Sufficient conditions for graphs to be maximally 4-restricted edge connected^{*}

MUJIANGSHAN WANG YUQING LIN

School of Electrical Engineering and Computer Science The University of Newcastle NSW 2308 Australia

Shiying Wang

School of Mathematics and Information Science Henan Normal University Xinxiang, Henan 453007 P.R. China wangshiying@htu.edu.cn or shiying@sxu.edu.cn

Meiyu Wang

School of Mathematical Sciences Shanxi University Taiyuan, Shanxi 030006 P.R. China

Abstract

For a subset S of edges in a connected graph G, the set S is a k-restricted edge cut if G - S is disconnected and every component of G - S has at least k vertices. The k-restricted edge connectivity of G, denoted by $\lambda_k(G)$, is defined as the cardinality of a minimum k-restricted edge cut. A connected graph G is said to be λ_k -connected if G has a k-restricted edge cut. Let $\xi_k(G) = \min\{|[X, \bar{X}]| : |X| = k, G[X] \text{ is connected}\},$ where $\bar{X} = V(G) \setminus X$. A graph G is said to be maximally k-restricted edge connected if $\lambda_k(G) = \xi_k(G)$. In this paper we show that if G is a λ_4 -connected graph with $\lambda_4(G) \leq \xi_4(G)$ and the girth satisfies $g(G) \geq 8$, and there do not exist six vertices u_1, u_2, u_3, v_1, v_2 and v_3 in G such that the distance $d(u_i, v_j) \geq 3$, $(1 \leq i, j \leq 3)$, then G is maximally 4-restricted edge connected.

^{*} This work is supported by the National Natural Science Foundation of China (61772010).

1 Terminology and introduction

We consider finite, undirected and simple graphs. For graph-theoretical terminology and notation not defined here we follow [5]. Let G be a graph with vertex set V = V(G) and edge set E = E(G). Given a nonempty vertex subset V' of V, the induced subgraph by V' in G, denoted by G[V'], is a graph, whose vertex set is V'and the edge set is the set of all the edges of G with both endpoints in V'. For two disjoint vertex sets X and Y of V, let [X, Y] be the set of edges with one endpoint in X and the other one in Y. The order of G is the number of vertices in G. The degree of a vertex v in G, denoted by $d_G(v)$, is the number of edges of G incident with v. The set of neighbors of a vertex v in G is denoted by $N_G(v)$. A (v_0, v_k) -path, denoted by $P = v_0 v_1 \dots v_k$, is a sequence of adjacent vertices where all the vertices are distinct. Likewise, a cycle is a path that begins and ends with the same vertex. The length of a path or a cycle is the number of edges contained in the path or cycle. The distance between two vertices x and y is, denoted by d(x, y), the length of a shortest path between x and y in G. The girth g = g(G) is the length of a shortest cycle in G.

Many multiprocessor systems have interconnection networks (networks for short) as underlying topologies and a network is usually represented by a graph where nodes represent processors and links represent communication links between processors. A classical measurement of the fault tolerance of a network is the edge connectivity $\lambda(G)$. The edge connectivity $\lambda(G)$ of a connected graph G is the minimum cardinality of an edge cut of G. As a more refined index than the edge connectivity, Fàbrega and Fiol [10] proposed the more general concept of the k-restricted edge connectivity of G as follows.

Definition 1.1 [10] For a subset S of edges in a connected graph G, S is a krestricted edge cut if G - S is disconnected and every component of G - S has at least k vertices. The k-restricted edge connectivity of G, denoted by $\lambda_k(G)$, is defined as the cardinality of a minimum k-restricted edge cut. A minimum k-restricted edge cut is called a λ_k -cut. A connected graph G is said to be λ_k -connected if G has a k-restricted edge cut.

There is a significant amount of research on k-restricted edge connectivity [2, 4, 7-11, 13, 18-21, 27]. In view of recent studies on k-restricted edge connectivity, it seems that the larger $\lambda_k(G)$ is, the more reliable the network G is [3, 14, 22]. So, we expect $\lambda_k(G)$ to be as large as possible. Clearly, the optimization of $\lambda_k(G)$ requires an upper bound first and so the optimization of k-restricted edge connectivity draws a lot of attention. For any positive integer k, let $\xi_k(G) = \min\{|[X, \bar{X}]| : |X| = k, G[X] \text{ is connected}\}$, where $\bar{X} = V(G) \setminus X$. It has been shown that $\lambda_k(G) \leq \xi_k(G)$ holds for many graphs [1, 6, 12, 15, 28].

Let G_1, \ldots, G_n be *n* copies of K_t . Add a new vertex *u* and let *u* be adjacent to every vertex in $V(G_i)$, $i = 1, \ldots, n$. The resulting graph is denoted by $G_{n,t}^*$. It can be verified that $G_{n,t}^*$ has no $(\delta(G_{n,t}^*) + 1)$ -restricted edge cuts and $G_{n,t}^*$ is the only exception for the existence of *k*-restricted edge cuts of a connected graph G when $k \leq \delta(G) + 1$. **Theorem 1.2** [28]. Let G be a connected graph with order at least $2(\delta(G)+1)$ which is not isomorphic to any $G_{n,t}^*$ with $t = \delta(G)$. Then for any $k \leq \delta(G) + 1$, G has k-restricted edge cuts and $\lambda_k(G) \leq \xi_k(G)$.

A λ_k -connected graph G is said to be maximally k-restricted edge connected if $\lambda_k(G) = \xi_k(G)$. When k = 2, the k-restricted edge connectivity of G is the restricted edge connectivity of G; a maximally k-restricted edge connected graph is a maximally restricted edge connected graph. There has been much research on maximally restricted edge connected graphs. See [13,17,22–24]. Let G be a λ_k connected graph and let S be a λ_k -cut of G.

In 1989, Plesník and Znám [16] gave the following sufficient condition for a graph to be maximally edge connected.

Theorem 1.3 [16] Let G be a connected graph. If there do not exist four vertices u_1, u_2, v_1, v_2 in G such that the distance $d(u_i, v_j) \ge 3$ $(1 \le i, j \le 2)$, then G is maximally edge connected.

