# Sufficient conditions for graphs to be maximally 4-restricted edge connected* 

Mujiangshan Wang Yuqing Lin<br>School of Electrical Engineering and Computer Science<br>The University of Newcastle<br>NSW 2308<br>Australia<br>Shiying Wang<br>School of Mathematics and Information Science<br>Henan Normal University<br>Xinxiang, Henan 453007<br>P.R. China<br>wangshiying@htu.edu.cn or shiying@sxu.edu.cn<br>\section*{Meiyu Wang}<br>School of Mathematical Sciences<br>Shanxi University<br>Taiyuan, Shanxi 030006<br>P.R. China


#### Abstract

For a subset $S$ of edges in a connected graph $G$, the set $S$ is a $k$-restricted edge cut if $G-S$ is disconnected and every component of $G-S$ has at least $k$ vertices. The $k$-restricted edge connectivity of $G$, denoted by $\lambda_{k}(G)$, is defined as the cardinality of a minimum $k$-restricted edge cut. A connected graph $G$ is said to be $\lambda_{k}$-connected if $G$ has a $k$-restricted edge cut. Let $\xi_{k}(G)=\min \{|[X, \bar{X}]|:|X|=k, G[X]$ is connected $\}$, where $\bar{X}=V(G) \backslash X$. A graph $G$ is said to be maximally $k$-restricted edge connected if $\lambda_{k}(G)=\xi_{k}(G)$. In this paper we show that if $G$ is a $\lambda_{4}$-connected graph with $\lambda_{4}(G) \leq \xi_{4}(G)$ and the girth satisfies $g(G) \geq 8$, and there do not exist six vertices $u_{1}, u_{2}, u_{3}, v_{1}, v_{2}$ and $v_{3}$ in $G$ such that the distance $d\left(u_{i}, v_{j}\right) \geq 3,(1 \leq i, j \leq 3)$, then $G$ is maximally 4-restricted edge connected.


[^0]
## 1 Terminology and introduction

We consider finite, undirected and simple graphs. For graph-theoretical terminology and notation not defined here we follow [5]. Let $G$ be a graph with vertex set $V=V(G)$ and edge set $E=E(G)$. Given a nonempty vertex subset $V^{\prime}$ of $V$, the induced subgraph by $V^{\prime}$ in $G$, denoted by $G\left[V^{\prime}\right]$, is a graph, whose vertex set is $V^{\prime}$ and the edge set is the set of all the edges of $G$ with both endpoints in $V^{\prime}$. For two disjoint vertex sets $X$ and $Y$ of $V$, let $[X, Y]$ be the set of edges with one endpoint in $X$ and the other one in $Y$. The order of $G$ is the number of vertices in $G$. The degree of a vertex $v$ in $G$, denoted by $d_{G}(v)$, is the number of edges of $G$ incident with $v$. The set of neighbors of a vertex $v$ in $G$ is denoted by $N_{G}(v)$. A $\left(v_{0}, v_{k}\right)$-path, denoted by $P=v_{0} v_{1} \ldots v_{k}$, is a sequence of adjacent vertices where all the vertices are distinct. Likewise, a cycle is a path that begins and ends with the same vertex. The length of a path or a cycle is the number of edges contained in the path or cycle. The distance between two vertices $x$ and $y$ is, denoted by $d(x, y)$, the length of a shortest path between $x$ and $y$ in $G$. The girth $g=g(G)$ is the length of a shortest cycle in $G$.

Many multiprocessor systems have interconnection networks (networks for short) as underlying topologies and a network is usually represented by a graph where nodes represent processors and links represent communication links between processors. A classical measurement of the fault tolerance of a network is the edge connectivity $\lambda(G)$. The edge connectivity $\lambda(G)$ of a connected graph $G$ is the minimum cardinality of an edge cut of $G$. As a more refined index than the edge connectivity, Fàbrega and Fiol [10] proposed the more general concept of the $k$-restricted edge connectivity of $G$ as follows.

Definition 1.1 [10] For a subset $S$ of edges in a connected graph $G$, $S$ is a $k$ restricted edge cut if $G-S$ is disconnected and every component of $G-S$ has at least $k$ vertices. The $k$-restricted edge connectivity of $G$, denoted by $\lambda_{k}(G)$, is defined as the cardinality of a minimum $k$-restricted edge cut. A minimum $k$-restricted edge cut is called a $\lambda_{k}$-cut. A connected graph $G$ is said to be $\lambda_{k}$-connected if $G$ has a $k$-restricted edge cut.

There is a significant amount of research on $k$-restricted edge connectivity [2, 4, 7-$11,13,18-21,27]$. In view of recent studies on $k$-restricted edge connectivity, it seems that the larger $\lambda_{k}(G)$ is, the more reliable the network $G$ is [3,14, 22]. So, we expect $\lambda_{k}(G)$ to be as large as possible. Clearly, the optimization of $\lambda_{k}(G)$ requires an upper bound first and so the optimization of $k$-restricted edge connectivity draws a lot of attention. For any positive integer $k$, let $\xi_{k}(G)=\min \{|[X, \bar{X}]|:|X|=$ $k, G[X]$ is connected $\}$, where $\bar{X}=V(G) \backslash X$. It has been shown that $\lambda_{k}(G) \leq \xi_{k}(G)$ holds for many graphs $[1,6,12,15,28]$.

Let $G_{1}, \ldots, G_{n}$ be $n$ copies of $K_{t}$. Add a new vertex $u$ and let $u$ be adjacent to every vertex in $V\left(G_{i}\right), i=1, \ldots, n$. The resulting graph is denoted by $G_{n, t}^{*}$. It can be verified that $G_{n, t}^{*}$ has no $\left(\delta\left(G_{n, t}^{*}\right)+1\right)$-restricted edge cuts and $G_{n, t}^{*}$ is the only exception for the existence of $k$-restricted edge cuts of a connected graph G when $k \leq \delta(G)+1$.

Theorem 1.2 [28]. Let $G$ be a connected graph with order at least $2(\delta(G)+1)$ which is not isomorphic to any $G_{n, t}^{*}$ with $t=\delta(G)$. Then for any $k \leq \delta(G)+1, G$ has $k$-restricted edge cuts and $\lambda_{k}(G) \leq \xi_{k}(G)$.

A $\lambda_{k}$-connected graph $G$ is said to be maximally $k$-restricted edge connected if $\lambda_{k}(G)=\xi_{k}(G)$. When $k=2$, the $k$-restricted edge connectivity of $G$ is the restricted edge connectivity of $G$; a maximally $k$-restricted edge connected graph is a maximally restricted edge connected graph. There has been much research on maximally restricted edge connected graphs. See $[13,17,22-24]$. Let $G$ be a $\lambda_{k^{-}}$ connected graph and let $S$ be a $\lambda_{k}$-cut of $G$.

In 1989, Plesník and Znám [16] gave the following sufficient condition for a graph to be maximally edge connected.

Theorem 1.3 [16] Let $G$ be a connected graph. If there do not exist four vertices $u_{1}, u_{2}, v_{1}, v_{2}$ in $G$ such that the distance $d\left(u_{i}, v_{j}\right) \geq 3(1 \leq i, j \leq 2)$, then $G$ is maximally edge connected.

