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Abstract

The design spectrum has been determined for eleven of the 21 graphs
with six vertices and nine edges. In this paper we completely solve the
design spectrum problem for the remaining ten graphs.

1 Introduction

Throughout this paper all graphs are simple. Let G be a graph. If the edge set
of a graph K can be partitioned into edge sets of graphs each isomorphic to G,
we say that there exists a decomposition of K into G. In the case where K is the
complete graph Kn we refer to the decomposition as a G-design of order n. The
design spectrum of G is the set of non-negative integers n for which there exists a
G-design of order n. For completeness, we remark that the empty set is a G-design of
order 0 as well as 1; these trivial cases are usually assumed henceforth. A complete
solution of the spectrum problem often seems to be difficult. However it has been
achieved in many cases, especially amongst the smaller graphs. We refer the reader
to the survey article of Adams, Bryant and Buchanan [2] and, for more up to date
results, the Web site maintained by Bryant and McCourt [4]. If the graph G has v
vertices, e edges, and if d is the greatest common divisor of the vertex degrees, then
a G-design of order n can exist only if the following conditions hold:

(i) n ≤ 1 or n ≥ v, (ii) n− 1 ≡ 0 (mod d), (iii) n(n− 1) ≡ 0 (mod 2e). (1)

Except where (i) of (1) applies, adding an isolated vertex to a graph does not affect
its design spectrum.

The problem for small graphs has attracted attention. The design spectrum has
been determined for (i) all graphs with at most five vertices, (ii) all graphs with six
vertices and at most seven edges, (iii) all graphs with six vertices and eight edges,
with two possible exceptions, and (iv) eleven of the graphs with six vertices and nine
edges. See [2] and [4] for details and references. In Table 1 we list the 21 graphs
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Table 1: The 21 graphs with 6 vertices and 9 edges

n1 G161 H9
10 {{6,2},{6,1},{5,2},{5,1},{4,2},{4,1},{3,2},{3,1},{2,1}}

n2 G156 {{4,3},{4,2},{4,1},{5,2},{5,1},{6,1},{3,2},{3,1},{2,1}}
n3 G162 H9

9 {{3,4},{3,2},{3,1},{6,2},{6,1},{5,2},{5,1},{4,1},{2,1}}
n4 G170 H9

8 {{4,3},{4,2},{4,1},{6,2},{6,1},{5,2},{5,1},{3,2},{3,1}}
n5 G164 {{4,3},{4,2},{4,1},{6,3},{6,1},{5,2},{5,1},{3,1},{2,1}}
n6 G163 H9

1 {{6,3},{6,2},{5,3},{5,1},{4,2},{4,1},{3,2},{3,1},{2,1}}
n7 G166 H9

7 {{4,2},{4,3},{4,1},{6,2},{6,1},{5,3},{5,1},{2,3},{2,1}}
n8 G158 H9

5 {{5,3},{5,2},{5,1},{4,3},{4,2},{4,1},{6,1},{3,1},{2,1}}
n9 G157 {{4,3},{4,2},{4,1},{5,3},{5,2},{6,1},{3,2},{3,1},{2,1}}
n10 G155 {{5,3},{5,2},{5,1},{4,3},{4,2},{4,1},{3,2},{3,1},{2,1}}
n11 G159 H9

6 {{5,2},{5,3},{5,1},{4,2},{4,3},{4,1},{6,1},{2,3},{2,1}}
n12 G168 {{4,5},{4,2},{4,1},{3,5},{3,2},{3,1},{6,2},{6,1},{2,1}}
n13 G173 H9

4 {{5,3},{5,2},{5,1},{4,3},{4,2},{4,1},{6,2},{6,1},{3,1}}
n14 G175 H9

2 {{6,3},{6,2},{6,1},{5,3},{5,2},{5,1},{4,3},{4,2},{4,1}}
n15 G165 {{4,3},{4,2},{4,1},{6,5},{6,1},{3,2},{3,1},{5,1},{2,1}}
n16 G169 {{4,3},{4,2},{4,1},{6,5},{6,2},{3,2},{3,1},{5,1},{2,1}}
n17 G167 {{4,6},{4,2},{4,1},{3,5},{3,2},{3,1},{6,2},{5,1},{2,1}}
n18 G160 {{5,3},{5,2},{5,1},{4,6},{4,2},{4,1},{3,2},{3,1},{2,1}}
n19 G172 {{5,3},{5,2},{5,1},{4,6},{4,2},{4,1},{3,2},{3,1},{6,1}}
n20 G171 {{5,3},{5,2},{5,1},{4,2},{4,6},{4,1},{3,6},{3,1},{2,1}}
n21 G174 H9

3 {{6,4},{6,3},{6,2},{5,3},{5,2},{5,1},{4,2},{4,1},{3,1}}

with six vertices and nine edges. The numbering in the first column corresponds to
the ordering of the nine-edge graphs within the list of all 156 graphs of six vertices
available at [14]. The second column identifies the graphs as they appear in An Atlas
of Graphs by Read and Wilson [16]. In the third column we give the identities of
the graphs as they appear in [4], where appropriate. The fourth column contains the
edge sets, where the vertices have been labelled in non-increasing order of degree.