In 2013, Qin et al. [17] gave the following theorem.

Theorem 1.4 [17] Let G be a λ_2 -connected graph with the girth $g(G) \ge 4$. If there are not four vertices u_1, u_2, v_1, v_2 in G such that the distance $d(u_i, v_j) \ge 3$ $(1 \le i, j \le 2)$, then G is maximally restricted edge connected.

In 2015, Wang et al. [25] gave the following theorem.

Theorem 1.5 [25] Let G be a λ_3 -connected graph with the girth $g(G) \ge 5$. If there are not five vertices u_1, u_2, v_1, v_2, v_3 in G such that the distance $d(u_i, v_j) \ge 3$ $(1 \le i \le 2; 1 \le j \le 3)$, then G is maximally 3-restricted edge connected.

In this article, we extend the above result to λ_4 -connected graphs.

2 Main results

We first give an existing result.

Lemma 2.1 [21] Let G be a λ_k -connected graph with $\lambda_k(G) \leq \xi_k(G)$ and let S = [X, Y] be a λ_k -cut of G. If there exists a connected subgraph H of order k in G[X] with the property that

$$\sum_{v \in X \setminus V(H)} |N(v) \cap V(H)| \le \sum_{v \in X \setminus V(H)} |N(v) \cap Y|,$$

then G is maximally k-restricted edge connected.

Theorem 2.2 Let G be a λ_4 -connected graph with $\lambda_4(G) \leq \xi_4(G)$ and let the girth $g(G) \geq 8$. If there are not six vertices u_1, u_2, u_3, v_1, v_2 and v_3 in G such that the distance $d(u_i, v_j) \geq 3$ $(1 \leq i, j \leq 3)$, then G is maximally 4-restricted edge connected.

Proof: We suppose, on the contrary, that G is not maximally 4-restricted edge connected. Let S = [X, Y] be a λ_4 -cut of G. Denote $X_1 = \{x \in X : N(x) \cap Y \neq \emptyset\}$ and $Y_1 = \{y \in Y : N(y) \cap X \neq \emptyset\}$. Let $X_0 = X \setminus X_1, Y_0 = Y \setminus Y_1$, and let $m_0 = |X_0|, m_1 = |X_1|, n_0 = |Y_0|$ and $n_1 = |Y_1|$. If |X| = 4 or |Y| = 4, then $\lambda_4(G) \leq \xi_4(G) \leq |S| = \lambda_4(G)$, i.e., G is maximally 4-restricted edge connected, a contradiction. Therefore $|X| \geq 5$ and $|Y| \geq 5$.

Claim 1.
$$m_0 \ge 2$$
 and $n_0 \ge 2$.

By contradiction. Without loss of generality, assume $m_0 \leq 1$. Let $m_0 = 0$. By [26], there is a connected subgraph H of order 4 such that $X_0 \subseteq V(H)$ in G[X]. Let $m_0 = 1$ and $X_0 = \{x\}$. Since G[X] is connected, there is a spanning tree T in G[X]. Therefore $x \in V(T)$. Since T has two vertices of degree 1, there is a vertex v of degree 1 such that $v \neq x$. Then T - v is a tree and $x \in V(T - v)$. Since there is a vertex v_2 of degree 1 such that $v_2 \neq x$, $T - v - v_2$ is a tree and $x \in V(T - v - v_2)$. Continuing this process, we can obtain a tree T' of order 4 such that $x \in V(T')$. Let H = (G[X])[V(T')]. Therefore, in G[X], there is a connected subgraph H of order 4 such that $X_0 \subseteq V(H)$. Let $u \in X \setminus V(H)$. Then $|[\{u\}, Y]| \geq 1$. Since |V(T')| = 4, the maximum cardinality of paths is less than or equal to 3. Since $g(G) \geq 8$, $|[\{u\}, V(H)]| \leq 1$ holds. Therefore, we have that

$$\sum_{u \in X \setminus V(H)} |N(u) \cap V(H)| = |[X \setminus V(H), V(H)]|$$

$$\leq |X \setminus V(H)|$$

$$\leq |[X \setminus V(H), Y]|$$

$$= \sum_{u \in X \setminus V(H)} |N(u) \cap Y|. \quad (2.1)$$

By Lemma 2.1, G is maximally 4-restricted edge connected, a contradiction. Therefore $m_0 \ge 2$. Similarly, we have $n_0 \ge 2$. The proof of Claim 1 is complete.

Claim 2. $m_0 = 2$ or $n_0 = 2$.

Suppose that $m_0 \geq 3$ and $n_0 \geq 3$. Then there are six vertices u_1, u_2, u_3, v_1, v_2 and v_3 in G such that $u_1, u_2, u_3 \in X_0$ and $v_1, v_2, v_3 \in Y_0$. By the definition of X_0 and Y_0 , we have that $|N(u_i) \cap Y| = 0 = |N(v_j) \cap X|$ for $1 \leq i \leq 3; 1 \leq j \leq 3$. It follows that $d(u_i, v_j) \geq 3$ $(i, j \in \{1, 2, 3\})$, a contradiction. Combining this with Claim 1, we have that $m_0 = 2$ or $n_0 = 2$. The proof of Claim 2 is complete.

Claim 3. In G[X], let H be a connected subgraph of order 4 such that it contains X_0 as most as possible and let $V(H) = \{x_1, x_2, x_3, x_4\}$. If $X_0 = \{u_1, u_2\}$, then (1) $|X_0 \cap V(H)| = 1$;

(2) $H = u_1 x_2 x_3 x_4$ is a path of length 3, where $u_1 = x_1$, if $u_1 \in V(H)$; and $u_1 x_2 x_3 x_4 u_2$ is a path of length 4 in G[X];

(3) $(N(u_1) \cap X) \setminus V(H) = \emptyset$ and $(N(u_2) \cap X) \setminus V(H) = \emptyset$.

Since $|X_0| = 2, 1 \le |X_0 \cap V(H)| \le 2$ holds. We consider the following two cases.