In 2013, Qin et al. [17] gave the following theorem.
Theorem 1.4 [17] Let $G$ be a $\lambda_{2}$-connected graph with the girth $g(G) \geq 4$. If there are not four vertices $u_{1}, u_{2}, v_{1}, v_{2}$ in $G$ such that the distance $d\left(u_{i}, v_{j}\right) \geq 3 \quad(1 \leq$ $i, j \leq 2$ ), then $G$ is maximally restricted edge connected.

In 2015, Wang et al. [25] gave the following theorem.
Theorem 1.5 [25] Let $G$ be a $\lambda_{3}$-connected graph with the girth $g(G) \geq 5$. If there are not five vertices $u_{1}, u_{2}, v_{1}, v_{2},, v_{3}$ in $G$ such that the distance $d\left(u_{i}, v_{j}\right) \geq 3 \quad(1 \leq$ $i \leq 2 ; 1 \leq j \leq 3$ ), then $G$ is maximally 3-restricted edge connected.

In this article, we extend the above result to $\lambda_{4}$-connected graphs.

## 2 Main results

We first give an existing result.
Lemma 2.1 [21] Let $G$ be a $\lambda_{k}$-connected graph with $\lambda_{k}(G) \leq \xi_{k}(G)$ and let $S=$ $[X, Y]$ be a $\lambda_{k}$-cut of $G$. If there exists a connected subgraph $H$ of order $k$ in $G[X]$ with the property that

$$
\sum_{v \in X \backslash V(H)}|N(v) \cap V(H)| \leq \sum_{v \in X \backslash V(H)}|N(v) \cap Y|,
$$

then $G$ is maximally $k$-restricted edge connected.
Theorem 2.2 Let $G$ be a $\lambda_{4}$-connected graph with $\lambda_{4}(G) \leq \xi_{4}(G)$ and let the girth $g(G) \geq 8$. If there are not six vertices $u_{1}, u_{2}, u_{3}, v_{1}, v_{2}$ and $v_{3}$ in $G$ such that the distance $d\left(u_{i}, v_{j}\right) \geq 3 \quad(1 \leq i, j \leq 3)$, then $G$ is maximally 4-restricted edge connected.

Proof: We suppose, on the contrary, that $G$ is not maximally 4-restricted edge connected. Let $S=[X, Y]$ be a $\lambda_{4}$-cut of $G$. Denote $X_{1}=\{x \in X: N(x) \cap Y \neq \emptyset\}$ and $Y_{1}=\{y \in Y: N(y) \cap X \neq \emptyset\}$. Let $X_{0}=X \backslash X_{1}, Y_{0}=Y \backslash Y_{1}$, and let $m_{0}=\left|X_{0}\right|, m_{1}=\left|X_{1}\right|, n_{0}=\left|Y_{0}\right|$ and $n_{1}=\left|Y_{1}\right|$. If $|X|=4$ or $|Y|=4$, then $\lambda_{4}(G) \leq \xi_{4}(G) \leq|S|=\lambda_{4}(G)$, i.e., $G$ is maximally 4-restricted edge connected, a contradiction. Therefore $|X| \geq 5$ and $|Y| \geq 5$.
Claim 1. $m_{0} \geq 2$ and $n_{0} \geq 2$.
By contradiction. Without loss of generality, assume $m_{0} \leq 1$. Let $m_{0}=0$. By [26], there is a connected subgraph $H$ of order 4 such that $X_{0} \subseteq V(H)$ in $G[X]$. Let $m_{0}=1$ and $X_{0}=\{x\}$. Since $G[X]$ is connected, there is a spanning tree $T$ in $G[X]$. Therefore $x \in V(T)$. Since $T$ has two vertices of degree 1, there is a vertex $v$ of degree 1 such that $v \neq x$. Then $T-v$ is a tree and $x \in V(T-v)$. Since there is a vertex $v_{2}$ of degree 1 such that $v_{2} \neq x, T-v-v_{2}$ is a tree and $x \in V\left(T-v-v_{2}\right)$. Continuing this process, we can obtain a tree $T^{\prime}$ of order 4 such that $x \in V\left(T^{\prime}\right)$. Let $H=(G[X])\left[V\left(T^{\prime}\right)\right]$. Therefore, in $G[X]$, there is a connected subgraph $H$ of order 4 such that $X_{0} \subseteq V(H)$. Let $u \in X \backslash V(H)$. Then $|[\{u\}, Y]| \geq 1$. Since $\left|V\left(T^{\prime}\right)\right|=4$, the maximum cardinality of paths is less than or equal to 3 . Since $g(G) \geq 8,|[\{u\}, V(H)]| \leq 1$ holds. Therefore, we have that

$$
\begin{align*}
\sum_{u \in X \backslash V(H)}|N(u) \cap V(H)| & =|[X \backslash V(H), V(H)]| \\
& \leq|X \backslash V(H)| \\
& \leq|[X \backslash V(H), Y]| \\
& =\sum_{u \in X \backslash V(H)}|N(u) \cap Y| . \tag{2.1}
\end{align*}
$$

By Lemma 2.1, $G$ is maximally 4-restricted edge connected, a contradiction. Therefore $m_{0} \geq 2$. Similarly, we have $n_{0} \geq 2$. The proof of Claim 1 is complete.
Claim 2. $m_{0}=2$ or $n_{0}=2$.
Suppose that $m_{0} \geq 3$ and $n_{0} \geq 3$. Then there are six vertices $u_{1}, u_{2}, u_{3}, v_{1}, v_{2}$ and $v_{3}$ in $G$ such that $u_{1}, u_{2}, u_{3} \in X_{0}$ and $v_{1}, v_{2}, v_{3} \in Y_{0}$. By the definition of $X_{0}$ and $Y_{0}$, we have that $\left|N\left(u_{i}\right) \cap Y\right|=0=\left|N\left(v_{j}\right) \cap X\right|$ for $1 \leq i \leq 3 ; 1 \leq j \leq 3$. It follows that $d\left(u_{i}, v_{j}\right) \geq 3 \quad(i, j \in\{1,2,3\})$, a contradiction. Combining this with Claim 1, we have that $m_{0}=2$ or $n_{0}=2$. The proof of Claim 2 is complete.
Claim 3. In $G[X]$, let $H$ be a connected subgraph of order 4 such that it contains
$X_{0}$ as most as possible and let $V(H)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. If $X_{0}=\left\{u_{1}, u_{2}\right\}$, then
(1) $\left|X_{0} \cap V(H)\right|=1$;
(2) $H=u_{1} x_{2} x_{3} x_{4}$ is a path of length 3 , where $u_{1}=x_{1}$, if $u_{1} \in V(H)$; and $u_{1} x_{2} x_{3} x_{4} u_{2}$ is a path of length 4 in $G[X]$;
(3) $\left(N\left(u_{1}\right) \cap X\right) \backslash V(H)=\emptyset$ and $\left(N\left(u_{2}\right) \cap X\right) \backslash V(H)=\emptyset$.

Since $\left|X_{0}\right|=2,1 \leq\left|X_{0} \cap V(H)\right| \leq 2$ holds. We consider the following two cases.