The design spectrum problem was solved for graph n1 by Adams, Billington and
Hoffman [1], for graph n14 (K3,3) by Guy and Beineke [11], for graph n6 by Mullin,
Poplove and Zhu [15], and for graphs n3, n4, n7, n8, n11, n13 and n21 by Kang, Zhao
and Ma [12]. The necessary conditions (1) are sufficient except that there is no design
of order 9 for n1, n3, n4, n8, n11, n13, and there is no design of order 10 for n14. See
also [4]. Graph n10 actually represents a K5 with an edge removed plus an isolated
vertex, and its spectrum is the same as that of its 5-vertex component ([6, 9, 13]).
We now state our results.

Theorem 1.1 Designs of order n exist for graphs n2, n5, n9, n12, n16, n17, n19 and
n20 if and only if n ≡ 0, 1 (mod 9) and n 6= 9.

Theorem 1.2 Designs of order n exist for graph n18 if and only if n ≡ 0, 1 (mod 9)
and n 6= 9, 10.
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Figure 1: Graphs with 6 vertices and 9 edges
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Theorem 1.3 Designs of order n exist for graph n15 if and only if n ≡ 0, 1 (mod 9)
and n 6= 9, 10.

With these results, the design spectrum for graphs with six vertices and nine
edges is completely solved.

Theorems 1.1 and 1.2 are proved in Section 4, and Theorem 1.3 in Section 5. For
our computations and in the presentation of our results we represent the labelled
graph ni by a subscripted ordered 6-tuple (z1, z2, . . . , z6)i, where z1 = 1, z2 = 2,
. . . , z6 = 6 give the edge sets in Table 1 and the illustrations in Figure 1. For a
graph G with 9 edges, the numbers of occurrences of G in a decomposition into
G of the complete graph Kn, the complete r-partite graph Knr and the complete
(r + 1)-partite graph Knrm1 are respectively

n(n− 1)

18
,

n2r(r − 1)

18
and

nr(n(r − 1) + 2m)

18
.

2 Non-existence results

Proposition 2.1 A design of order 9 does not exist for graphs n2, n5, n9, n12, n15,
n16, n17, n18, n19 and n20.

Proof These results are easily established by complete computer searches. However,
it might be of interest to provide alternative proofs for some of the graphs. The
complete graph K9 is 8-regular and has 36 edges; so a design of order 9 consists of
4 graphs. In the following proofs we attempt to label the graphs of the design from
the set {0, 1, . . . , 8} such that the edges of the four graphs partition the edges of a
K9 whose vertices are labelled with the same set.

For graphs n5 and n15, arrange the vertices so that they have degrees (5, 3, 3, 3, 2,
2) in that order. Suppose there are a labels attached to vertices of degrees {5, 3},
b labels to vertices of degrees {3, 3, 2} and c labels to vertices of degrees {2, 2, 2, 2},
exhausting all partitions of 8 into elements from {2, 3, 5}. Thus a = 4, a + 2b = 12,
b + 4c = 8 and hence b = 4, c = 1. So, by symmetry and without loss of generality,
we can label each graph (∗, ∗, ∗, ∗, ∗, 8), leaving labels 0, 1, . . . , 7 for the remaining
vertices, which then form a decomposition of K8 into a 5-vertex, 7-edge graph. The
graph is identified in [2] as G19 in the case of n5, or G16 in the case of n15. But there
is no G19 or G16 design of order 8, [2].

Consider the graphs n12, n16 and n17. Arrange the vertices of these graphs so that
they have degrees (3, 3, 4, 4, 2, 2) in that order. Suppose there are a labels attached to
vertices of degrees {4, 4}, b labels to vertices of degrees {4, 2, 2}, c labels to vertices
of degrees {3, 3, 2} and d labels to vertices of degrees {2, 2, 2, 2}, accounting for all
partitions of 8 into elements from {2, 3, 4}. Thus 2a + b = 2c = 2b + c + 4d = 8
and hence c = 4. We assign labels to the degree 3 vertices from {0, 1, 2, 3}. For n16,
observe that the vertices of degree 3 are adjacent. So without loss of generality we
label the vertices (0, 1, ∗, ∗, ∗, ∗), (0, 2, ∗, ∗, ∗, ∗), (1, 3, ∗, ∗, ∗, ∗), (2, 3, ∗, ∗, ∗, ∗). Now
there is no way to create pair {0, 3}. For n12 and n17, observe that the vertices
of degree 3 are not adjacent, nor are the vertices of degree 2. So without loss of
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generality we label the vertices either (0, 1, ∗, ∗, ∗, ∗), (0, 1, ∗, ∗, ∗, ∗), (2, 3, ∗, ∗, ∗, ∗),
(2, 3, ∗, ∗, ∗, ∗), or (0, 1, ∗, ∗, ∗, ∗), (0, 2, ∗, ∗, ∗, ∗), (1, 3, ∗, ∗, ∗, ∗), (2, 3, ∗, ∗, ∗, ∗). In
each case it is impossible to create each pair from {0, 1, 2, 3} exactly once.