Case 1. $|X_0 \cap V(H)| = 2.$

Since $g(G) \geq 8$, $|[\{u\}, V(H)]| \leq 1$ for $u \in X \setminus V(H)$. Note that $X_0 = \{u_1, u_2\} \subseteq V(H)$. Then $|[\{u\}, Y]| \geq 1$ for $u \in X \setminus V(H)$. By (2.1), we have that

$$\sum_{u \in X \setminus V(H)} |N(u) \cap V(H)| \le \sum_{u \in X \setminus V(H)} |N(u) \cap Y|.$$

By Lemma 2.1, G is maximally 4-restricted edge connected, a contradiction. Case 2. $|X_0 \cap V(H)| = 1$.

In this case, suppose $u_1 \in V(H)$. Since $g(G) \geq 8$, H is a tree of order 4, and $|[\{u\}, V(H)]| \leq 1$ for $u \in X \setminus V(H)$. If $|N(u_2) \cap V(H)| = 0$, then $|[\{u\}, V(H)]| \leq |[\{u\}, Y]|$ for $u \in X \setminus V(H)$. Therefore, we have that

$$\sum_{u \in X \setminus V(H)} |N(u) \cap V(H)| \le \sum_{u \in X \setminus V(H)} |N(u) \cap Y|.$$

By Lemma 2.1, G is maximally 4-restricted edge connected, a contradiction. Then $|N(u_2) \cap V(H)| = 1$. Suppose that H is not a path. Then H has at least three vertices of degree 1. Let u_2 be adjacent to a vertex y of H. Then there is a vertex v of degree 1 such that $v \neq u_1$ and y in H. Therefore, $(G[X])[V(H-v) \cup \{u_2\}]$ is a connected graph of order 4, a contradiction to H. Then H is a path P of length 3. If u_1 is not a vertex of degree 1, then there is a connected subgraph of order 4 such that it contains u_1, u_2 in $G[V(H) \cup \{u_2\}]$, a contradiction to H. Therefore u_1 is a vertex of degree 1 in P. Let $P = u_1 x_2 x_3 x_4$. Suppose that $N(u_2) \cap V(H) = \emptyset$. Then $|[\{u\}, V(H)]| \leq |[\{u\}, Y]|$ for $u \in X \setminus V(H)$. Therefore, we have that

$$\sum_{u \in X \setminus V(H)} |N(u) \cap V(H)| \le \sum_{u \in X \setminus V(H)} |N(u) \cap Y|.$$

By Lemma 2.1, G is maximally 4-restricted edge connected, a contradiction. Therefore, $|N(u_2) \cap V(H)| = 1$. If $N(u_2) \cap \{x_2, x_3\} \neq \emptyset$, a contradiction to H. Then u_2 is adjacent to x_4 .

Suppose, on the contrary, that $x \in (N(u_1) \cap X) \setminus V(H)$. Then $P' = xu_1x_2x_3$ is a path of length 3 in G[X]. Since $g(G) \geq 8$, $|N(u) \cap V(P')| \leq 1$ for $u \in X \setminus V(P')$. If $N(u_2) \cap V(P') \neq \emptyset$, then there is a connected subgraph H' of order 4 in G[X] with $u_1, u_2 \in V(H')$, a contradiction to that $|X_0 \cap V(H)| = 1$. Therefore, we have that $|N(u_2) \cap V(P')| = 0$ and $|N(u) \cap V(P')| \leq |N(u) \cap Y|$ for $u \in X \setminus V(P')$. Thus,

$$\sum_{u \in X \setminus V(P')} |N(u) \cap V(P')| \le \sum_{u \in X \setminus V(P')} |N(u) \cap Y|.$$

By Lemma 2.1, G is maximally 4-restricted edge connected, a contradiction. So $(N(u_1) \cap X) \setminus V(H) = \emptyset$ and $d(u_1) = 1$ in G[X].

Suppose, on the contrary, that $x \in (N(u_2) \cap X) \setminus V(H)$. By Claim 3 (2), $P' = x_3 x_4 u_2 x$ is a path of length 3 in G[X]. Since $g(G) \ge 8$, $|N(u) \cap V(P')| \le 1$ for $u \in X \setminus V(P')$.

Since $d(u_1) = 1$ in G[X] and $u_1 x_2 \in E(G[Y])$, we have $N(u_1) \cap V(P') = \emptyset$. Therefore, we have that $|N(u) \cap V(P')| \leq |N(u) \cap Y|$ for $u \in X \setminus V(P')$. Thus,

$$\sum_{u \in X \setminus V(P')} |N(u) \cap V(P')| \le \sum_{u \in X \setminus V(P')} |N(u) \cap Y|.$$

By Lemma 2.1, G is maximally 4-restricted edge connected, a contradiction. So $(N(u_2) \cap X) \setminus V(H) = \emptyset$. The proof of Claim 3 is complete.

Similarly to Claim 3, we have that the following claim.

Claim 4. In G[Y], let H^* be a connected subgraph of order 4 such that it contains Y_0 as most as possible and let $V(H^*) = \{y_1, y_2, y_3, y_4\}$. If $Y_0 = \{v_1, v_2\}$, then (1) $|Y_0 \cap V(H^*)| = 1$;

(2) $H^* = v_1 y_2 y_3 y_4$ is a path of length 3, where $v_1 = y_1$, if $v_1 \in V(H^*)$; and $v_1 y_2 y_3 y_4 v_2$ is a path of length 4 in G[Y];

(3) $(N(v_1) \cap Y) \setminus V(H^*) = \emptyset$ and $(N(v_2) \cap Y) \setminus V(H^*) = \emptyset$.

Without loss of generality, suppose $m_0 = 2$. We consider the following cases.

Case 1. $n_0 = 2$.

Claim 5. $|[\{x_2, x_3, x_4\}, \{y_2, y_3, y_4\}]| \le 1$ in G (See Fig 1).

Suppose $|[\{x_2, x_3, x_4\}, \{y_2, y_3, y_4\}]| \ge 2$. It is sufficient to show that $|[\{x_2, x_3, x_4\}, \{y_2, y_3, y_4\}]| = 2$. Since $x_2x_3x_4$ and $y_2y_3y_4$ are paths, and $|[\{x_2, x_3, x_4\}, \{y_2, y_3, y_4\}]| = 2$, we have that there is a cycle of G whose length is at most 6, a contradiction to $g(G) \ge 8$. The proof of Claim 5 is complete.

