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Abstract

In this paper, we define locally matchable subsets of a group which are
derived from the concept of matchings in groups and used as a tool to
give alternative proofs for existing results in matching theory. We also
give the linear analogue of a local matching property for subspaces in
a field extension. Our tools mix additive number theory, combinatorics
and algebra.

1 Introduction

The notion of matchings in groups was used to study an old problem of Wakeford
concerning canonical forms for symmetric tensors [8]. Losonczy in [6] introduced
matchings in order to generalize a geometric property of lattices in Euclidean space.
A matching in an abelian group (G,+) is a bijection f : A → B, where A, B are
finite subsets of G such that 0 �∈ B, fulfilling a + f(a) �∈ A, for all a ∈ A, and
G is said to have the matching property, if a matching always exists, as long as A
and B are finite of the same cardinality. This topic has found some interest in the
literature: for example, in 2006 Eliahou-Lecouvey generalized Losonczy’s results to
arbitrary groups [3], and in 2010 Eliahou-Lecouvey went over to subspaces in field
extensions [4].

The subject of the present paper is to consider local matchings: given a proper
subgroup H < G such that H ∩ B �= ∅ and a + H ⊆ A, for some a ∈ A, there
is a bijection f : A′ → H ∩ B, for some A′ ⊆ A, such that a + f(a) �∈ A, for all
a ∈ A′. In this case, A is said to be locally matched to B. Any matching being a
local matching, it is natural to ask whether, conversely, a local matching property
implies the matching property. The answer to this question is “Yes” and we will use
this result to give an alternative proof for Losonczy’s main result in [6]. Moreover,
these questions are also discussed in the context of subspaces in field extensions.
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The purpose of this paper is to find the relations between the local matching
property and the matching property in groups and vector spaces, to give alternative
proofs for existing results on the matching property for groups and also the linear
analogue. Section 2 is devoted to the results proved on matchings in groups and
vector spaces and also some tools of additive number theory required to prove our
main results. In Section 3, we will show the equivalence between matchings and local
matchings for subsets of a group. Section 4 is concerned with the linear analogue of
one of Losonzy’s results on matchings for cyclic groups. Finally, in Section 5, we show
that for vector spaces in a field extension whose algebraic elements are separable,
the linear local matching property implies the matching property.

2 Preliminaries

First, we define the matching property for subspaces in a field extension. Let K ⊂ L
be a field extension and let A and B be n-dimensional K-subspaces of the field
extension L. Let A = {a1, . . . , an} and B = {b1, . . . , bn} be bases of A and B,
respectively. It is said that A is matched to B if

aib ∈ A ⇒ b ∈ 〈b1, . . . , b̂i, . . . , bn〉,
for all b ∈ B and i = 1, . . . , n, where 〈b1, . . . , b̂i, . . . , bn〉 is the hyperplane of B
spanned by the set B \ {bi}; moreover, it is said that A is matched to B if every
basis A of A can be matched to a basis B of B. As is seen, the matchable bases are
defined in a natural way based on the definition of a matching in a group. Indeed, we
can consider A and B as subsets of the multiplicative group L∗ and so the bijection
ai �→ bi is a matching in the group setting sense. It is said that L has the linear
matching property if, for every n ≥ 1 and all n-dimensional subspaces A and B of L
with 1 �∈ B, the subspace A is matched with B. A strong matching from A to B is
a linear isomorphism ϕ : A → B such that any basis A of A is matched to the basis
ϕ(A) of B. It is proved that there is a strong matching from A to B if and only if
AB ∩A = {0}. In this case, any isomorphism ϕ : A → B is a strong matching [4].

Now, we give our definition for matchable subsets of two matchable bases:

Definition 2.1 Let Ã and B̃ be two non-zero m-dimensional K-subspaces of A and
B, respectively. We say that Ã is A-matched to B̃, if for any basis Ã = {a1, . . . , am}
of Ã, there exists a basis B̃ = {b1, . . . , bm} of B̃ for which aibi �∈ A, for i = 1, . . . , m.
In this case, it is also said that Ã is A-matched to B̃.