Graph n18 has vertex degrees (4, 4, 3, 3, 3, 1). Suppose there are a labels attached
to vertices of degrees {4, 4}, b labels attached to vertices of degrees {4, 3, 1}, and c
labels attached to vertices of degrees {3, 3, 1, 1}, accounting for all partitions of 8
into at most four elements from {1, 3, 4}. Considering vertices of degrees 1 and 3,
we have 4 = b + 2c = 12, a contradiction.

Graphs n19 and n20 have vertex degrees (4, 3, 3, 3, 3, 2). Suppose there are a
labels attached to vertices of degrees {4, 4}, b labels attached to vertices of degrees
{4, 2, 2}, c labels attached to vertices of degrees {3, 3, 2} and d labels attached to
vertices of degrees {2, 2, 2, 2}. Considering vertices of degrees 2, 3 and 4, we obtain
2b + c + 4d = 4, 2c = 16, 2a + b = 4, which is impossible.

For the two remaining graphs, n2 and n9, we rely on the computer searches. �

Proposition 2.2 A design of order 10 does not exist for graphs n15 and n18.

Proof Five copies of the graph are required. In the following proofs we attempt to
label the graphs of the design from the set {0, 1, . . . , 9} such that the edges of the
five graphs partition the edges of a K10 whose vertices are labelled with the same
set.

In n15 the vertices of degrees 5 and 2 form a triangle. Each of the five labels
that must be attached to vertices of degree 5 must also be attached to two vertices
of degree 2. So the triangles would have to form a decomposition of K5, a triangle
design of order 5, which does not exist.

The vertices of n18 have degrees (4, 4, 3, 3, 3, 1). Suppose there are a labels
attached to vertices of degrees {4, 4, 1}, b labels attached to vertices of degrees
{4, 3, 1, 1}, c labels attached to vertices of degrees {3, 3, 3}, and d labels attached to
vertices of degrees {3, 3, 1, 1, 1}. Thus a+ 2b+ 3d = 5, b+ 3c+ 2d = 15, 2a+ b = 10.
Hence a = c = 5, b = d = 0. Without loss of generality we assume labels 0, 1, 2, 3, 4
are attached to vertices of degrees 4, 4, 1, and we label the five graphs (0, 1, ∗, ∗, ∗, ∗),
(0, 2, ∗, ∗, ∗, ∗), (1, 3, ∗, ∗, ∗, ∗), (2, 4, ∗, ∗, ∗, ∗), (3, 4, ∗, ∗, ∗, ∗). However there is now
no way to create pair {0, 3}.

Alternatively, it is feasible to obtain these results by computer searches. �

Proposition 2.3 If a decomposition of Ka,b,b,b into graph n15 exists, then b2 ≡
2ab (mod 6) and b/2 ≤ a ≤ 5b/4.

Proof The number of n15 graphs in the decomposition is b(a + b)/3. A single n15

graph must span all four parts of a 4-partite graph, with one or two vertices of total
degree 5 in each of three parts and a single vertex of degree 3 in the fourth part.
Let P be the part with a vertices and suppose there are u copies of n15 with 5 edges
incident with vertices in P and v copies of n15 with 3 edges incident with vertices
in P . Then, since there are a vertices of degree 3b in P , 3ab = 5u + 3v. Also
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b(a + b)/3 = u + v. Solving gives u = b(2a− b)/2, v = b(5b− 4a)/6 from which the
asserted congruence and inequalities follow. �

A consequence of Proposition 2.3 is that there are no decompositions into n15

of the 4-partite graphs K3,3,3,3, K9,9,9,9 and K6,6,6,9. The lack of these useful decom-
positions might explain why the spectrum problem for n15 seems to be rather more
difficult than for any of the other graphs.

3 The Main Construction

We use Wilson’s construction involving group divisible designs. Recall that a K-GDD
of type gt11 . . . gtrr is an ordered triple (V,G,B) where V is a base set of cardinality
v = t1g1+ . . .+trgr, G is a partition of V into ti subsets of cardinality gi, i = 1, . . . , r,
called groups and B is a collection of subsets of cardinalities k ∈ K, called blocks,
which collectively have the property that each pair of elements from different groups
occurs in precisely one block but no pair of elements from the same group occurs at
all. A {k}-GDD is also called a k-GDD. As is well known, if there exist k− 2 MOLS
of side q, then there exists a k-GDD of type qk. So when q is a prime power there
exists a q-GDD of type qq and a (q + 1)-GDD of type qq+1 (obtained from affine and
projective planes of order q respectively).