Suppose, first, that $|[\{x_2, x_3, x_4\}, \{y_2, y_3, y_4\}]| = 1$ and $x_{i_0}y_{j_0} \in E(G)$ $(2 \leq i_0 \leq 4, 2 \leq j_0 \leq 4)$. Let $x_i \in \{2, 3, 4\} \setminus \{i_0\}$ with $x_i x_{i_0} \in E(H)$ and $y_j \in \{2, 3, 4\} \setminus \{j_0\}$ with $y_j y_{j_0} \in E(H^*)$. By Claim 5, $d(x_i, y_j) \neq 1$. If $d(x_i, y_j) = 2$, then there is a vertex y in G[Y] such that $x_i y, y y_j \in E(G)$ or there is a vertex x in G[X] such that $x_i x, x y_j \in E(G)$. Without loss of generality, suppose that there is a vertex y in G[Y] such that $x_i y, y y_j \in E(G)$. Then there is a cycle C in G, and $x_{i_0}, y_{j_0}, x_i, y_j, y \in V(C)$ and the length of C is 5, a contradiction to $g(G) \geq 8$. Therefore, $d(x_i, y_j) \geq 3$. By Claim 4 (3), $d(x_i, v_i) \geq 3$ for $\{1, 2\}$. Similarly to the discussion on x_i , we have that $d(y_j, u_k) \geq 3$ for $k \in \{1, 2\}$. Therefore we have $d(x, y) \geq 3$ for every $x \in \{u_1, u_2, x_i\}$ and $y \in \{v_1, v_2, y_i\}$, a contradiction.

Suppose, second, that $|[\{x_2, x_3, x_4\}, \{y_2, y_3, y_4\}]| = 0$. Since there is no $d(x, y) \ge 3$ for every $x \in \{x_2, x_3, x_4\}$ and $y \in \{y_2, y_3, y_4\}$, there are two vertices $x_{i_0} \in \{x_2, x_3, x_4\}$ and $y_{j_0} \in \{y_2, y_3, y_4\}$ such that $d(x_{i_0}, y_{j_0}) = 2$. Let $i \in \{2, 3, 4\} \setminus \{i_0\}$ with $x_i x_{i_0} \in E(H)$ and $j \in \{2, 3, 4\} \setminus \{j_0\}$ with $y_j y_{j_0} \in E(H^*)$. Since $g(G) \ge 8$, $d(x_i, y_j) \ge 3$ holds. By Claim 4 (3), $d(x_i, v_j) \ge 3$ for $j \in \{1, 2\}$. Similarly, $d(y_j, u_i) \ge 3$ for $i \in \{1, 2\}$. Therefore we have $d(x, y) \ge 3$ for every $x \in \{u_1, u_2, x_i\}$ and $y \in \{v_1, v_2, y_j\}$, a contradiction.

Case 2. $n_0 \ge 3$.

Let $Y_0 = \{y_0, v_1, v_2, v_3, \ldots\}$. By Claim 3 (2), we have that $H = u_1 x_2 x_3 x_4$ and $u_1 x_2 x_3 x_4 u_2$ is a path in G[X]. Since $g(G) \ge 8$, we have $|N(v) \cap V(H^*)| \le 1$ for

 $v \in Y \setminus V(H^*)$. If $|N(y) \cap V(H^*)| = 0$ for $y \in Y_0 \setminus V(H^*)$, by Lemma 2.1, G is maximally 4-restricted edge connected, a contradiction. Therefore, there is at least a vertex y_0 in $Y_0 \setminus V(H^*)$ such that $|N(y_0) \cap V(H^*)| = 1$.

Case 2.1. $|Y_0 \cap V(H^*)| = 1.$

Let $Y_0 \cap V(H^*) = \{v_1\}$. Note that H^* is a path of length 3 or a $K_{1,3}$. Similarly to the discussion on H, we have that $G[V(H^*) \cup \{y_0\}]$ is a path of length 4, denoted by $P_1 = y_1 y_2 y_3 y_4 y_5$, where $v_1 = y_1, y_5 = y_0$. Similarly to Case 1, there is a contradiction. Case 2.2. $|Y_0 \cap V(H^*)| = 2$.

Let $Y_0 \cap V(H^*) = \{v_1, v_2\}$. Since H^* is a path of length 3 or a $K_{1,3}$, we have that $1 \le d_{H^*}(v_1, v_2) \le 3$.

Case 2.2.a.
$$d_{H^*}(v_1, v_2) = 3.$$

In this case, H^* is a path of length 3, denoted by $H^* = y_1 y_2 y_3 y_4$, where $v_1 = y_1, v_2 = y_4$. Similarly to the proof of Claim 5, we have the following claim.

Claim 6. $|[\{x_2, x_3, x_4\}, \{y_2, y_3\}]| \le 1$ in G (See Fig 2).

Suppose, first, that $|[\{x_2, x_3, x_4\}, \{y_2, y_3\}]| = 1$ Without loss of generality, we consider the following cases.

Case 2.2.a.1. $x_2y_2 \in E(G)$.

In this case, $x_3x_2y_2y_3$ is a path in G. Since $g(G) \ge 8$ and Claim 6, $d(x_3, y_3) = 3$ holds. Assume $d(x_3, v_1) = 2$. Since $N(v_1) \cap X = \emptyset$, there is a vertex y in G[Y]such that $x_3y, yv_1 \in E(G)$. Thus, $x_3yv_1y_2x_2x_3$ is a 5-cycle in G, a contradiction to that $g(G) \ge 8$. Therefore, $d(x_3, v_1) = 3$. Similarly, $d(x_3, v_2) \ge 3$. By Claim 3, $d(y_3, u_i) \ge 3$ for $i \in \{1, 2\}$. Therefore we have $d(x, y) \ge 3$ for every $x \in \{u_1, u_2, x_3\}$ and $y \in \{v_1, v_2, y_3\}$, a contradiction.

Case 2.2.a.2. $x_3y_2 \in E(G)$.