The following is the linear analogue of locally matchable subsets for the vector spaces
in a field extension.

Definition 2.2 Let K ⊂ L be a field extension and let A, B be two n-dimensional
K-subspaces of L. We say that A is locally matched to B if for any intermediate
subfield K ⊂ H � L with H ∩ B �= {0} and aH ⊆ A, for some a ∈ A, one can find
a subspace Ã of A such that Ã is A-matched to H ∩ B.
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Definition 2.3 We say that K ⊂ L has the linear local matching property if, for
every n ≥ 1 and all n-dimensional subspaces A and B of L with 1 �∈ B, the subspace
A is locally matched to B.

The following theorem is a dimension criterion for matchable bases [4, Proposition
3.1]. This will be used as a tool to prove Theorem 4.2. For more results on linear
versions of matchings, see [1].

Theorem 2.4 Let K ⊂ L be a field extension and let A and B be two n-dimensional
K-subspaces of L. Suppose that A = {a1, . . . , an} is a basis of A. Then A can be
matched to a basis of B if and only if, for all J ⊆ {1, . . . , n}, we have:

dimK

⋂
i∈J

(
a−1
i A ∩ B

) ≤ n−#J.

The following theorem gives a necessary and sufficient condition for a field exten-
sion to have the linear matching property.

Theorem 2.5 [4, Theorem 5.2] Let K ⊂ L be a field extension. Then L has
the linear matching property if and only if L contains no proper finite dimensional
extension over K.

For proving our main results, we shall need the following theorem from [7, The-
orem 4.3, p. 116].

Theorem 2.6 (Kneser) If C = A + B, where A and B are finite subsets of an
abelian group G, then

#C ≥ #A+#B −#H,

where H is the subgroup H = {g ∈ G : C + g = C}.

See [2] for more details regarding the following theorem which is the linear analogue
of Kneser’s theorem.

Theorem 2.7 Let K ⊂ L be a field extension in which every algebraic element of L
is separable over K. Let A,B ⊂ L be non-zero finite-dimensional K-subspaces of L
and H be the stabilizer of 〈AB〉, i.e. H = {x ∈ L; x〈AB〉 ⊆ 〈AB〉}. Then

dimK〈AB〉 ≥ dimK A + dimK B − dimK H.

We remark that in the above theorem, we denote by 〈AB〉 the K-subspace of L
generated by the Minkowski product AB which is defined as

AB := {ab; a ∈ A, b ∈ B}.
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3 Local matching property for groups

The following theorem shows that the local matching property is equivalent to the
matching property in abelian groups. The main idea of our proof is obtained from
the Loconczy paper [6, Theorem 3.1] and Eliahou-Lecouvey paper [3, Theorem 3.3].

Theorem 3.1 Let G be an additive abelian group and A, B be non-empty finite
subsets of G satisfying the conditions #A = #B and 0 �∈ B. If A is locally matched
to B, then A is matched to B.

We shall need the following lemma to prove Theorem 3.1.

Lemma 3.2 Let G, A and B be as Theorem 3.1. For any non-empty subset S of A,
assume that #S ≤ #(B \ U), where U = {b ∈ B; s + b ∈ A, for any s ∈ S}. Then,
there is a matching from A to B.

Proof. Assume that A = {a1, . . . , an} and define SJ = {ai; i ∈ J}, for any J ⊆
{1, . . . , n}. Set UJ = {b ∈ B; s + b ∈ A, for any s ∈ SJ}. Clearly, UJ =

⋂
i∈J

U{i}.

Consider the collection E = {B \ U{1}, . . . , B \ U{n}}. We have

#
⋃
i∈J

(
B \ U{i}

)
= #

(
B \

⋂
i∈J

U{i}

)
= #(B \ UJ) ≥ #SJ = #J,

for any J ⊆ {1, . . . , n}. Then by Hall’s Marriage Theorem [5, Theorem 2], one can
find a transversal (b1, . . . , bn) ∈ E . The mapping ai �→ bi is a matching from A to B.