Proposition 3.1 Suppose there exist G-designs of orders 18, 19, 27, 28, 36 and 37.
Suppose also there exist decompositions into G of K6,6,6,6 and K6,6,6,9. Then there
exist G-designs of orders 9t and 9t + 1, t ≥ 0, except possibly 9, 10, 45, 46, 54, 55,
63, 64, 108, 109, 117 and 118.

Proof There exist 4-GDDs of types 34t and 34t+1 for t ≥ 1, [3], as well as 4-GDDs
of types 34t61 for t ≥ 2 and 34t+161 for t ≥ 1, [17]; see also [5, Theorem 4.8.2].

Let e = 0 or 1. Inflate each point of the GDD by a factor of 6, thus expanding
the blocks to complete 4-partite graphs K6,6,6,6. If e = 1, add an extra point, ∞.
Overlay the inflated groups, plus∞ when e = 1, with K18+e or K36+e as appropriate.
This gives designs of orders

72t + e for t ≥ 1 (using the 4-GDD of type 34t),
72t + 18 + e for t ≥ 1 (using the 4-GDD of type 34t+1),
72t + 36 + e for t ≥ 2 (using the 4-GDD of type 34t61),
72t + 54 + e for t ≥ 1 (using the 4-GDD of type 34t+161),

representing orders 18t + e, t ≥ 0, except 18 + e, 36 + e, 54 + e, 108 + e.

For the remaining residue classes modulo 72, inflate the points in one group of
size 3 by a factor of 9 and all other points by a factor of 6, thus expanding the blocks
to complete 4-partite graphs K6,6,6,6 and K6,6,6,9. If e = 1, add an extra point, ∞.
Overlay the inflated groups, plus ∞ when e = 1, with K18+e or K27+e or K36+e as
appropriate. This gives designs of orders
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72t + 9 + e for t ≥ 1 (using the 4-GDD of type 34t),
72t + 27 + e for t ≥ 1 (using the 4-GDD of type 34t+1),
72t + 45 + e for t ≥ 2 (using the 4-GDD of type 34t61),
72t + 63 + e for t ≥ 1 (using the 4-GDD of type 34t+161),

representing orders 18t+ 9 + e, t ≥ 0, except 9 + e, 27 + e, 45 + e, 63 + e, 117 + e. �

4 Theorems 1.1 and 1.2

Lemma 4.1 Designs of order 10 exist for graphs n2, n5, n9, n12, n16, n17, n19 and
n20.
Designs of orders 18, 19, 27, 28, 36, 37, 45, 46 and 63 exist for each of graphs n2,
n5, n9, n12, n16, n17, n18, n19 and n20.
Designs of orders 54 and 55 exist for each of graphs n2, n9, n16 and n18.
A design of order 64 exists for graph n18.

Proof The decompositions are presented in Appendix A. �

Lemma 4.2 There exist decompositions into n2, n5, n9, n12, n16, n17, n18, n19 and
n20 of the complete 4-partite graphs K6,6,6,6, K9,9,9,9 and K6,6,6,9.
There exist decompositions into n5, n12, n17, n19 and n20 of the complete 3-partite
graph K6,6,6.
There exist decompositions into n2, n5, n9, n16, n17, n19 and n20 of the complete
4-partite graph K3,3,3,3.
There exists a decomposition into n12 of the complete 4-partite graph K6,6,6,3.
There exist decompositions into n12 and n18 of the complete 6-partite graph
K18,18,18,18.18,27.

Proof The decompositions are presented in Appendix A. �

Proof of Theorems 1.1 and 1.2
The graphs under consideration consist of n2, n5, n9, n12, n16, n17, n18, n19 and n20.
By Lemmas 4.1 and 4.2, there exist for each of these graphs designs of orders 18, 19,
27, 28, 36 and 37 as well as decompositions of K6,6,6,6 and K6,6,6,9. So by Propositions
2.1, 2.2 and 3.1 it suffices to construct designs of orders 10, 45, 46, 54, 55, 63, 64,
108, 109, 117 and 118, with the exception of order 10 for graph n18. Those designs
that are not provided directly by Lemma 4.1 are constructed as follows.

Orders 54 and 55 for graphs n5, n12, n17, n19 and n20. Inflate a 3-GDD of type
33 by a factor of 6 so that the blocks become K6,6,6 graphs. For order 55 add an
extra point, ∞. Overlay each group with K18, or overlay each group plus ∞ with
K19. Since decompositions of K18, K19 and K6,6,6 exist by Lemmas 4.1 and 4.2, the
construction yields designs of orders 54 and 55.