Case 1. $\left|X_{0} \cap V(H)\right|=2$.
Since $g(G) \geq 8,|[\{u\}, V(H)]| \leq 1$ for $u \in X \backslash V(H)$. Note that $X_{0}=\left\{u_{1}, u_{2}\right\} \subseteq$ $V(H)$. Then $|[\{u\}, Y]| \geq 1$ for $u \in X \backslash V(H)$. By (2.1), we have that

$$
\sum_{u \in X \backslash V(H)}|N(u) \cap V(H)| \leq \sum_{u \in X \backslash V(H)}|N(u) \cap Y| .
$$

By Lemma 2.1, $G$ is maximally 4-restricted edge connected, a contradiction.
Case 2. $\left|X_{0} \cap V(H)\right|=1$.
In this case, suppose $u_{1} \in V(H)$. Since $g(G) \geq 8, H$ is a tree of order 4, and $|[\{u\}, V(H)]| \leq 1$ for $u \in X \backslash V(H)$. If $\left|N\left(u_{2}\right) \cap V(H)\right|=0$, then $|[\{u\}, V(H)]| \leq$ $|[\{u\}, Y]|$ for $u \in X \backslash V(H)$. Therefore, we have that

$$
\sum_{u \in X \backslash V(H)}|N(u) \cap V(H)| \leq \sum_{u \in X \backslash V(H)}|N(u) \cap Y| .
$$

By Lemma 2.1, $G$ is maximally 4-restricted edge connected, a contradiction. Then $\left|N\left(u_{2}\right) \cap V(H)\right|=1$. Suppose that $H$ is not a path. Then $H$ has at least three vertices of degree 1. Let $u_{2}$ be adjacent to a vertex $y$ of $H$. Then there is a vertex $v$ of degree 1 such that $v \neq u_{1}$ and $y$ in $H$. Therefore, $(G[X])\left[V(H-v) \cup\left\{u_{2}\right\}\right]$ is a connected graph of order 4 , a contradiction to $H$. Then $H$ is a path $P$ of length 3 . If $u_{1}$ is not a vertex of degree 1 , then there is a connected subgraph of order 4 such that it contains $u_{1}, u_{2}$ in $G\left[V(H) \cup\left\{u_{2}\right\}\right]$, a contradiction to $H$. Therefore $u_{1}$ is a vertex of degree 1 in $P$. Let $P=u_{1} x_{2} x_{3} x_{4}$. Suppose that $N\left(u_{2}\right) \cap V(H)=\emptyset$. Then $|[\{u\}, V(H)]| \leq|[\{u\}, Y]|$ for $u \in X \backslash V(H)$. Therefore, we have that

$$
\sum_{u \in X \backslash V(H)}|N(u) \cap V(H)| \leq \sum_{u \in X \backslash V(H)}|N(u) \cap Y|
$$

By Lemma 2.1, $G$ is maximally 4-restricted edge connected, a contradiction. Therefore, $\left|N\left(u_{2}\right) \cap V(H)\right|=1$. If $N\left(u_{2}\right) \cap\left\{x_{2}, x_{3}\right\} \neq \emptyset$, a contradiction to $H$. Then $u_{2}$ is adjacent to $x_{4}$.
Suppose, on the contrary, that $x \in\left(N\left(u_{1}\right) \cap X\right) \backslash V(H)$. Then $P^{\prime}=x u_{1} x_{2} x_{3}$ is a path of length 3 in $G[X]$. Since $g(G) \geq 8,\left|N(u) \cap V\left(P^{\prime}\right)\right| \leq 1$ for $u \in X \backslash V\left(P^{\prime}\right)$. If $N\left(u_{2}\right) \cap V\left(P^{\prime}\right) \neq \emptyset$, then there is a connected subgraph $H^{\prime}$ of order 4 in $G[X]$ with $u_{1}, u_{2} \in V\left(H^{\prime}\right)$, a contradiction to that $\left|X_{0} \cap V(H)\right|=1$. Therefore, we have that $\left|N\left(u_{2}\right) \cap V\left(P^{\prime}\right)\right|=0$ and $\left|N(u) \cap V\left(P^{\prime}\right)\right| \leq|N(u) \cap Y|$ for $u \in X \backslash V\left(P^{\prime}\right)$. Thus,

$$
\sum_{u \in X \backslash V\left(P^{\prime}\right)}\left|N(u) \cap V\left(P^{\prime}\right)\right| \leq \sum_{u \in X \backslash V\left(P^{\prime}\right)}|N(u) \cap Y|
$$

By Lemma 2.1, $G$ is maximally 4 -restricted edge connected, a contradiction. So $\left(N\left(u_{1}\right) \cap X\right) \backslash V(H)=\emptyset$ and $d\left(u_{1}\right)=1$ in $G[X]$.
Suppose, on the contrary, that $x \in\left(N\left(u_{2}\right) \cap X\right) \backslash V(H)$. By Claim 3 (2), $P^{\prime}=x_{3} x_{4} u_{2} x$ is a path of length 3 in $G[X]$. Since $g(G) \geq 8,\left|N(u) \cap V\left(P^{\prime}\right)\right| \leq 1$ for $u \in X \backslash V\left(P^{\prime}\right)$.

Since $d\left(u_{1}\right)=1$ in $G[X]$ and $u_{1} x_{2} \in E(G[Y])$, we have $N\left(u_{1}\right) \cap V\left(P^{\prime}\right)=\emptyset$. Therefore, we have that $\left|N(u) \cap V\left(P^{\prime}\right)\right| \leq|N(u) \cap Y|$ for $u \in X \backslash V\left(P^{\prime}\right)$. Thus,

$$
\sum_{u \in X \backslash V\left(P^{\prime}\right)}\left|N(u) \cap V\left(P^{\prime}\right)\right| \leq \sum_{u \in X \backslash V\left(P^{\prime}\right)}|N(u) \cap Y|
$$

By Lemma 2.1, $G$ is maximally 4 -restricted edge connected, a contradiction. So $\left(N\left(u_{2}\right) \cap X\right) \backslash V(H)=\emptyset$. The proof of Claim 3 is complete.
Similarly to Claim 3, we have that the following claim.
Claim 4. In $G[Y]$, let $H^{*}$ be a connected subgraph of order 4 such that it contains $Y_{0}$ as most as possible and let $V\left(H^{*}\right)=\left\{y_{1}, y_{2}, y_{3}, y_{4}\right\}$. If $Y_{0}=\left\{v_{1}, v_{2}\right\}$, then
(1) $\left|Y_{0} \cap V\left(H^{*}\right)\right|=1$;
(2) $H^{*}=v_{1} y_{2} y_{3} y_{4}$ is a path of length 3 , where $v_{1}=y_{1}$, if $v_{1} \in V\left(H^{*}\right)$; and $v_{1} y_{2} y_{3} y_{4} v_{2}$ is a path of length 4 in $G[Y]$;
(3) $\left(N\left(v_{1}\right) \cap Y\right) \backslash V\left(H^{*}\right)=\emptyset$ and $\left(N\left(v_{2}\right) \cap Y\right) \backslash V\left(H^{*}\right)=\emptyset$.