�

Proof of Theorem 3.1. We remark that for the case that G is a finite group and

A = G \ {0}, we have the matching f : A → B
a �→ −a

. Thus, we may assume that

A �= G \ {0}. Suppose there is no matching from A to B. We are going to reach
a contradiction. Using Lemma 3.2, there exists a non-empty finite subset S of A
such that #(B \ U) < #S, where U = {b ∈ B : s + b ∈ A, for any s ∈ S}. Let
#A = #B = n, then #U + #S > n. Set U0 = U ∪ {0}. Using Kneser’s Theorem
one can find the subgroup H of G such that

#(U0 + S) ≥ #U0 +#S −#H, (1)

where H = {g ∈ G : g + U0 + S = U0 + S}. Applying Kneser’s Theorem for
U ′ = H ∪ U and S, we can find the subgroup H ′ of G for which

#(U ′ + S) ≥ #U ′ +#S −#H ′, (2)
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where H ′ = {g ∈ G : g + U ′ + S = U ′ + S}. We claim that H = H ′ and to prove
this, it suffices to show that U ′ + S = U0 + S. We have

U ′ + S = (H ∪ U) + S = (H + S) ∪ (U0 + S)

= (H + S) ∪ (U0 + S +H)

= H + (S ∪ (U0 + S))

= H + (U0 + S) = U0 + S. (3)

Then H = H ′ and it follows from (2) that

#(U0 + S) ≥ #U ′ +#S −#H. (4)

Using (3), (4) we obtain

#(U0 + S) = #(U ′ + S)

= #U ′ +#S −#H

= #(H ∪ U) + #S −#H

= #H +#U −#(H ∩ U) + #S −#H

= #U +#S −#(H ∩ U). (5)

As U0 + S = S ∪ (S + U), (5) implies

#(S ∪ (S + U)) ≥ #U +#S −#(H ∩ U). (6)

Now, we have two cases for H ∩ U .

1. If H ∩ U is empty, then by (6) we conclude that #(S ∪ (S + U)) ≥ n. On
the other hand S ∪ (S + U) is a subset of A. We would have #A > n, which
contradicts #A = n above.

2. If H ∩ U is non-empty, so is H ∩ B. Also, if s ∈ S ⊆ A, then according to
the definition of H , s + H ⊆ U0 + S + H = U0 + S ⊆ A. As A is locally
matched to B, then there is a subset Ã of A and a bijection f : Ã → H ∩ B
such that a+ f(a) �∈ A, for any a ∈ Ã. We claim that f−1(H ∩ U) ∩ (U0 + S)
is empty. If not and a ∈ f−1(H ∩U) ∩ (U0 + S), then a+ f(a) ∈ (U0 + S) +H
as a ∈ U0 + S and f(a) ∈ H ∩ U ⊆ H . Since U0 + S ⊆ A, then a + f(a) ∈ A
which is a contradiction. Therefore f−1(H∩U)∩(U0+S) is empty. As the sets
f−1(H ∩ U) and U0 + S are both subsets of A and have nothing in common,
then #f−1(H ∩ U) + #(U0 + S) ≤ n. Thus #(H ∩ U) + #(U0 + S) ≤ n and
this tells us #(H ∩ U) + #(S ∪ (S + U)) ≤ n. Next, using (6) yields that
#U +#S ≤ n which is a contradiction.

Therefore in both cases we extract contradictions. Then there is a matching from A
to B. �

Remark 3.3 Note that in the second case above, H �= G. We argue this in two
cases:
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1. Suppose that 0 ∈ A. Assume to the contrary G = H . Then we have

#G = #H ≤ #(H + U0 + S) = #(U0 + S) ≤ #A.

Then #G = #A = #B. This contradicts 0 �∈ B.

2. Suppose that 0 �∈ A. Assume to the contrary G = H . Then we have

#G = #H ≤ #(H + U0 + S) = #(U0 + S) ≤ #(A ∪ {0}).