Order 64 for graphs n2, n5, n9, n16, n17, n19 and n20. There exists a 4-GDD of
type 3561, [17]; see also [7] and [5, Table 4.10]. Inflate each point by a factor of 3
so that the blocks become K3,3,3,3 graphs. Add an extra point, ∞. Overlay each
group plus ∞ with K10 or K19. Since decompositions of K10, K19 and K3,3,3,3 exist
by Lemmas 4.1 and 4.2, the construction yields a design of order 64.
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Order 64 for graph n12. Take a 4-GDD of type 34. Inflate the points in one
group by a factor of 3 and all other points by 6, so that the blocks become K6,6,6,3

graphs. Add an extra point, ∞. Overlay each group plus ∞ with K10 or K19. Since
decompositions into n12 of K10, K19 and K6,6,6,3 exist by Lemmas 4.1 and 4.2, the
construction yields a design of order 64.

Orders 108 and 109 for all nine graphs. Inflate a 4-GDD of type 34 by a factor
of 9 so that the blocks become K9,9,9,9 graphs. For order 109, add an extra point.
Overlay the groups with K27 or K28. Decompositions of K27, K28 and K9,9,9,9 exist
by Lemmas 4.1 and 4.2.

Orders 117 and 118 for graphs n2, n5, n9, n16, n17, n19 and n20. Take a 4-GDD
of type 6591, [10]; see also [5, Theorem 4.9.4]. Inflate the points by a factor of 3 so
that the blocks become K3,3,3,3 graphs. For order 118, add an extra point, ∞. For
117, overlay each group with K18 or K27. For 118, overlay each group plus ∞ with
K19 or K28. Decompositions of K18, K19, K27, K28 and K3,3,3,3 exist by Lemmas 4.1
and 4.2.

Orders 117 and 118 for graphs n12 and n18. These are constructed from the trivial
6-GDD of type 16, where the points of one group are inflated by 27 and all other
points by 18 so that the blocks become 6-partite graphs K18,18,18,18,18,27. Overlay the
groups with K18 and K27 for order 117. Overlay the groups plus an extra point with
K19 and K28 for order 118. Decompositions of K18, K19, K27, K28 and K18,18,18,18,18,27

exist by Lemmas 4.1 and 4.2. �

5 Theorem 1.3

Lemma 5.1 Designs of orders 18, 19, 27, 28, 36, 37, 45, 46, 54, 55, 63, 64, 81 and
82 exist for graph n15.

Proof The decompositions are presented in Appendix A. �

Lemma 5.2 There exist decompositions into n15 of the complete multipartite graphs
K6,6,6,6, K6,6,6,3, K3,3,3,3,3, K18,18,18,18,27, K18,18,18,18,18,27 and K3,3,3,3,3,3,3.

Proof The decompositions are presented in Appendix A. �

Proof of Theorem 1.3
There exist 4-GDDs of types 6t for t ≥ 5, 6t31 for t ≥ 4, 6t91 for t ≥ 4 and 6t151

for t ≥ 6, [10, 18]; see also [5, Theorem 4.9.4]. Inflate each point in the groups of
sizes 9 and 15 by a factor of 3 and all other points by 6 thus expanding the blocks
to complete 4-partite graphs K6,6,6,6 and K6,6,6,3 for which decompositions exist by
Lemma 5.2.

Let e = 0 or 1. Take the inflated 4-GDDs of types 6t, 6t31, 6t91 and 6t151. Add
an extra point, ∞, if e = 1. Overlay the groups, together with ∞ if e = 1, with
K18+e K27+e, K36+e or K45+e as appropriate, noting that these decompositions are
available by Lemma 5.1. This construction gives designs of orders
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36t + e for t ≥ 5 (using the 4-GDD of type 6t),
36t + 45 + e for t ≥ 6 (using the 4-GDD of type 6t151),
36t + 18 + e for t ≥ 4 (using the 4-GDD of type 6t31),
36t + 27 + e for t ≥ 4 (using the 4-GDD of type 6t91),

representing orders 9t+e for e = 0, 1 and t ≥ 0 except {36, 72, 108, 144}, {9, 45, 81,
117, 153, 189, 225}, {18, 54, 90, 126}, {27, 63, 99, 135}, {37, 73, 109, 145}, {10, 46,
82, 118, 154, 190, 226}, {19, 55, 91, 127} and {28, 64, 100, 136} in residue classes 0,
9, 18, 27, 1, 10, 19 and 28 modulo 36 respectively. The missing values are handled
as follows.

Orders 9 and 10 are excluded by Proposition 2.1, and orders 18, 19, 27, 28, 36,
37, 45, 46, 54, 55, 63, 64, 81 and 82 are given by Lemma 5.1.