In this case, $x_2x_3y_2y_3$ is a path in G. By Claim 6, $x_2y_3 \notin E(G)$. If $d(x_2, y_3) = 2$, then there is a vertex y in G[Y] such that $x_2y, yy_3 \in E(G)$ or there is a vertex x in G[X] such that $x_2x, xy_3 \in E(G)$. Without loss of generality, suppose that there is a vertex y in G[Y] such that $x_2y, yy_3 \in E(G)$. Note that $x_3y_2y_3yx_2x_3$ is a 5-cycle in G, a contradiction to that $g(G) \geq 8$. Therefore, $d(x_2, y_3) = 3$. Assume $d(x_2, v_1) = 2$. Since $N(v_1) \cap X = \emptyset$, there is a vertex y in G[Y] such that $x_2y, yv_1 \in E(G)$. Thus, $x_2yv_1y_2x_3x_2$ is a 5-cycle in G, a contradiction to that $g(G) \geq 8$. Therefore, $d(x_2, v_1) = 3$. Assume $d(x_2, v_2) = 2$. Since $N(v_2) \cap X = \emptyset$, there is a vertex y in G[Y] such that $x_2y, yv_2 \in E(G)$. Thus, $x_2yv_2y_3y_2x_3x_2$ is a 6-cycle in G, a contradiction to that $g(G) \geq 8$. Therefore, $d(x_2, v_2) \geq 3$. By Claim 3, $d(y_3, u_i) \geq 3$ for $i \in \{1, 2\}$. Therefore we have $d(x, y) \geq 3$ for every $x \in \{u_1, u_2, x_2\}$ and $y \in \{v_1, v_2, y_3\}$, a contradiction.

Suppose, second, that $|[\{x_2, x_3, x_4\}, \{y_2, y_3\}]| = 0$. Assume $d(x, y) \ge 3$ for every $x \in \{x_2, x_3, x_4\}$ and $y \in \{y_2, y_3\}$. If $d(x_{i_0}, v_1) = 2$ for $x_{i_0} \in \{x_2, x_3, x_4\}$, then $d(x_i, v_1) \ge 3$ for $i \in \{2, 3, 4\} \setminus \{i_0\}$ by $g(G) \ge 8$. Therefore we have $d(x, y) \ge 3$ for every $x \in \{u_1, u_2, x_i\}$ and $y \in \{v_1, y_1, y_2\}$, a contradiction. Then there are

two vertices $x_{i_0} \in \{x_2, x_3, x_4\}$ and $y_{j_0} \in \{y_2, y_3\}$ such that $d(x_{i_0}, y_{j_0}) = 2$. Let $i \in \{2, 3, 4\} \setminus \{i_0\}$ with $x_i x_{i_0} \in E(H)$, and $j \in \{2, 3\} \setminus \{j_0\}$ with $y_j y_{j_0} \in E(H^*)$. Since $g(G) \ge 8$, $d(x_i, y_j) \ge 3$ holds. Since $d(x_{i_0}, y_{j_0}) = 2$, $d(x_i, v_j) \ge 3$ for $j \in \{1, 2\}$ by $g(G) \ge 8$. By Claim 3, $d(y_j, u_i) \ge 3$ for $i \in \{1, 2\}$. Therefore we have $d(x, y) \ge 3$ for every $x \in \{u_1, u_2, x_i\}$ and $y \in \{v_1, v_2, y_j\}$, a contradiction.

Case 2.2.b.
$$d_{H^*}(v_1, v_2) = 2$$
.

Suppose, first, that $H^* \cong K_{1,3}$, where $V(H^*) = \{v_1, v_2, y_1, y_2\}$ and $d_{H^*}(y_2) = 3$. Since $g(G) \ge 8$, we have $|N(v) \cap V(H^*)| \le 1$ for $v \in Y \setminus V(H^*)$. If $|N(y) \cap V(H^*)| = 0$ for $y \in Y_0 \setminus V(H^*)$, by Lemma 2.1, G is maximally 4-restricted edge connected, a contradiction. Therefore, there is at least a vertex y_0 in $Y_0 \setminus V(H^*)$ such that $|N(y_0) \cap V(H^*)| = 1$. If y_0 is adjacent to v_i $(i \in \{1, 2\})$, then $(G[Y])[\{v_1, v_2, y_0, y_2\}]$ is a connected subgraph of order 4, a contradiction to H^* . If y_0 is adjacent to y_1 (See Fig. 3). Similarly to the proof of Claim 5, we have the following claim.

Claim 7. $|[\{x_2, x_3, x_4\}, \{y_1, y_2\}]| \le 1$ in G.

Suppose, first, that $|[\{x_2, x_3, x_4\}, \{y_1, y_2\}]| = 1$ and $x_{i_0}y_{j_0}$ is an edge in G, where $i_0 \in \{2, 3, 4\}$ and $j_0 \in \{2, 3\}$. Without loss of generality, we consider the following cases.

Case 2.2.b.1. $x_2y_2 \in E(G)$.

If $d(x_3, v_i) = 2$ for $1 \le i \le 2$ or $d(x_3, y_0) = 2$, then there is a vertex y in G[Y] such that $x_3y, yv_i \in E(G)$ or $x_3y, yy_0 \in E(G)$. Thus, there is a at most 6-cycle in G, a contradiction to that $g(G) \ge 8$. Therefore, $d(x_3, v_i) \ge 3$ and $d(x_3, y_0) \ge 3$. Therefore we have $d(x, y) \ge 3$ for every $x \in \{u_1, u_2, x_3\}$ and $y \in \{v_1, v_2, y_0\}$, a contradiction.

Case 2.2.b.2. $x_2y_1 \in E(G)$.

The proof of this case is the same as Case 2.2.b.1.

Case 2.2.b.3. $x_3y_2 \in E(G)$.

If $d(x_2, v_i) = 2$ for $1 \le i \le 2$ or $d(x_2, y_0) = 2$, then there is a vertex y in G[Y] such that $x_2y, yv_i \in E(G)$ or $x_2y, yy_0 \in E(G)$. Thus, there is a at most 6-cycle in G, a contradiction to that $g(G) \ge 8$. Therefore, $d(x_2, v_i) \ge 3$ and $d(x_2, y_0) \ge 3$. Therefore we have $d(x, y) \ge 3$ for every $x \in \{u_1, u_2, x_2\}$ and $y \in \{v_1, v_2, y_0\}$, a contradiction.