Then G = A ∪ {0} and this contradicts A �= G \ {0}.

Example 3.4 Assume that G = Z/8Z, A,B ⊆ G with A = {0, 2, 6} and B =
{1, 3, 4}. The only non-trivial subgroup of G which satisfies the condition a+H ⊆ A
is H = {0, 4}. Note that here a = 2. If A′ = {0} ⊆ A, then for the bijection
f : A′ → H ∩ B defined as f(0) = 4 we have 0 + f(0) = 4 �∈ A. Then A is locally
matched to B and using Theorem 3.1, A is matched to B.

Using Theorem 3.1, we give an alternative proof to the following result of Losonzcy
[6, Theorem 3.1].

Theorem 3.5 An abelian group G has the matching property if and only if it is
torsion-free or cyclic of prime order.

Proof. Assume that G is either torsion-free or cyclic of prime order. Then G has no
non-trivial subgroup of finite order. This means if A,B ⊂ G with #A = #B and
0 �∈ B, then A is locally matched to B (because in this case H = {0} is the only
proper subgroup of G. But H ∩B = ∅.) Using Theorem 3.1 yields that A is matched
to B and so G has matching property.

Conversely, assume that G is neither torsion-free nor cyclic of prime order. Then
it has a non-trivial finite subgroup H . Choose g ∈ G \ H , set A = H and B =
H ∪ {g} \ {0}. Clearly, H ∩ B �= ∅ and a +H ⊆ A for some a ∈ A (Indeed for any
a ∈ A). If A is locally matched to B, then one can find an A-matching f from a subset
A0 ofA toH∩B. But if a ∈ A0, then a+f(a) ∈ H+(H∩B) = H+(H\{0}) = H = A,
which is a contradiction. Then A is not locally matched to B and so by Theorem
3.1, A is not matched to B. Therefore G has no matching property. �

Corollary 3.6 Let G, A and B be as Theorem 3.1 and #A = #B = n > 1. Denote
by n(G) the smallest cardinality of a non-zero subgroup of G. If n < n(G), then A
is matched to B.

Proof. Since n < n(G), then it is clear that A is locally matched to B. Using
Theorem 3.1 yields A is matched to B. �
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4 The linear analogue of Losonzcy’s result on matchable
subsets

In this section, we formulate and prove the linear analogue of the following theorem
of Losonzcy proven in [6] which basically investigates the matchable subspaces in a
simple field extension.

Theorem 4.1 Let G be a non-trivial finite cyclic group such that #A = #B and
every element of B is a generator of G. Then there exists at least one matching from
A to B.

We say that K ⊂ L is a simple field extension if L = K(α), for some α ∈ L. Also, if
B is a K-subspace of L such that K(b) = L, for any b ∈ B \ {0}, we say that B is a
primitive K-subspace of L. The main ingredient in our proof is the linear version of
Kneser’s theorem.

Theorem 4.2 Let K ⊂ L be separable field extension and A and B be two n-
dimensional K-subspaces in L with n ≥ 1 and B is a primitive K-subspace of L.
Then A is matched with B.

Proof. Assume that A is not matched to B. Using Theorem 2.4, one can find
J ⊆ {1, . . . , n} and a basis A = {a1, . . . , an} of A such that⋂

i∈J

(
a−1
i A ∩ B

)
> n−#J. (7)

Set S = 〈ai : i ∈ J〉 the K-subspace of A spanned by ai’s, i ∈ J , U =
⋂
i∈J

(
a−1
i A ∩ B

)
and U0 = U ∪ {1}. Now, by Theorem 2.7 one can find a subfield H of L such that

dimK〈U0S〉 ≥ dimK U0 + dimK S − dimK H,

where H is the stabilizer of 〈U0S〉, i.e. H = {x ∈ L : x〈U0S〉 ⊆ 〈U0S〉}. Define
U ′ = 〈H ∪ U〉. Using Theorem 2.7 again, we have

dimK〈U ′S〉 ≥ dimK〈U ′〉+ dimK〈S〉 − dimK H ′,

where H ′ is the stabilizer of 〈U ′S〉. Next, we have

〈U ′S〉 = 〈(H ∪ U)S〉 = 〈HS ∪ U0S〉
= 〈HS ∪HU0S〉 = H〈S ∪ U0S〉
= H〈U0S〉 = 〈U0S〉. (8)