Without loss of generality, suppose $m_{0}=2$. We consider the following cases.
Case 1. $n_{0}=2$.
Claim 5. $\left|\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{2}, y_{3}, y_{4}\right\}\right]\right| \leq 1$ in $G$ (See Fig 1).
Suppose $\left|\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{2}, y_{3}, y_{4}\right\}\right]\right| \geq 2$. It is sufficient to show that $\mid\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{2}\right.\right.$, $\left.\left.y_{3}, y_{4}\right\}\right] \mid=2$. Since $x_{2} x_{3} x_{4}$ and $y_{2} y_{3} y_{4}$ are paths, and $\left|\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{2}, y_{3}, y_{4}\right\}\right]\right|=2$, we have that there is a cycle of $G$ whose length is at most 6 , a contradiction to $g(G) \geq 8$. The proof of Claim 5 is complete.
Suppose, first, that $\left|\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{2}, y_{3}, y_{4}\right\}\right]\right|=1$ and $x_{i_{0}} y_{j_{0}} \in E(G)\left(2 \leq i_{0} \leq\right.$ $\left.4,2 \leq j_{0} \leq 4\right)$. Let $x_{i} \in\{2,3,4\} \backslash\left\{i_{0}\right\}$ with $x_{i} x_{i_{0}} \in E(H)$ and $y_{j} \in\{2,3,4\} \backslash\left\{j_{0}\right\}$ with $y_{j} y_{j_{0}} \in E\left(H^{*}\right)$. By Claim 5, $d\left(x_{i}, y_{j}\right) \neq 1$. If $d\left(x_{i}, y_{j}\right)=2$, then there is a vertex $y$ in $G[Y]$ such that $x_{i} y, y y_{j} \in E(G)$ or there is a vertex $x$ in $G[X]$ such that $x_{i} x, x y_{j} \in E(G)$. Without loss of generality, suppose that there is a vertex $y$ in $G[Y]$ such that $x_{i} y, y y_{j} \in E(G)$. Then there is a cycle $C$ in $G$, and $x_{i_{0}}, y_{j_{0}}, x_{i}, y_{j}, y \in V(C)$ and the length of $C$ is 5 , a contradiction to $g(G) \geq 8$. Therefore, $d\left(x_{i}, y_{j}\right) \geq 3$. By Claim 4 (3), $d\left(x_{i}, v_{i}\right) \geq 3$ for $\{1,2\}$. Similarly to the discussion on $x_{i}$, we have that $d\left(y_{j}, u_{k}\right) \geq 3$ for $k \in\{1,2\}$. Therefore we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{i}\right\}$ and $y \in\left\{v_{1}, v_{2}, y_{j}\right\}$, a contradiction.
Suppose, second, that $\left|\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{2}, y_{3}, y_{4}\right\}\right]\right|=0$. Since there is no $d(x, y) \geq 3$ for every $x \in\left\{x_{2}, x_{3}, x_{4}\right\}$ and $y \in\left\{y_{2}, y_{3}, y_{4}\right\}$, there are two vertices $x_{i_{0}} \in\left\{x_{2}, x_{3}, x_{4}\right\}$ and $y_{j_{0}} \in\left\{y_{2}, y_{3}, y_{4}\right\}$ such that $d\left(x_{i_{0}}, y_{j_{0}}\right)=2$. Let $i \in\{2,3,4\} \backslash\left\{i_{0}\right\}$ with $x_{i} x_{i_{0}} \in E(H)$ and $j \in\{2,3,4\} \backslash\left\{j_{0}\right\}$ with $y_{j} y_{j_{0}} \in E\left(H^{*}\right)$. Since $g(G) \geq 8, d\left(x_{i}, y_{j}\right) \geq 3$ holds. By Claim 4 (3), $d\left(x_{i}, v_{j}\right) \geq 3$ for $j \in\{1,2\}$. Similarly, $d\left(y_{j}, u_{i}\right) \geq 3$ for $i \in\{1,2\}$. Therefore we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{i}\right\}$ and $y \in\left\{v_{1}, v_{2}, y_{j}\right\}$, a contradiction.
Case 2. $n_{0} \geq 3$.
Let $Y_{0}=\left\{y_{0}, v_{1}, v_{2}, v_{3}, \ldots\right\}$. By Claim 3 (2), we have that $H=u_{1} x_{2} x_{3} x_{4}$ and $u_{1} x_{2} x_{3} x_{4} u_{2}$ is a path in $G[X]$. Since $g(G) \geq 8$, we have $\left|N(v) \cap V\left(H^{*}\right)\right| \leq 1$ for
$v \in Y \backslash V\left(H^{*}\right)$. If $\left|N(y) \cap V\left(H^{*}\right)\right|=0$ for $y \in Y_{0} \backslash V\left(H^{*}\right)$, by Lemma 2.1, $G$ is maximally 4-restricted edge connected, a contradiction. Therefore, there is at least a vertex $y_{0}$ in $Y_{0} \backslash V\left(H^{*}\right)$ such that $\left|N\left(y_{0}\right) \cap V\left(H^{*}\right)\right|=1$.
Case 2.1. $\left|Y_{0} \cap V\left(H^{*}\right)\right|=1$.
Let $Y_{0} \cap V\left(H^{*}\right)=\left\{v_{1}\right\}$. Note that $H^{*}$ is a path of length 3 or a $K_{1,3}$. Similarly to the discussion on $H$, we have that $G\left[V\left(H^{*}\right) \cup\left\{y_{0}\right\}\right]$ is a path of length 4 , denoted by $P_{1}=y_{1} y_{2} y_{3} y_{4} y_{5}$, where $v_{1}=y_{1}, y_{5}=y_{0}$. Similarly to Case 1 , there is a contradiction.
Case 2.2. $\left|Y_{0} \cap V\left(H^{*}\right)\right|=2$.
Let $Y_{0} \cap V\left(H^{*}\right)=\left\{v_{1}, v_{2}\right\}$. Since $H^{*}$ is a path of length 3 or a $K_{1,3}$, we have that $1 \leq d_{H^{*}}\left(v_{1}, v_{2}\right) \leq 3$.
Case 2.2.a. $d_{H^{*}}\left(v_{1}, v_{2}\right)=3$.
In this case, $H^{*}$ is a path of length 3 , denoted by $H^{*}=y_{1} y_{2} y_{3} y_{4}$, where $v_{1}=y_{1}, v_{2}=$ $y_{4}$. Similarly to the proof of Claim 5 , we have the following claim.
Claim 6. $\left|\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{2}, y_{3}\right\}\right]\right| \leq 1$ in $G$ (See Fig 2).
Suppose, first, that $\left|\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{2}, y_{3}\right\}\right]\right|=1$ Without loss of generality, we consider the following cases.
Case 2.2.a.1. $x_{2} y_{2} \in E(G)$.
In this case, $x_{3} x_{2} y_{2} y_{3}$ is a path in $G$. Since $g(G) \geq 8$ and Claim $6, d\left(x_{3}, y_{3}\right)=3$ holds. Assume $d\left(x_{3}, v_{1}\right)=2$. Since $N\left(v_{1}\right) \cap X=\emptyset$, there is a vertex $y$ in $G[Y]$ such that $x_{3} y, y v_{1} \in E(G)$. Thus, $x_{3} y v_{1} y_{2} x_{2} x_{3}$ is a 5 -cycle in $G$, a contradiction to that $g(G) \geq 8$. Therefore, $d\left(x_{3}, v_{1}\right)=3$. Similarly, $d\left(x_{3}, v_{2}\right) \geq 3$. By Claim 3, $d\left(y_{3}, u_{i}\right) \geq 3$ for $i \in\{1,2\}$. Therefore we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{3}\right\}$ and $y \in\left\{v_{1}, v_{2}, y_{3}\right\}$, a contradiction.
Case 2.2.a.2. $x_{3} y_{2} \in E(G)$.