Case 2.2.b.4. $x_3y_1 \in E(G)$.

The proof of this case is the same as Case 2.2.b.3.

Suppose, secondly, that $|[\{x_2, x_3, x_4\}, \{y_1, y_2\}]| = 0$. Assume $d(x, y) \ge 3$ for every $x \in \{x_2, x_3, x_4\}$ and $y \in \{y_1, y_2\}$. If $d(x_{i_0}, v_1) = 2$ for $2 \le i_0 \le 4$, then $d(x_i, v_1) \ge 3$ for $i \in \{2, 3, 4\} \setminus \{i_0\}$ by $g(G) \ge 8$. Therefore we have $d(x, y) \ge 3$ for every $x \in \{u_1, u_2, x_i\}$ and $y \in \{v_1, y_1, y_2\}$, a contradiction. Then there are two vertices $x_{i_0} \in \{x_2, x_3, x_4\}$ and $y_{j_0} \in \{y_2, y_3\}$ such that $d(x_{i_0}, y_{j_0}) = 2$. Let $i \in \{2, 3, 4\} \setminus \{i_0\}$ with $x_i x_{i_0} \in E(H)$, and $j \in \{2, 3\} \setminus \{j_0\}$ with $y_j y_{j_0} \in E(H^*)$. Since $g(G) \ge 8$, $d(x_i, y_j) \ge 3$ holds. Since $d(x_{i_0}, y_{j_0}) = 2$, $d(x_i, v_j) \ge 3$ for $j \in \{1, 2\}$ by $g(G) \ge 8$.

By Claim 3, $d(y_j, u_i) \ge 3$ for $i \in \{1, 2\}$. Therefore we have $d(x, y) \ge 3$ for every $x \in \{u_1, u_2, x_i\}$ and $y \in \{v_1, v_2, y_j\}$, a contradiction.

Suppose, secondly, that H^* is a path of length 3, denoted $H^* = y_1y_2y_3y_4$. Without loss of generality, suppose $v_1 = y_1, v_2 = y_3$.

Since $g(G) \geq 8$, we have $|N(v) \cap V(H^*)| \leq 1$ for $v \in Y \setminus V(H^*)$. If $|N(y) \cap V(H^*)| = 0$ for $y \in Y_0 \setminus V(H^*)$, by Lemma 2.1, G is maximally 4-restricted edge connected, a contradiction. Therefore, there is at least a vertex y_0 in $Y_0 \setminus V(H^*)$ such that $|N(y_0) \cap V(H^*)| = 1$. If y_0 is adjacent to v_i $(i \in \{1, 2\})$, then $(G[Y])[\{v_1, v_2, y_0, y_2\}]$ is a connected subgraph of order 4, a contradiction to H^* . If y_0 is adjacent to y_2 , then $(G[Y])[\{v_1, v_2, y_0, y_2\}]$ is a connected subgraph of order 4, a contradiction to H^* . Therefore, y_0 is adjacent to y_4 (See Fig. 4). Similarly to the proof of Claim 5, we have the following claim.

Claim 8. $|[\{x_2, x_3, x_4\}, \{y_2, y_4\}]| \le 1$ in G.

Suppose, first, that $|[\{x_2, x_3, x_4\}, \{y_2, y_4\}]| = 1$ Without loss of generality, we consider the following cases.

Case 2.2.b.5. $x_2y_2 \in E(G)$.

Assume $d(x_3, v_{j_0}) = 2$ for $v_{j_0} \in \{v_1, v_2, y_0\}$. Since $N(v_i) \cap X = \emptyset$ and $N(y_0) \cap X = \emptyset$, there is a vertex y in G[Y] such that $x_3y, yv_i(y_0) \in E(G)$. Thus, there is a cycle C in G whose length of C is at most 7, a contradiction to that $g(G) \ge 8$. Therefore, $d(x_3, v_j) \ge 3$ and $d(x_3, y_0) \ge 3$. Therefore we have $d(x, y) \ge 3$ for every $x \in \{u_1, u_2, x_3\}$ and $y \in \{v_1, v_2, y_0\}$, a contradiction.

Case 2.2.b.6. $x_3y_2 \in E(G)$.

Similarly, we have $d(x, y) \ge 3$ for every $x \in \{u_1, u_2, x_2\}$ and $y \in \{v_1, v_2, y_0\}$, a contradiction.

Suppose, secondly, that $|[\{x_2, x_3, x_4\}, \{y_2, y_4\}]| = 0.$

Assume $d(x, y) \geq 3$ for every $x \in \{x_2, x_3, x_4\}$ and $y \in \{y_2, y_4\}$. Since $g(G) \geq 8$, there is one x_i of x_2, x_3 such that $d(x_i, v_1) \geq 3$. Therefore, by Claim 3, we have $d(x, y) \geq 3$ for every $x \in \{u_1, u_2, x_i\}$ and $y \in \{v_1, y_2, y_4\}$, a contradiction. Then there are two vertices $x_{i_0} \in \{x_2, x_3, x_4\}$ and $y_{j_0} \in \{y_2, y_3\}$ such that $d(x_{i_0}, y_{j_0}) = 2$. Let $x_{i_0}x_i \in E(H)$. Without loss of generality, we consider the following cases.

Case 2.2.b.7. $d(x_{i_0}, y_2) = 2$.

Since $g(G) \ge 8$, $d(x_i, v_j) \ge 3$ for $j \in \{1, 2\}$ and $d(x_i, y_4) \ge 3$ hold. Therefore, by Claim 3, we have $d(x, y) \ge 3$ for every $x \in \{u_1, u_2, x_i\}$ and $y \in \{v_1, v_2, y_4\}$, a contradiction.

Case 2.2.b.8. $d(x_{i_0}, y_4) = 2.$

Similarly, we have $d(x, y) \ge 3$ for every $x \in \{u_1, u_2, x_i\}$ and $y \in \{v_2, y_0, y_2\}$, a contradiction.

