6, n− 8, . . . , 1, n− 5, . . . , 4, 2.
This sequence is the same as that obtained from (3.3) by replacing n by n− 2, and
then reducing modulo n− 2. 2

Proof of Lemma 2.2: The fact that u lies in a domain labelled 1 follows from
Lemma 2.1. Then, again by Lemma 2.1, w lies either in the outer domain, or in a
domain labelled 2. Arguing by contradiction, suppose that w lies in a domain labelled
2. Our approach is to shorten the musquash T (c) to a standard musquash of length
at most 7 using the edge removal operation. In view of Lemma 2.3, the edge removal
operation on c is forbidden on the following edges: on the two edges incident to v as
deg v > 2, on the two edges whose corresponding triangular domains 4 contain the
vertex u, and on the four edges whose corresponding triangular domains 4 contain
the vertex w (it is not hard to see that if a point lies in a domain with label i < n−1

2
,

then it is contained in 2i triangular domains, hence forbidding the removal of 2i edges;
a point lying in a domain with label n−1

2
, the innermost n-gon of the musquash, lies

in all the triangular domains, hence not permitting any edge removal at all). This
gives no more than 8 edges in total. So edge removal on c is always possible as long
as the cycle c has at least 9 edges. By Lemma 2.4, edge removal results in a standard
musquash, and what is more, the vertices u and w still lie in domains labelled 1 and 2
respectively, of the complement to that new musquash. Repeating edge removal, we
come to a thrackle consisting of a standard 7-musquash, with a 2-path attached to
its vertex. Note that for some pairs of domains containing u and w, it could happen
that the sets of forbidden edges overlap, which could make further edge removal
possible, hence resulting in a standard 5-musquash, with a 2-path attached to its
vertex. Lemma 2.2 is obvious when c is a 3-cycle. So Lemma 2.2 follows from the
following result. 2

Lemma 3.2. The claim of Lemma 2.2 holds when c is a 5-cycle or a 7-cycle.
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In order to complete the proof of the Theorem, it remains to prove Lemmas 3.2
and 2.5, which deal with thrackles that are sufficiently small that they can be treated
by computer (which is why we separated Lemma 3.2 from Lemma 2.2). We give
computer-assisted proofs of the both Lemmas (for formal proofs not relying on com-
puter the interested reader is referred to [12]). As we mentioned in the Introduction,
it is “folkloric” that the Thrackle Conjecture has been verified for graphs having
up to 11 vertices, and were this claim true, Lemma 2.5 would follow. However, the
verification up to 11 vertices has not appeared in the literature, to our knowledge.
For this reason we give details for both Lemma 2.5 and Lemma 3.2.

Every thrackled path is uniquely, up to isotopy, determined by two pieces of
combinatorial data: the crossing diagram and the orientation diagram. If we choose
a direction on the given l-path and label the edges consecutively from 1 to l, then
the crossing diagram is the l × (l − 2) table whose i-th row is the ordered list of
crossings on edge i with the other edges (as in the proof of Lemma 2.4). Note that
the crossing diagram has l− 2 entries in the rows 1 and l, and l− 3 entries in all the
other rows. The orientation diagram is the table of the same size with the entries
±1 depending of whether the corresponding crossing occurs with positive or negative
orientation respectively. The crossing diagram of an l-path defines a thrackled cycle
if and only if the first crossing on the edge 1 occurs with the edge l and the last
crossing on the edge l, with the edge 1; we can replace that crossing in the thrackle
drawing by a vertex and remove the portion of the edge 1 before that vertex and the
portion of the edge l after it to obtain a thrackled l-cycle. We can also define both
the crossing and the orientation diagram for a partial thrackled path, the drawing
consisting of a thrackled (l − 1)-path and a portion of the l-th edge which does not
cross the edge l−1 and crosses all the other edges no more than once. The algorithm
described below enables one starting from (the crossing and the orientation diagrams
of) a partial thrackled path to obtain (the crossing and the orientation diagrams of)
all the thrackled paths of length n ≥ l to which that path can be extended, and
then to find among them all the thrackled cycles of length n ≥ l using the simple
characterisation above. In principle, one can even start with an embedded 2-path
and produce all the thrackled paths and cycles of a given length n ≥ 2.