In this case, $x_{2} x_{3} y_{2} y_{3}$ is a path in $G$. By Claim $6, x_{2} y_{3} \notin E(G)$. If $d\left(x_{2}, y_{3}\right)=2$, then there is a vertex $y$ in $G[Y]$ such that $x_{2} y, y y_{3} \in E(G)$ or there is a vertex $x$ in $G[X]$ such that $x_{2} x, x y_{3} \in E(G)$. Without loss of generality, suppose that there is a vertex $y$ in $G[Y]$ such that $x_{2} y, y y_{3} \in E(G)$. Note that $x_{3} y_{2} y_{3} y x_{2} x_{3}$ is a 5 -cycle in $G$, a contradiction to that $g(G) \geq 8$. Therefore, $d\left(x_{2}, y_{3}\right)=3$. Assume $d\left(x_{2}, v_{1}\right)=2$. Since $N\left(v_{1}\right) \cap X=\emptyset$, there is a vertex $y$ in $G[Y]$ such that $x_{2} y, y v_{1} \in E(G)$. Thus, $x_{2} y v_{1} y_{2} x_{3} x_{2}$ is a 5 -cycle in $G$, a contradiction to that $g(G) \geq 8$. Therefore, $d\left(x_{2}, v_{1}\right)=3$. Assume $d\left(x_{2}, v_{2}\right)=2$. Since $N\left(v_{2}\right) \cap X=\emptyset$, there is a vertex $y$ in $G[Y]$ such that $x_{2} y, y v_{2} \in E(G)$. Thus, $x_{2} y v_{2} y_{3} y_{2} x_{3} x_{2}$ is a 6 -cycle in $G$, a contradiction to that $g(G) \geq 8$. Therefore, $d\left(x_{2}, v_{2}\right) \geq 3$. By Claim 3, $d\left(y_{3}, u_{i}\right) \geq 3$ for $i \in\{1,2\}$. Therefore we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{2}\right\}$ and $y \in\left\{v_{1}, v_{2}, y_{3}\right\}$, a contradiction.
Suppose, second, that $\left|\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{2}, y_{3}\right\}\right]\right|=0$. Assume $d(x, y) \geq 3$ for every $x \in\left\{x_{2}, x_{3}, x_{4}\right\}$ and $y \in\left\{y_{2}, y_{3}\right\}$. If $d\left(x_{i_{0}}, v_{1}\right)=2$ for $x_{i_{0}} \in\left\{x_{2}, x_{3}, x_{4}\right\}$, then $d\left(x_{i}, v_{1}\right) \geq 3$ for $i \in\{2,3,4\} \backslash\left\{i_{0}\right\}$ by $g(G) \geq 8$. Therefore we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{i}\right\}$ and $y \in\left\{v_{1}, y_{1}, y_{2}\right\}$, a contradiction. Then there are
two vertices $x_{i_{0}} \in\left\{x_{2}, x_{3}, x_{4}\right\}$ and $y_{j_{0}} \in\left\{y_{2}, y_{3}\right\}$ such that $d\left(x_{i_{0}}, y_{j_{0}}\right)=2$. Let $i \in\{2,3,4\} \backslash\left\{i_{0}\right\}$ with $x_{i} x_{i_{0}} \in E(H)$, and $j \in\{2,3\} \backslash\left\{j_{0}\right\}$ with $y_{j} y_{j_{0}} \in E\left(H^{*}\right)$. Since $g(G) \geq 8, d\left(x_{i}, y_{j}\right) \geq 3$ holds. Since $d\left(x_{i_{0}}, y_{j_{0}}\right)=2, d\left(x_{i}, v_{j}\right) \geq 3$ for $j \in\{1,2\}$ by $g(G) \geq 8$. By Claim 3, $d\left(y_{j}, u_{i}\right) \geq 3$ for $i \in\{1,2\}$. Therefore we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{i}\right\}$ and $y \in\left\{v_{1}, v_{2}, y_{j}\right\}$, a contradiction.
Case 2.2.b. $d_{H^{*}}\left(v_{1}, v_{2}\right)=2$.
Suppose, first, that $H^{*} \cong K_{1,3}$, where $V\left(H^{*}\right)=\left\{v_{1}, v_{2}, y_{1}, y_{2}\right\}$ and $d_{H^{*}}\left(y_{2}\right)=3$. Since $g(G) \geq 8$, we have $\left|N(v) \cap V\left(H^{*}\right)\right| \leq 1$ for $v \in Y \backslash V\left(H^{*}\right)$. If $\left|N(y) \cap V\left(H^{*}\right)\right|=0$ for $y \in Y_{0} \backslash V\left(H^{*}\right)$, by Lemma 2.1, $G$ is maximally 4 -restricted edge connected, a contradiction. Therefore, there is at least a vertex $y_{0}$ in $Y_{0} \backslash V\left(H^{*}\right)$ such that $\left|N\left(y_{0}\right) \cap V\left(H^{*}\right)\right|=1$. If $y_{0}$ is adjacent to $v_{i}(i \in\{1,2\})$, then $(G[Y])\left[\left\{v_{1}, v_{2}, y_{0}, y_{2}\right\}\right]$ is a connected subgraph of order 4 , a contradiction to $H^{*}$. If $y_{0}$ is adjacent to $y_{2}$, then $(G[Y])\left[\left\{v_{1}, v_{2}, y_{0}, y_{2}\right\}\right]$ is a connected subgraph of order 4 , a contradiction to $H^{*}$. Therefore, $y_{0}$ is adjacent to $y_{1}$ (See Fig. 3). Similarly to the proof of Claim 5, we have the following claim.
Claim 7. $\left|\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{1}, y_{2}\right\}\right]\right| \leq 1$ in $G$.
Suppose, first, that $\left|\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{1}, y_{2}\right\}\right]\right|=1$ and $x_{i_{0}} y_{j_{0}}$ is an edge in $G$, where $i_{0} \in\{2,3,4\}$ and $j_{0} \in\{2,3\}$. Without loss of generality, we consider the following cases.
Case 2.2.b.1. $x_{2} y_{2} \in E(G)$.
If $d\left(x_{3}, v_{i}\right)=2$ for $1 \leq i \leq 2$ or $d\left(x_{3}, y_{0}\right)=2$, then there is a vertex $y$ in $G[Y]$ such that $x_{3} y, y v_{i} \in E(G)$ or $x_{3} y, y y_{0} \in E(G)$. Thus, there is a at most 6 -cycle in $G$, a contradiction to that $g(G) \geq 8$. Therefore, $d\left(x_{3}, v_{i}\right) \geq 3$ and $d\left(x_{3}, y_{0}\right) \geq 3$. Therefore we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{3}\right\}$ and $y \in\left\{v_{1}, v_{2}, y_{0}\right\}$, a contradiction.
Case 2.2.b.2. $x_{2} y_{1} \in E(G)$.
The proof of this case is the same as Case 2.2.b.1.
Case 2.2.b.3. $x_{3} y_{2} \in E(G)$.
If $d\left(x_{2}, v_{i}\right)=2$ for $1 \leq i \leq 2$ or $d\left(x_{2}, y_{0}\right)=2$, then there is a vertex $y$ in $G[Y]$ such that $x_{2} y, y v_{i} \in E(G)$ or $x_{2} y, y y_{0} \in E(G)$. Thus, there is a at most 6 -cycle in $G$, a contradiction to that $g(G) \geq 8$. Therefore, $d\left(x_{2}, v_{i}\right) \geq 3$ and $d\left(x_{2}, y_{0}\right) \geq 3$. Therefore we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{2}\right\}$ and $y \in\left\{v_{1}, v_{2}, y_{0}\right\}$, a contradiction.
Case 2.2.b.4. $x_{3} y_{1} \in E(G)$.
The proof of this case is the same as Case 2.2.b.3.
Suppose, secondly, that $\left|\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{1}, y_{2}\right\}\right]\right|=0$. Assume $d(x, y) \geq 3$ for every $x \in\left\{x_{2}, x_{3}, x_{4}\right\}$ and $y \in\left\{y_{1}, y_{2}\right\}$. If $d\left(x_{i_{0}}, v_{1}\right)=2$ for $2 \leq i_{0} \leq 4$, then $d\left(x_{i}, v_{1}\right) \geq$ 3 for $i \in\{2,3,4\} \backslash\left\{i_{0}\right\}$ by $g(G) \geq 8$. Therefore we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{i}\right\}$ and $y \in\left\{v_{1}, y_{1}, y_{2}\right\}$, a contradiction. Then there are two vertices $x_{i_{0}} \in\left\{x_{2}, x_{3}, x_{4}\right\}$ and $y_{j_{0}} \in\left\{y_{2}, y_{3}\right\}$ such that $d\left(x_{i_{0}}, y_{j_{0}}\right)=2$. Let $i \in\{2,3,4\} \backslash\left\{i_{0}\right\}$ with $x_{i} x_{i_{0}} \in E(H)$, and $j \in\{2,3\} \backslash\left\{j_{0}\right\}$ with $y_{j} y_{j_{0}} \in E\left(H^{*}\right)$. Since $g(G) \geq 8$, $d\left(x_{i}, y_{j}\right) \geq 3$ holds. Since $d\left(x_{i_{0}}, y_{j_{0}}\right)=2, d\left(x_{i}, v_{j}\right) \geq 3$ for $j \in\{1,2\}$ by $g(G) \geq 8$.