Below, we give only brief details by merely specifying the ingredients for Wilson’s
construction, namely the complete graphs, the complete multipartite graphs, the
group divisible designs and, unless it is clear, how the points of the GDDs are inflated.
The decompositions of the graphs into n15 exist by Lemmas 5.1 and 5.2.

Order 72 is constructed from K18, K6,6,6,6 and a 4-GDD of type 34.

Order 108 is constructed from K18, K6,6,6,6 , K6,6,6,3 and a 4-GDD of type 3561.
Inflate the points in the group of size 6 by 3, all others by 6.

Order 144 is constructed from K18, K6,6,6,6 and a 4-GDD of type 38.

Order 117 is constructed from K18, K27, K18,18,18,18,18,27 and a 6-GDD of type 16.

Order 153 is constructed from K18, K27, K6,6,6,6, K6,6,6,3 and a 4-GDD of type
3791. Inflate the points in the group of size 9 by 3, all others by 6.

Order 189 is constructed from K27, K3,3,3,3,3,3,3 and a 7-GDD of type 97 created
from an affine plane of order 9 by removing two groups.

Order 225 is constructed from K45, K3,3,3,3,3 and a 5-GDD of type 155 ([8]; see
also [5, Theorem 4.16]).

Order 90 is constructed from K18, K6,6,6,6 and a 4-GDD of type 35.

Order 126 is constructed from K18, K36, K6,6,6,6 and a 4-GDD of type 3561.

Order 99 is constructed from K18, K27, K18,18,18,18,27 and a 5-GDD of type 15.

Order 135 is constructed from K27, K3,3,3,3,3 and a 5-GDD of type 95 created from
an affine plane of order 9 by removing four groups.

Order n, n = 73, 109, 145, 118, 154, 190, 226, 91, 127, 100, 136, is constructed
in a similar manner to order n− 1. In each case we add an extra point and use the
appropriate decompositions of K9t+1. �

6 Concluding Remarks

We wish to thank a referee for alerting us to the relatively recent paper of Wei and
Ge, [18], a result of which asserting the existence of a 4-GDD of type 67151 allowed
a small improvement to our proof of Theorem 1.3.



A.D. FORBES AND T.S. GRIGGS/AUSTRALAS. J. COMBIN. 70 (1) (2018), 52–74 61

With four exceptions all decompositions in Appendix A were obtained by a special
computer program written in the C language. The designs where existence could not
be decided by this program are of orders 18, 54, 64 and 81 for graph n15. In these
cases we had to adopt alternative methods.

We are of the opinion that the existence of an n15 design of order 18 is surprising.
It was obtained from the partial Steiner triple system of order 18 with 17 blocks,

B = {{0, 1, 2}, {0, 3, 4}, {1, 3, 5}, {2, 3, 6}, {1, 4, 7}, {2, 4, 8},
{2, 5, 9}, {4, 5, 10}, {6, 8, 10}, {7, 8, 9}, {0, 9, 10}, {11, 7, 10},
{12, 6, 9}, {13, 3, 7}, {14, 1, 6}, {15, 0, 8}, {16, 17, 5}}.

The leave of B, a graph with 18 vertices and 102 edges, admits a decomposition into
17 tetrahedra:

D = {{5, 6, 7, 15}, {2, 7, 12, 16}, {0, 7, 14, 17}, {0, 6, 13, 16},
{0, 5, 11, 12}, {5, 8, 13, 14}, {4, 6, 11, 17}, {2, 11, 14, 15},
{2, 10, 13, 17}, {4, 9, 14, 16}, {1, 9, 11, 13}, {3, 9, 15, 17},
{4, 12, 13, 15}, {3, 8, 11, 16}, {1, 8, 12, 17}, {3, 10, 12, 14}, {1, 10, 15, 16}}.

We conjecture that B is up to isomorphism the only PSTS(18) with this property.
To construct an n15 design of order 18 it suffices to pair off the triples in B with the
quadruples in D that such that each pair {B,D}, B ∈ B, D ∈ D, has non-empty
intersection.

In a similar manner we obtained a decomposition of K64 into n15 starting with a
suitable PSTS(64) with 224 blocks, and of K81 starting from a PSTS(81) with 360
blocks. In each case we were able to exploit a non-trivial automorphism.