Proof of Lemma 2.5: Let G be a figure-eight graph comprised of two 5-cycles c1
and c2 sharing a vertex v, and assume that there exists a thrackle drawing T (G).
Any thrackle drawing of a 5-cycle is a standard musquash, and by [11, Lemma 2.2],
the drawings of c1 and c2 cross at v. Take a drawing of c1 with the vertices at the
vertices of a regular pentagon. Let vw and vu be the edges of c2 such that the
starting segment of T (vw) lies in the outer domain determined by T (c1), and the
starting segment of T (vu), in a domain labelled 1. Up to reflection and isotopy the
drawing of c, vu and the starting segment of vw is as given on the left in Figure 8.

We can now change the drawing in a small neighbourhood of vertex v replacing
that vertex by two vertices of degree two as shown on the right in Figure 8. The
resulting drawing is a thrackle drawing of a 10-cycle, which additionally satisfies the
following conditions: on edge 1, there are no crossings between the crossings with
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7

Figure 8: Changing the drawing in a neighbourhood of the vertex v of T (G).

edges 6 and 7 and there are no crossings after the crossing with edge 7; on edge 2,
there are no crossings between the crossings with edges 7 and 6 and there are no
crossings before the crossing with edge 7; on edge 6, there are no crossings between
the crossings with edges 1 and 2 and there are no crossings after the crossing with
edge 2; and on edge 7, there are no crossings between the crossings with edges 2
and 1 and there are no crossings before the crossing with edge 2 (where we refer to
the labelling of the edges given on the right in Figure 8). Starting with the partial
thrackled path consisting of the drawing of the first six edges and a portion of the
seventh edge shown on the right in Figure 8 we use the computer code to produce
all the thrackled 10-paths extending that partial thrackled path and satisfying these
conditions. We then check that neither of them gives a thrackled 10-cycle, hence
proving the lemma. The program produced a total of 132, 039 thrackled 10-paths
in 473 seconds on a desktop computer. The Maple code and the output Lemma5 is
available on the journal website [13]. 2

Proof of Lemma 3.2: Suppose T (G′) is a thrackle drawing of the graph G′ which
is the union of the cycle c with l(c) ∈ {5, 7} and a 2-path p = vuw attached to a
vertex v ∈ c. We already know that the vertex u lies in a domain labelled 1, and so
to prove that w lies in the outer domain we have to show that the sum of orientation
of all the crossings on the (directed) edge uw is +1.

The proof in the cases l(c) = 5 and l(c) = 7 is similar and employs the same idea
as in the proof of Lemma 2.5. Suppose l(c) = 5. Changing the drawing in a small
neighbourhood of the vertex v we obtain a thrackle drawing of a 7-path whose starting
partial thrackle path consisting of the thrackled 5-path and the starting segment of
the sixth edge is shown on the right in Figure 9.

The resulting thrackled 7-path must satisfy the following conditions: on edge 1, there
are no crossings between the crossings with edges 6 and 5 and there are no crossings
before the crossing with edge 6; on edge 5, there are no crossings after the crossing
with edge 1; and on edge 6, there are no crossings before the crossing with edge 1
(where we refer to the labelling of the edges given on the right in Figure 9). We now
use the computer code to produce all the thrackled 7-paths which extend the partial
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Figure 9: Changing the drawing in a neighbourhood of the vertex v of T (G′).

thrackled path on the right in Figure 9 and satisfying these conditions. Using the
orientation diagram of each of them we check that the sum of orientations of all the
five crossings on the seventh edge (the edge uw of the original thrackle) is indeed
+1, hence proving the claim in the case l(c) = 5. In the case l(c) = 7 the proof is
similar: we change the drawing in a neighbourhood of the vertex v which produces a
thrackled 9-path which satisfies similar conditions for the crossings on the first, the
seventh and the eighth edges and then extend the partial thrackled path consisting
of seven edges and the starting segment of the eighth edge to a thrackled 9-path. For
every such extension, the sum of orientations on the ninth edge is +1, as required.
The program produced a total of 50 thrackled 7-paths in 0.5 seconds, and a total of
556 thrackled 9-paths in 1.3 seconds on a desktop computer. The Maple codes and
the outputs Lemma7_7path.mw and Lemma7_9path.mw are available on the journal
website [13]. 2