Case 2.2.c. $d_{H^*}(v_1, v_2) = 1$.

Suppose, first, that H^* is a path of length 3, denoted by $P_3 = y_1 y_2 y_3 y_4$. If $v_1 = y_1, v_2 = y_2$, then $N(y_0) \cap V(H^*) = \{y_4\}$. Otherwise, there is a connected subgraph

 G^* of order 4 in $G[V(H^*) \cup \{y_0\}]$ such that $v_1, v_2, y_0 \in V(G^*)$, a contradiction to H^* . Since $d_{H^*}(v_2, y_0) = 3$, Similarly to Case 2.2.a, we have that there are six vertices x_1, x_2, x_3, z_1, z_2 and z_3 in G such that the distance $d(x_i, z_j) \geq 3$ $(1 \leq i, j \leq 3)$, a contradiction.

Suppose that $H^* \cong K_{1,3}$, where $d_{H^*}(v_1) = 3$. Then there is a connected subgraph G^* of order 4 in $G[V(H^*) \cup \{y_0\}]$ such that $v_1, v_2, y_0 \in V(G^*)$, a contradiction to H^* . Case 2.3. $|Y_0 \cap V(H^*)| = 3$.

Let $Y_0 = \{v_1, v_2, v_3, ...\}$. Suppose that $n_0 = 3$. Since $g(G) \ge 8$, $|[\{y\}, V(H^*)]| \le 1$ for $y \in Y \setminus V(H^*)$. Since $Y_0 \subseteq V(H^*)$, we have that

$$\sum_{y \in Y \setminus V(H^*)} |N(y) \cap V(H^*)| = |[Y \setminus V(H^*), V(H^*)]|$$

$$\leq |Y \setminus V(H^*)|$$

$$\leq |[Y \setminus V(H^*), X]|$$

$$= \sum_{y \in Y \setminus V(H^*)} |N(y) \cap X|. \quad (2.2)$$

By Lemma 2.1, G is maximally 4-restricted edge connected, a contradiction. Then $n_0 \geq 4$. Suppose that $v_1, v_2, v_3 \in Y_0 \cap V(H^*)$. Since H^* is a path of length 3 or a $K_{1,3}$, there is at least a vertex of degree 1 in v_1, v_2, v_3 . Without loss of generality, suppose $d_{H^*}(v_1) = 1$ and $v_1 = y_1$.

Case 2.3.1. $H^* = y_1 y_2 y_3 y_4$ is a path of length 3.

Since $|Y_0 \cap V(H^*)| = 3$, we have that $H^* = v_1 v_2 v_3 y_4$ (See Fig. 5) or $H^* = v_1 v_2 y_3 v_3$. We consider the following cases.

Case 2.3.1.1. $H^* = v_1 v_2 v_3 y_4$.

Since $g(G) \ge 8$, we have the following claim.

Claim 9. $|[\{x_2, x_3, x_4\}, \{y_4\}]| \le 1$ in G.

Suppose, first, that $|[\{x_2, x_3, x_4\}, \{y_4\}]| = 1$ and $x_{i_0}y_4 \in E(G)$ for $x_{i_0} \in \{x_2, x_3, x_4\}$. Let $x_ix_{i_0} \in E(H)$. Since $g(G) \ge 8$, we have $d(x_i, v_j) \ge 3$ for $j \in \{1, 2, 3\}$. Therefore we have $d(x, y) \ge 3$ for every $x \in \{u_1, u_2, x_i\}$ and $y \in \{v_1, v_2, v_3\}$, a contradiction.

Suppose, secondly, that $|[\{x_2, x_3, x_4\}, \{y_4\}]| = 0.$

Since there is no $d(x_i, v_j) \ge 3$ for every $i \in \{2, 3, 4\}$ and every $j \in \{1, 2, 3\}$, there is one $d(x_{i_0}, v_{j_0}) = 2$ for $i_0 \in \{2, 3, 4\}$ and $j_0 \in \{1, 2, 3\}$. Let $x_i x_{i_0} \in E(H)$. Since $g(G) \ge 8$, $d(x_i, v_j) \ge 3$ for every $j \in \{1, 2, 3\}$. Therefore we have $d(x, y) \ge 3$ for every $x \in \{u_1, u_2, x_i\}$ and $y \in \{v_1, v_2, v_3\}$, a contradiction.

Case 2.3.1.2. $H^* = v_1 v_2 y_3 v_3$.

Similarly to Case 2.3.1.1, we have that there are six vertices u_1, u_2, u_3, v_1, v_2 and v_3 in G such that the distance $d(u_i, v_j) \ge 3$ $(1 \le i, j \le 3)$, a contradiction.

Case 2.3.2. $H^* \cong K_{1,3}$.

Let $d(y_2) = 3$ in H^* . Since $|Y_0 \cap V(H^*)| = 3$, we have that $y_2 = v_2$ and $y_2 \neq v_2$ or v_3 or v_3 . Similarly to Case 2.3.1, we have that there are six vertices u_1, u_2, u_3, v_1, v_2 and v_3 in G such that the distance $d(u_i, v_j) \geq 3$ $(1 \leq i, j \leq 3)$, a contradiction.

Case 2.4. $|Y_0 \cap V(H^*)| \ge 4$.

If $d(x_i, v_j) \ge 3$ for every $i \in \{2, 3, 4\}$ and every $j \in \{1, 2, 3, 4\}$, then there are six vertices u_1, u_2, x_3, v_1, v_2 and v_3 in G such that the distance $d(u_i, v_j) \ge 3$ $(i, j \in \{1, 2, 3\})$, a contradiction. Then $d(x_{i_0}, v_{j_0}) = 2$ for $i_0 \in \{2, 3, 4\}$ and $j_0 \in \{1, 2, 3, 4\}$. Since $g(G) \ge 8$, $d(x_{i_0}, v_j) \ge 3$ for every $j \in \{1, 2, 3, 4\} \setminus \{j_0\}$. Therefore we have $d(x, y) \ge 3$ for every $x \in \{u_1, u_2, x_{i_0}\}$ and $y \in \{v_j : j \in \{1, 2, 3, 4\} \setminus \{j_0\}\}$, a contradiction.