By Claim 3, $d\left(y_{j}, u_{i}\right) \geq 3$ for $i \in\{1,2\}$. Therefore we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{i}\right\}$ and $y \in\left\{v_{1}, v_{2}, y_{j}\right\}$, a contradiction.
Suppose, secondly, that $H^{*}$ is a path of length 3 , denoted $H^{*}=y_{1} y_{2} y_{3} y_{4}$. Without loss of generality, suppose $v_{1}=y_{1}, v_{2}=y_{3}$.
Since $g(G) \geq 8$, we have $\left|N(v) \cap V\left(H^{*}\right)\right| \leq 1$ for $v \in Y \backslash V\left(H^{*}\right)$. If $\left|N(y) \cap V\left(H^{*}\right)\right|=0$ for $y \in Y_{0} \backslash V\left(H^{*}\right)$, by Lemma 2.1, $G$ is maximally 4 -restricted edge connected, a contradiction. Therefore, there is at least a vertex $y_{0}$ in $Y_{0} \backslash V\left(H^{*}\right)$ such that $\left|N\left(y_{0}\right) \cap V\left(H^{*}\right)\right|=1$. If $y_{0}$ is adjacent to $v_{i}(i \in\{1,2\})$, then $(G[Y])\left[\left\{v_{1}, v_{2}, y_{0}, y_{2}\right\}\right]$ is a connected subgraph of order 4, a contradiction to $H^{*}$. If $y_{0}$ is adjacent to $y_{2}$, then $(G[Y])\left[\left\{v_{1}, v_{2}, y_{0}, y_{2}\right\}\right]$ is a connected subgraph of order 4 , a contradiction to $H^{*}$. Therefore, $y_{0}$ is adjacent to $y_{4}$ (See Fig. 4). Similarly to the proof of Claim 5, we have the following claim.
Claim 8. $\left|\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{2}, y_{4}\right\}\right]\right| \leq 1$ in $G$.
Suppose, first, that $\left|\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{2}, y_{4}\right\}\right]\right|=1$ Without loss of generality, we consider the following cases.
Case 2.2.b.5. $x_{2} y_{2} \in E(G)$.
Assume $d\left(x_{3}, v_{j_{0}}\right)=2$ for $v_{j_{0}} \in\left\{v_{1}, v_{2}, y_{0}\right\}$. Since $N\left(v_{i}\right) \cap X=\emptyset$ and $N\left(y_{0}\right) \cap X=$ $\emptyset$, there is a vertex $y$ in $G[Y]$ such that $x_{3} y, y v_{i}\left(y_{0}\right) \in E(G)$. Thus, there is a cycle $C$ in $G$ whose length of $C$ is at most 7, a contradiction to that $g(G) \geq 8$. Therefore, $d\left(x_{3}, v_{j}\right) \geq 3$ and $d\left(x_{3}, y_{0}\right) \geq 3$. Therefore we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{3}\right\}$ and $y \in\left\{v_{1}, v_{2}, y_{0}\right\}$, a contradiction.
Case 2.2.b.6. $x_{3} y_{2} \in E(G)$.
Similarly, we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{2}\right\}$ and $y \in\left\{v_{1}, v_{2}, y_{0}\right\}$, a contradiction.
Suppose, secondly, that $\left|\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{2}, y_{4}\right\}\right]\right|=0$.
Assume $d(x, y) \geq 3$ for every $x \in\left\{x_{2}, x_{3}, x_{4}\right\}$ and $y \in\left\{y_{2}, y_{4}\right\}$. Since $g(G) \geq 8$, there is one $x_{i}$ of $x_{2}, x_{3}$ such that $d\left(x_{i}, v_{1}\right) \geq 3$. Therefore, by Claim 3, we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{i}\right\}$ and $y \in\left\{v_{1}, y_{2}, y_{4}\right\}$, a contradiction. Then there are two vertices $x_{i_{0}} \in\left\{x_{2}, x_{3}, x_{4}\right\}$ and $y_{j_{0}} \in\left\{y_{2}, y_{3}\right\}$ such that $d\left(x_{i_{0}}, y_{j_{0}}\right)=2$. Let $x_{i_{0}} x_{i} \in E(H)$. Without loss of generality, we consider the following cases.
Case 2.2.b.7. $d\left(x_{i_{0}}, y_{2}\right)=2$.
Since $g(G) \geq 8, d\left(x_{i}, v_{j}\right) \geq 3$ for $j \in\{1,2\}$ and $d\left(x_{i}, y_{4}\right) \geq 3$ hold. Therefore, by Claim 3, we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{i}\right\}$ and $y \in\left\{v_{1}, v_{2}, y_{4}\right\}$, a contradiction.
Case 2.2.b.8. $d\left(x_{i_{0}}, y_{4}\right)=2$.
Similarly, we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{i}\right\}$ and $y \in\left\{v_{2}, y_{0}, y_{2}\right\}$, a contradiction.
Case 2.2.c. $d_{H^{*}}\left(v_{1}, v_{2}\right)=1$.
Suppose, first, that $H^{*}$ is a path of length 3 , denoted by $P_{3}=y_{1} y_{2} y_{3} y_{4}$. If $v_{1}=$ $y_{1}, v_{2}=y_{2}$, then $N\left(y_{0}\right) \cap V\left(H^{*}\right)=\left\{y_{4}\right\}$. Otherwise, there is a connected subgraph
$G^{*}$ of order 4 in $G\left[V\left(H^{*}\right) \cup\left\{y_{0}\right\}\right]$ such that $v_{1}, v_{2}, y_{0} \in V\left(G^{*}\right)$, a contradiction to $H^{*}$. Since $d_{H^{*}}\left(v_{2}, y_{0}\right)=3$, Similarly to Case 2.2.a, we have that there are six vertices $x_{1}, x_{2}, x_{3}, z_{1}, z_{2}$ and $z_{3}$ in $G$ such that the distance $d\left(x_{i}, z_{j}\right) \geq 3(1 \leq i, j \leq 3)$, a contradiction.
Suppose that $H^{*} \cong K_{1,3}$, where $d_{H^{*}}\left(v_{1}\right)=3$. Then there is a connected subgraph $G^{*}$ of order 4 in $G\left[V\left(H^{*}\right) \cup\left\{y_{0}\right\}\right]$ such that $v_{1}, v_{2}, y_{0} \in V\left(G^{*}\right)$, a contradiction to $H^{*}$. Case 2.3. $\left|Y_{0} \cap V\left(H^{*}\right)\right|=3$.
Let $Y_{0}=\left\{v_{1}, v_{2}, v_{3}, \ldots\right\}$. Suppose that $n_{0}=3$. Since $g(G) \geq 8,\left|\left[\{y\}, V\left(H^{*}\right)\right]\right| \leq 1$ for $y \in Y \backslash V\left(H^{*}\right)$. Since $Y_{0} \subseteq V\left(H^{*}\right)$, we have that