For the decomposition of K54, we start with a partial Steiner system of order 54,
PS(2, 4, 54), with 153 blocks and where no point has even degree. Denote the block
set of this system by S. Then S is obtained by expanding

{{16, 38, 1, 32}, {49, 34, 9, 1}, {45, 30, 53, 47}, {13, 0, 32, 42}, {39, 46, 32, 6},
{18, 42, 46, 49}, {27, 3, 6, 1}, {24, 43, 32, 44}, {25, 3, 46, 37}, {52, 11, 28, 26},
{27, 15, 32, 2}, {16, 34, 51, 3}, {10, 29, 37, 7}, {2, 3, 17, 29}, {26, 30, 15, 19},
{48, 5, 16, 0}, {37, 47, 27, 11}}

to 153 blocks by the mapping x 7→ x + 6 (mod 54). We extend S by six blocks to
S∗ = S ∪ C, where C is the configuration,

C = {{2, 7, 23, 20}, {24, 23, 25, 42}, {20, 25, 41, 38},
{42, 41, 43, 6}, {38, 43, 5, 2}, {6, 5, 7, 24}}.

The points of C are chosen so that no pair of C is present in S, and it is clear that S∗

also has no points of even degree. The leave of S∗ admits a decomposition into 159
triangles and the n15 design of order 54 is constructed from an appropriate complete
matching of the blocks of S∗ with these triangles.



A.D. FORBES AND T.S. GRIGGS/AUSTRALAS. J. COMBIN. 70 (1) (2018), 52–74 62

Finally, observe that we have also solved the design spectrum problem for K4∪K3,
the disjoint union of a tetrahedron and a triangle. The spectrum is the same as
that of n15. As alternatives to complete computer searches, the proofs for n15 in
Propositions 2.1 and 2.2 are easily adapted for K4∪K3 to prove that designs of orders
9 and 10 do not exist. For order 9, denote by A and B the sets of labels attached to
vertices of degrees {3, 3, 2} and {2, 2, 2, 2} respectively. Then |A| = 8 and |B| = 1.
By removing the B label and all eight AB edges, we find that we require a K4 ∪K2

design of order 8, which does not exist, [2]. For order 10, denote by A and B the
sets of labels that appear on vertices of degrees {3, 3, 3} and {3, 2, 2, 2} respectively.
Then |A| = |B| = 5 and hence the B labels would need to form a triangle design
of order 5, which does not exist. For the rest of the spectrum, the proof follows
that of Theorem 1.3, and one way of obtaining the required decompositions into
K4 ∪ K3 from corresponding decompositions into n15 is as follows: (i) if necessary,
obtain the full set of graphs by expanding the orbits, (ii) disassemble each graph
into a tetrahedron and a triangle, (iii) find a complete matching of pairs of disjoint
tetrahedra and triangles, and (iv) assemble the pairs to form graphs K4 ∪K3.

A The Decompositions

Proof of Lemma 4.1
K10 Let the vertex set be Z10. The decompositions consist of

(0, 1, 2, 7, 3, 4)2, (0, 1, 3, 5, 2, 6)5, (0, 1, 2, 5, 9, 4)9, (0, 1, 2, 3, 6, 5)12,
(0, 1, 2, 5, 6, 3)16, (0, 1, 3, 2, 6, 7)17, (0, 1, 2, 9, 7, 6)20

under the action of the mapping x 7→ x + 2 (mod 10), and
(0, 1, 2, 3, 4, 5)19, (8, 2, 5, 6, 7, 0)19, (3, 9, 4, 2, 7, 8)19, (5, 8, 1, 4, 9, 6)19,
(6, 0, 1, 9, 7, 3)19.

K18 Let the vertex set be Z17 ∪ {∞}. The decompositions consist of
(0, 1, 3, 11, 5,∞)2, (0, 1, 3, 8, 7,∞)9, (0, 1, 3, 5, 11,∞)18

under the action of the mapping x 7→ x + 1 (mod 17), ∞ 7→ ∞. For the other six
graphs, with vertex set Z18 the decompositions consist of