Summarizing Cases 1 and 2, we obtain that G is maximally 4-restricted edge connected. $\hfill \Box$

Fig. 1. The structure of G[X] and G[Y]

Fig. 2. The structure of G[X] and G[Y]

Fig. 3. The structure of G[X] and G[Y]

Fig. 4. The structure of G[X] and G[Y]

Fig. 5. The structure of G[X] and G[Y]

3 Conclusion

In this paper, we have investigated the problem of the maximally 4-restricted edge connected graph and shown a sufficient condition for graphs to be maximally 4restricted edge connected, i.e., if G is a λ_4 -connected graph with $\lambda_4(G) \leq \xi_4(G)$ and the girth satisfies $g(G) \geq 8$, and there do not exist six vertices u_1, u_2, u_3, v_1, v_2 and v_3 in G such that the distance $d(u_i, v_j) \geq 3$, $(1 \leq i, j \leq 3)$, then G is maximally 4-restricted edge connected. Our further work aims to investigate the problem of the maximally k-restricted edge connected graph.

References

- [1] C. Balbuena and X. Marcote, The k-restricted edge-connectivity of a product of graphs, *Discrete Appl. Math.* 161 (2013), 52–59.
- [2] C. Balbuena, M. Cera, A. Diánez, P. García-Vázquez and X. Marcote, Diametergirth sufficient conditions for optimal extraconnectivity in graphs, *Discrete Math.* 308 (2008), 3526–3536.
- [3] C. Balbuena and P. García-Vázquez, Edge fault tolerance analysis of super k-restricted connected networks, Appl. Math. Comput. 216 (2010), 506–513.
- [4] C. Balbuena, P. García-Vázquez and X. Marcote, Sufficient conditions for λ' optimality in graphs with girth g, J. Graph Theory 52 (1) (2006), 73–86.

- [5] J.A. Bondy and U.S.R. Murty, *Graph Theory*, New York, Springer, 2008.
- [6] P. Bonsma, N. Ueffing and L. Volkmann, Edge-cuts leaving components of order at least three, *Discrete Math.* 256 (2002), 431–439.
- [7] N.-W. Chang, C.-Y. Tsai and S.-Y. Hsieh, On 3-extra connectivity and 3-extra edge connectivity of folded hypercubes, *IEEE Trans. Comput.* 63 (6) (2014), 1593–1599.
- [8] A.-H. Esfahanian and S. L. Hakimi, On computing a conditional edge-connectivity of a graph, *Inform. Process. Lett.* 27 (4) (1988), 195–199.
- [9] J. Fàbrega and M. A. Fiol, On the extraconnectivity of graphs, *Discrete Math.* 155 (1-3) (1996), 49–57.
- [10] J. Fàbrega and M. A. Fiol, Extraconnectivity of graphs with large girth, Discrete Math. 127 (1-3) (1994), 163–170.
- [11] L. Guo and X. Guo, Super 3-restricted edge connectivity of triangle-free graphs, Ars Combin. 121 (2015), 159–173.
- [12] A. Hellwig and L. Volkmann, Sufficient conditions for graphs to be λ' -optimal, super-edge-connected, and maximally edge-connected, J. Graph Theory 48 (2005), 228–246.
- [13] J. Ou, A bound on 4-restricted edge connectivity of graphs, Discrete Math. 307 (2007), 2429–2437.
- [14] J. Meng and Y. Ji, On a kind of restricted edge connectivity of graphs, Discrete Appl. Math. 117 (2002), 183–193.
- [15] J. Ou, Edge cuts leaving components of order at least m, Discrete Math. 305 (2005), 365–371.
- [16] J. Plesiník and S. Znám, On equality of edge-connectivity and minimum degree of a graph, Archivum Math. (Brno) 25 (1-2) (1989), 19–25.
- [17] Y. Qin, J. Ou and Z. Xiong, On equality of restricted edge connectivity and minimum edge degree of graph, Ars Combin. 110 (2013), 65–70.
- [18] S. Wang, L. Zhang and S. Lin, A neighborhood condition for graphs to be maximally k-edge connected, Inform. Process. Lett. 112 (3) (2012), 95–97.
- [19] S. Wang, J. Li, L. Wu and S. Lin, Neighborhood conditions for graphs to be super restricted edge connected, *Networks* 56 (1) (2010), 11–19.
- [20] S. Wang and L. Zhang, Sufficient conditions for k-restricted edge connected graphs, *Theor. Comput. Sci.* 557 (2014), 66–75.

- [21] S. Wang, S. Lin and C. Li, Sufficient conditions for super k-restricted edge connectivity in graphs of diameter 2, *Discrete Math.* 309 (4) (2009), 908–919.
- [22] S. Wang and N. Zhao, Degree conditions for graphs to be maximally k-restricted edge connected and super k-restricted edge connected, *Discrete Appl. Math.* 184 (2015), 258–263.
- [23] S. Wang, M. Wang and L. Zhang, A sufficient condition for graphs to be super k-restricted edge connected, *Discuss. Math. Graph Theory* 37 (2017), 537–545.
- [24] S. Wang, G. Zhang and X. Wang, Sufficient conditions for maximally edgeconnected graphs and arc-connected digraphs, *Australas. J. Combin.* 50 (2011), 233–242.
- [25] M. Wang and S. Wang, Sufficient conditions of a maximally 3-restricted edge connected graph, *Shandong Sci.* 28 (3) (2015), 80–83. (in Chinese)
- [26] S. Wang, Hamiltonian property of Cayley graphs on symmetric groups (I), J. Xinjiang University (Nat. Sci. Ed.) 11 (3) (1994), 16–18. (in Chinese)
- [27] M. Zhang, J. Meng, W. Yang and Y. Tian, Reliability analysis of bijective connection networks in terms of the extra edge-connectivity, *Inform. Sci.* 279 (2014), 374–382.
- [28] Z. Zhang and J. Yuan, A proof of an inequality concerning k-restricted edge connectivity, Discrete Math. 304 (1-3) (2005), 128–134.

(Received 29 Jan 2017; revised 13 Aug 2017)