From this it follows that H = H ′ and then

dimK〈U ′S〉 ≥ dimK〈U ′〉+ dimK S − dimK H. (9)
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Using (8) and (9), we have

dimK〈U0S〉 ≥ dimK U ′ + dimK S − dimK H

= dimK〈H ∪ U〉 + dimK S − dimK H. (10)

Using (10), the fact that 〈U0S〉 = 〈S ∪ SU〉 and the inclusion-exclusion principle for
vector spaces we have:

dimK〈S ∪ SU〉 ≥ dimK〈H ∪ U〉+ dimK S − dimK H

= dimK H + dimK U − dimK(H ∩ U) + dimK S − dimK H

= dimK U + dimK S − dimK(H ∩ U). (11)

Now, we have two cases for the subspace H ∩ U .

1. IfH∩U = {0}, then (7) and (11) imply dimK〈S∪SU〉 ≥ n and this is impossible
as S ∪ SU ⊆ A and dimK A = n.

2. If H∩U �= {0}, then H∩B �= {0} and since B is a primitive subspace of L, then
H = L. By the definition of U and S, HUS ⊆ A and this follows LUS ⊆ A
and so A = L. Then B = L as dimK A = dimK B and this means K ⊆ B.
Therefore if a ∈ K \ {0}, then K = K(a) = L, which is impossible.

In both cases, we extract contradictions. Then A is matched to B. �

5 Local matching property for subspaces in a field extension

The following theorem shows that the linear local matching property implies the
linear matching property for subspaces of a field extension whose algebraic elements
are separable. Note that this result can probably be reformulated for any field
extension K ⊂ L without any condition on separability.

Theorem 5.1 Let K ⊂ L be a field extension in which every algebraic element of L
is separable over K. Let A,B ⊂ L be two non-zero n-dimensional K-subspaces with
1 �∈ B. If A is locally matched to B, then A is matched to B.

Proof. Assume to the contrary A is not matched to B. Then, by Theorem 2.3 there
exist a basis A = {a1, . . . , an} of A and J ⊆ {1, . . . , n} such that

dimK

⋂
i∈J

(
a−1
i A ∩ B

)
> n−#J.

Set S = 〈ai : i ∈ J〉 as a K-subspace of A, U =
⋂
i∈J

(a−1
i A ∩ B) and U0 = 〈U ∪ {1}〉.

Using Theorem 2.7 there exists an intermediate subfield H of K ⊂ L such that

dimK〈U0S〉 ≥ dimK U0 + dimK S − dimK H, (12)
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where H is the stabilizer of 〈U0S〉. Define U ′ = H ∪ U . Reusing Theorem 2.7, one
can find an intermediate subfield H ′ of K ⊂ L for which

dimK〈U ′S〉 ≥ dimK〈U ′〉+ dimK S − dimK H ′, (13)

where H ′ is the stabilizer of 〈U ′S〉. The following computations show that 〈U ′S〉 =
〈U0S〉;

〈U ′S〉 = 〈(H ∪ U)S〉 = 〈HS〉 ∪ 〈U0S〉
= 〈HS〉 ∪ 〈U0SH〉 = H〈S ∪ U0S〉
= H〈U0S〉 = 〈U0S〉. (14)

Then, the stabilizers of these two subspaces must be the same, i.e. H = H ′. Then
we would have

dimK〈U ′S〉 ≥ dimK〈U ′〉+ dimK S − dimK H. (15)

Bearing (13) and (14) in mind and using the inclusion-exclusion principle for vector
spaces we obtain:

dimK〈U0S〉 = dimK〈U ′S〉
≥ dimK〈U ′〉+ dimK S − dimK H

= dimK〈H ∪ U〉 + dimK S − dimK H

= dimK H + dimK U − dimK(H ∩ U) + dimK S − dimK H

= dimK U + dimK S − dimK(H ∩ U). (16)

Now, we have two cases for H ∩ U .