$$
\begin{align*}
\sum_{y \in Y \backslash V\left(H^{*}\right)}\left|N(y) \cap V\left(H^{*}\right)\right| & =\left|\left[Y \backslash V\left(H^{*}\right), V\left(H^{*}\right)\right]\right| \\
& \leq\left|Y \backslash V\left(H^{*}\right)\right| \\
& \leq\left|\left[Y \backslash V\left(H^{*}\right), X\right]\right| \\
& =\sum_{y \in Y \backslash V\left(H^{*}\right)}|N(y) \cap X| . \tag{2.2}
\end{align*}
$$

By Lemma 2.1, $G$ is maximally 4-restricted edge connected, a contradiction. Then $n_{0} \geq 4$. Suppose that $v_{1}, v_{2}, v_{3} \in Y_{0} \cap V\left(H^{*}\right)$. Since $H^{*}$ is a path of length 3 or a $K_{1,3}$, there is at least a vertex of degree 1 in $v_{1}, v_{2}, v_{3}$. Without loss of generality, suppose $d_{H^{*}}\left(v_{1}\right)=1$ and $v_{1}=y_{1}$.
Case 2.3.1. $H^{*}=y_{1} y_{2} y_{3} y_{4}$ is a path of length 3 .
Since $\left|Y_{0} \cap V\left(H^{*}\right)\right|=3$, we have that $H^{*}=v_{1} v_{2} v_{3} y_{4}$ (See Fig. 5) or $H^{*}=v_{1} v_{2} y_{3} v_{3}$. We consider the following cases.
Case 2.3.1.1. $H^{*}=v_{1} v_{2} v_{3} y_{4}$.
Since $g(G) \geq 8$, we have the following claim.
Claim 9. $\left|\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{4}\right\}\right]\right| \leq 1$ in $G$.
Suppose, first, that $\left|\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{4}\right\}\right]\right|=1$ and $x_{i_{0}} y_{4} \in E(G)$ for $x_{i_{0}} \in\left\{x_{2}, x_{3}, x_{4}\right\}$. Let $x_{i} x_{i_{0}} \in E(H)$. Since $g(G) \geq 8$, we have $d\left(x_{i}, v_{j}\right) \geq 3$ for $j \in\{1,2,3\}$. Therefore we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{i}\right\}$ and $y \in\left\{v_{1}, v_{2}, v_{3}\right\}$, a contradiction.
Suppose, secondly, that $\left|\left[\left\{x_{2}, x_{3}, x_{4}\right\},\left\{y_{4}\right\}\right]\right|=0$.
Since there is no $d\left(x_{i}, v_{j}\right) \geq 3$ for every $i \in\{2,3,4\}$ and every $j \in\{1,2,3\}$, there is one $d\left(x_{i_{0}}, v_{j_{0}}\right)=2$ for $i_{0} \in\{2,3,4\}$ and $j_{0} \in\{1,2,3\}$. Let $x_{i} x_{i_{0}} \in E(H)$. Since $g(G) \geq 8, d\left(x_{i}, v_{j}\right) \geq 3$ for every $j \in\{1,2,3\}$. Therefore we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{i}\right\}$ and $y \in\left\{v_{1}, v_{2}, v_{3}\right\}$, a contradiction.
Case 2.3.1.2. $H^{*}=v_{1} v_{2} y_{3} v_{3}$.
Similarly to Case 2.3.1.1, we have that there are six vertices $u_{1}, u_{2}, u_{3}, v_{1}, v_{2}$ and $v_{3}$ in $G$ such that the distance $d\left(u_{i}, v_{j}\right) \geq 3(1 \leq i, j \leq 3)$, a contradiction.