We now give a description of our algorithm. Suppose we are given (the crossing
and the orientation diagrams of) a certain partial thrackled path consisting of a
thrackled (l−1)-path and a segment of the l-th edge which does not cross the (l−1)-
st edge and crosses all the other edges at most once. The complement of the drawing
is the union of domains homeomorphic to discs (if we add the point at infinity to
the unbounded domain), the boundary of each of which is the union of segments of
the edges, either between two consecutive crossings or between a crossing and an
endpoint. From the diagrams, we can find, for any such (directed) segment, the next
segment on the boundary of the same domain, in the positive direction. We start
with the last segment on the l-th edge and take the next segment on the boundary of
the same domain, in the positive direction. If it is forbidden, that is, if it lies to the
(l−1)-st edge, or on an edge which the edge l has already crossed before, or for some
other reason (because of some particular conditions on the crossing diagram, as in
the proofs of Lemmas 3.2 and 2.5 above), we skip that segment and continue to the
next one. When we find one which is not forbidden, we extend the l-th edge to cross
it (which computationally means adding an extra crossing to the crossing and the
orientation diagrams), take the new last segment as our new starting segment, find
the next one on the boundary of the new domain in the positive direction, and so
on. If we get l−2 crossings on the edge l, we obtain a thrackled l-path. We can then



G. MISEREH ET AL. /AUSTRALAS. J. COMBIN. 70 (2) (2018), 168–184 183

add a starting segment of the (l + 1)-st edge (the empty (l + 1)-st row in the both
diagrams) and continue similarly till we get a thrackled path of the required length
n. We can then check if that path is in fact a thrackled n-cycle, as explained above.
If at some stage, we cannot continue because either we made a full turn around the
boundary of a domain and returned back to the last segment on the last edge, or
we obtained a thrackled n-path and we do not want to increase the length of the
path further, we go back. This means that we remove the last crossing on the last
edge from our partial thrackled path (that is, from the diagrams). This brings us
to the previous domain and we then try for the next crossing the next segment on
the boundary of that domain in the positive direction after the one with the crossing
which has just been removed. If it is forbidden, we go to the next one, and so on. If
we cannot continue, we remove yet another crossing and again proceed as above. The
execution stops when we return back to our original partial thrackled path and the
next segment on the boundary of the domain containing the last segment of the l-th
edge is that very segment, with the opposite direction. By that time, the program
will have produced all the thrackled paths (and cycles) of the given length n.

4 Concluding remarks

In this paper we only considered standard musquashes, the odd ones. By [1] there
is the only one even musquash, the thrackled 6-cycle. A direct generalisation of the
Theorem to the case when c is a 6-cycle is false, because c and c′ can be disjoint in
G. The disjoint union of a 6-cycle and a 3- or a 5-cycle can be thrackled (which does
not violate the Thrackle Conjecture) following the approach in [15, Section 2]: for
both a 3- and a 5-thrackle, there is a curve which crosses every edge exactly once.
We can take a thin strip around that curve and then place the 6-musquash inside
that strip so that three vertices are close to one end, and the other three close to
the other end, as in [15, Figure 6]. However, the figure-eight graph comprised of a 3-
and a 6-cycle cannot be thrackled (by duplicating the 3-cycle we get the theta-graph
Θ3, with three paths of length 3 sharing common endpoints, which has no thrackle
drawing by [11, Theorem 5.1]). However, to the best of our knowledge, the question
of whether the figure-eight graph comprised of a 5- and a 6-cycle can be thrackled
remains open.

Finally, we give a more precise statement of Problem 1 in [7], to which we know
no counterexamples: is it true that the sum of orientations of crossings on any edge
of an odd thrackled cycle is 0, and on any edge of an even thrackled cycle is ±1?
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