1. If H ∩U = {0}, then dimK〈S∪SU〉 > n. On the other hand since S∪SU ⊆ A,
we would have dimK A > n, contradicting our assumption dimK A = n.

2. If H ∩ U is a non-zero vector space, then H ∩ B is non-zero. It is clear that
aH ⊆ A, for some a ∈ A (Indeed, USH ⊆ A). Since A is locally matched to
B, one can find a subspace Ã of A such that Ã is A-matched to H ∩ B. Let
Ã ∩ 〈U0S〉 �= {0} and choose a non-zero element a of it. We extend {a} to a
basis {a, a2, . . . , am} for Ã. Then, there exists a basis {b, b2, . . . , bm} of H ∩ B
such that ab �∈ A and aibi �∈ A, where 2 ≤ i ≤ m, as A is locally matched to
B. But, we have ab ∈ 〈U0S〉H = 〈U0S〉 ⊆ A, which contradicts the case Ã is
A-matched to H ∩ B. So Ã ∩ U0S = {0}. Then, dimK Ã + dimK〈U0S〉 ≤ n.
This yields dimK〈H ∩ U〉 + dimK〈(U ∪ {1})S〉 ≤ n. This follows dimK〈H ∩
U〉 + dimK〈S ∪ SU〉 ≤ n. So, by (16) we have dimK U + dimK S ≤ n, which is
impossible.

Then in both cases, we extract contradictions and so A is matched to B. �

Remark 5.2 Note that in the second case above, H �= L. We justify this as follows;
assume to the contrary H = L. Then we have

[L : K] = [H : K] ≤ dimK H〈U0S〉
= dimK〈U0S〉 = dimK〈US ∪ S〉
≤ dimK A = dimK B.
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Then B = L and this contradicts 1 �∈ B.

Example 5.3 Assume that K = Q and L = Q( 35
√
2). Let A be the subspace of

those elements of Q( 5
√
2) whose trace over Q is zero. Then dimk A = 4. Let V be

the subspace of those elements of Q( 7
√
2) whose trace over Q is zero and take a four-

dimensional subspace B of V . Clearly, for every non-trivial intermediate subfield H
of K ⊆ L, [H : K] ≥ 5 and then aH � A, for any a ∈ A. Thus A is locally matched
to B. Using Theorem 5.1, A is matched to B.

Corollary 5.4 Let K ⊂ L be a field extension in which every algebraic element of
L is separable over K. If K ⊂ L has the local linear matching property, then it
possesses the linear matching property.

As we mentioned, in Theorem 5.1 the extension K ⊂ L is assumed to have all its
algebraic elements separable. Are these results valid without this hypothesis? We
conjecture that this is the case.

Conjecture 5.5 Let K ⊂ L be a field extension. Then K ⊂ L possesses the linear
matching property if it possesses the local linear matching property.

Using Theorems 5.1, we give a short proof of a special case of Theorem 2.5.

Let K ⊂ L be a field extension whose algebraic elements are separable and has
no proper intermediate field with a finite degree. If A and B are two n-dimensional
K-subspaces of L with n ≥ 1 and 1 �∈ B, clearly A is locally matched to B and then
A is matched to B. This means K ⊂ L has the linear matching property.

Remark 5.6 That the linear matching property implies the local linear matching
property is immediate from Theorem 2.5. However, If A is matched to B, in the field
extension setting sense, whether A is locally matched to B is still unsolved. This is
valid in some specific cases. For example, if there is a strong matching from A to
B, one can prove that A is locally matched to B. Further investigations along those
lines could prove to be worthwhile.
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