Case 2.3.2. $H^{*} \cong K_{1,3}$.
Let $d\left(y_{2}\right)=3$ in $H^{*}$. Since $\left|Y_{0} \cap V\left(H^{*}\right)\right|=3$, we have that $y_{2}=v_{2}$ and $y_{2} \neq v_{2}$ or $v_{3}$ or $v_{3}$. Similarly to Case 2.3.1, we have that there are six vertices $u_{1}, u_{2}, u_{3}, v_{1}, v_{2}$ and $v_{3}$ in $G$ such that the distance $d\left(u_{i}, v_{j}\right) \geq 3(1 \leq i, j \leq 3)$, a contradiction.
Case 2.4. $\left|Y_{0} \cap V\left(H^{*}\right)\right| \geq 4$.
If $d\left(x_{i}, v_{j}\right) \geq 3$ for every $i \in\{2,3,4\}$ and every $j \in\{1,2,3,4\}$, then there are six vertices $u_{1}, u_{2}, x_{3}, v_{1}, v_{2}$ and $v_{3}$ in $G$ such that the distance $d\left(u_{i}, v_{j}\right) \geq 3(i, j \in\{1,2,3\})$, a contradiction. Then $d\left(x_{i_{0}}, v_{j_{0}}\right)=2$ for $i_{0} \in\{2,3,4\}$ and $j_{0} \in\{1,2,3,4\}$. Since $g(G) \geq 8, d\left(x_{i_{0}}, v_{j}\right) \geq 3$ for every $j \in\{1,2,3,4\} \backslash\left\{j_{0}\right\}$. Therefore we have $d(x, y) \geq 3$ for every $x \in\left\{u_{1}, u_{2}, x_{i_{0}}\right\}$ and $y \in\left\{v_{j}: j \in\{1,2,3,4\} \backslash\left\{j_{0}\right\}\right\}$, a contradiction.
Summarizing Cases 1 and 2, we obtain that $G$ is maximally 4-restricted edge connected.


Fig. 1. The structure of $G[X]$ and $G[Y]$


Fig. 2. The structure of $G[X]$ and $G[Y]$


Fig. 3. The structure of $G[X]$ and $G[Y]$


Fig. 4. The structure of $G[X]$ and $G[Y]$


Fig. 5. The structure of $G[X]$ and $G[Y]$

## 3 Conclusion

In this paper, we have investigated the problem of the maximally 4-restricted edge connected graph and shown a sufficient condition for graphs to be maximally 4 restricted edge connected, i.e., if $G$ is a $\lambda_{4}$-connected graph with $\lambda_{4}(G) \leq \xi_{4}(G)$ and the girth satisfies $g(G) \geq 8$, and there do not exist six vertices $u_{1}, u_{2}, u_{3}, v_{1}, v_{2}$ and $v_{3}$ in $G$ such that the distance $d\left(u_{i}, v_{j}\right) \geq 3,(1 \leq i, j \leq 3)$, then $G$ is maximally 4 -restricted edge connected. Our further work aims to investigate the problem of the maximally $k$-restricted edge connected graph.

## References

[1] C. Balbuena and X. Marcote, The $k$-restricted edge-connectivity of a product of graphs, Discrete Appl. Math. 161 (2013), 52-59.
[2] C. Balbuena, M. Cera, A. Diánez, P. García-Vázquez and X. Marcote, Diametergirth sufficient conditions for optimal extraconnectivity in graphs, Discrete Math. 308 (2008), 3526-3536.
[3] C. Balbuena and P. García-Vázquez, Edge fault tolerance analysis of super $k$ restricted connected networks, Appl. Math. Comput. 216 (2010), 506-513.
[4] C. Balbuena, P. García-Vázquez and X. Marcote, Sufficient conditions for $\lambda^{\prime}$ optimality in graphs with girth $g$, J. Graph Theory 52 (1) (2006), 73-86.
[5] J. A. Bondy and U. S. R. Murty, Graph Theory, New York, Springer, 2008.
[6] P. Bonsma, N. Ueffing and L. Volkmann, Edge-cuts leaving components of order at least three, Discrete Math. 256 (2002), 431-439.
[7] N.-W. Chang, C.-Y. Tsai and S.-Y. Hsieh, On 3-extra connectivity and 3-extra edge connectivity of folded hypercubes, IEEE Trans. Comput. 63 (6) (2014), 1593-1599.
[8] A.-H. Esfahanian and S. L. Hakimi, On computing a conditional edge-connectivity of a graph, Inform. Process. Lett. 27 (4) (1988), 195-199.
[9] J. Fàbrega and M. A. Fiol, On the extraconnectivity of graphs, Discrete Math. 155 (1-3) (1996), 49-57.
[10] J. Fàbrega and M. A. Fiol, Extraconnectivity of graphs with large girth, Discrete Math. 127 (1-3) (1994), 163-170.
[11] L. Guo and X. Guo, Super 3-restricted edge connectivity of triangle-free graphs, Ars Combin. 121 (2015), 159-173.
[12] A. Hellwig and L. Volkmann, Sufficient conditions for graphs to be $\lambda^{\prime}$-optimal, super-edge-connected, and maximally edge-connected, J. Graph Theory 48 (2005), 228-246.
[13] J. Ou, A bound on 4-restricted edge connectivity of graphs, Discrete Math. 307 (2007), 2429-2437.
[14] J. Meng and Y. Ji, On a kind of restricted edge connectivity of graphs, Discrete Appl. Math. 117 (2002), 183-193.
[15] J. Ou, Edge cuts leaving components of order at least m, Discrete Math. 305 (2005), 365-371.
[16] J. Plesiník and S̆. Znám, On equality of edge-connectivity and minimum degree of a graph, Archivum Math. (Brno) 25 (1-2) (1989), 19-25.
[17] Y. Qin, J. Ou and Z. Xiong, On equality of restricted edge connectivity and minimum edge degree of graph, Ars Combin. 110 (2013), 65-70.
[18] S. Wang, L. Zhang and S. Lin, A neighborhood condition for graphs to be maximally $k$-edge connected, Inform. Process. Lett. 112 (3) (2012), 95-97.
[19] S. Wang, J. Li, L. Wu and S. Lin, Neighborhood conditions for graphs to be super restricted edge connected, Networks 56 (1) (2010), 11-19.
[20] S. Wang and L. Zhang, Sufficient conditions for $k$-restricted edge connected graphs, Theor. Comput. Sci. 557 (2014), 66-75.
[21] S. Wang, S. Lin and C. Li, Sufficient conditions for super $k$-restricted edge connectivity in graphs of diameter 2, Discrete Math. 309 (4) (2009), 908-919.
[22] S. Wang and N. Zhao, Degree conditions for graphs to be maximally $k$-restricted edge connected and super $k$-restricted edge connected, Discrete Appl. Math. 184 (2015), 258-263.
[23] S. Wang, M. Wang and L. Zhang, A sufficient condition for graphs to be super $k$-restricted edge connected, Discuss. Math. Graph Theory 37 (2017), 537-545.
[24] S. Wang, G. Zhang and X. Wang, Sufficient conditions for maximally edgeconnected graphs and arc-connected digraphs, Australas. J. Combin. 50 (2011), 233-242.
[25] M. Wang and S. Wang, Sufficient conditions of a maximally 3-restricted edge connected graph, Shandong Sci. 28 (3) (2015), 80-83. (in Chinese)
[26] S. Wang, Hamiltonian property of Cayley graphs on symmetric groups (I), J. Xinjiang University (Nat. Sci. Ed.) 11 (3) (1994), 16-18. (in Chinese)
[27] M. Zhang, J. Meng, W. Yang and Y. Tian, Reliability analysis of bijective connection networks in terms of the extra edge-connectivity, Inform. Sci. 279 (2014), 374-382.
[28] Z. Zhang and J. Yuan, A proof of an inequality concerning $k$-restricted edge connectivity, Discrete Math. 304 (1-3) (2005), 128-134.


[^0]:    * This work is supported by the National Natural Science Foundation of China (61772010).