(14, 12, 1, 16, 2, 4)5, (2, 0, 7, 4, 8, 10)5, (8, 6, 13, 10, 14, 16)5,
(16, 2, 6, 11, 9, 7)5, (4, 8, 12, 17, 15, 13)5, (10, 14, 0, 5, 3, 1)5,
(10, 15, 11, 12, 9, 4)5, (16, 3, 17, 0, 15, 10)5, (4, 9, 5, 6, 3, 16)5,
(0, 12, 11, 7, 9, 14)5, (6, 0, 17, 13, 15, 2)5, (12, 6, 5, 1, 3, 8)5,
(8, 3, 1, 7, 11, 9)5, (3, 1, 5, 2, 17, 13)5, (5, 7, 11, 17, 9, 15)5,
(13, 11, 15, 1, 9, 2)5, (14, 7, 17, 15, 13, 9)5,
(13, 6, 10, 14, 16, 15)12, (1, 12, 16, 2, 4, 3)12, (7, 0, 4, 8, 10, 9)12,
(15, 0, 14, 3, 8, 10)12, (3, 6, 2, 9, 14, 16)12, (9, 12, 8, 15, 2, 4)12,
(9, 16, 2, 5, 13, 11)12, (15, 4, 8, 11, 1, 17)12, (3, 10, 14, 17, 7, 5)12,
(3, 13, 7, 11, 6, 4)12, (9, 1, 13, 17, 12, 10)12, (15, 7, 1, 5, 0, 16)12,
(4, 1, 5, 6, 12, 14)12, (5, 17, 2, 8, 11, 6)12, (7, 10, 2, 11, 0, 12)12,
(11, 14, 12, 17, 0, 5)12, (13, 16, 0, 8, 6, 17)12,
(5, 12, 7, 6, 1, 2)16, (11, 0, 13, 12, 7, 8)16, (17, 6, 1, 0, 13, 14)16,
(7, 13, 9, 2, 10, 6)16, (13, 1, 15, 8, 16, 12)16, (1, 7, 3, 14, 4, 0)16,
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(10, 13, 3, 5, 9, 4)16, (16, 1, 9, 11, 15, 10)16, (4, 7, 15, 17, 3, 16)16,
(9, 12, 3, 8, 5, 15)16, (15, 0, 9, 14, 11, 3)16, (3, 6, 15, 2, 17, 9)16,
(10, 0, 16, 2, 8, 5)16, (2, 11, 8, 14, 5, 4)16, (4, 12, 10, 14, 2, 17)16,
(5, 17, 14, 16, 11, 10)16, (6, 8, 4, 16, 11, 17)16,
(4, 9, 10, 11, 14, 2)17, (10, 15, 16, 17, 2, 8)17, (16, 3, 4, 5, 8, 14)17,
(3, 7, 12, 9, 2, 6)17, (9, 13, 0, 15, 8, 12)17, (15, 1, 6, 3, 14, 0)17,
(3, 10, 6, 8, 13, 7)17, (9, 16, 12, 14, 1, 13)17, (15, 4, 0, 2, 7, 1)17,
(2, 14, 0, 7, 5, 11)17, (8, 2, 6, 13, 11, 17)17, (14, 8, 12, 1, 17, 5)17,
(5, 12, 11, 4, 15, 6)17, (6, 17, 0, 5, 16, 9)17, (7, 13, 4, 5, 17, 10)17,
(10, 11, 0, 1, 12, 13)17, (16, 17, 1, 11, 7, 3)17,
(10, 9, 16, 12, 11, 7)19, (16, 15, 4, 0, 17, 13)19, (4, 3, 10, 6, 5, 1)19,
(10, 4, 9, 2, 13, 0)19, (16, 10, 15, 8, 1, 6)19, (4, 16, 3, 14, 7, 12)19,
(9, 6, 5, 0, 7, 8)19, (15, 12, 11, 6, 13, 14)19, (3, 0, 17, 12, 1, 2)19,
(3, 7, 15, 0, 8, 11)19, (9, 13, 3, 6, 14, 17)19, (15, 1, 9, 12, 2, 5)19,
(11, 0, 5, 4, 14, 8)19, (1, 17, 5, 7, 13, 11)19, (8, 16, 2, 12, 5, 17)19,
(14, 13, 2, 8, 7, 1)19, (17, 6, 2, 10, 11, 14)19,
(2, 14, 10, 15, 6, 8)20, (8, 2, 16, 3, 12, 14)20, (14, 8, 4, 9, 0, 2)20,
(7, 0, 3, 9, 10, 5)20, (13, 6, 9, 15, 16, 11)20, (1, 12, 15, 3, 4, 17)20,
(10, 4, 15, 13, 5, 3)20, (16, 10, 3, 1, 11, 9)20, (4, 16, 9, 7, 17, 15)20,
(4, 8, 3, 11, 6, 0)20, (10, 14, 9, 17, 12, 6)20, (16, 2, 15, 5, 0, 12)20,
(11, 2, 5, 1, 7, 8)20, (0, 5, 12, 6, 13, 11)20, (1, 5, 13, 17, 14, 2)20,
(7, 6, 17, 1, 12, 0)20, (13, 8, 11, 7, 17, 14)20.

K19 Let the vertex set be Z19. The decompositions consist of
(0, 1, 3, 7, 9, 5)2, (0, 1, 2, 5, 7, 10)5, (0, 1, 3, 7, 11, 5)9,
(0, 1, 3, 5, 13, 7)12, (0, 1, 3, 8, 4, 10)16, (0, 1, 3, 5, 9, 12)17,
(0, 1, 3, 5, 9, 12)18, (0, 1, 2, 4, 8, 9)19, (0, 1, 2, 4, 7, 12)20

under the action of the mapping x 7→ x + 1 (mod 19).
K27 Let the vertex set be Z26 ∪ {∞}. The decompositions consist of

(0, 1, 2, 5, 4, 6)2, (0, 7, 13, 18, 16, 12)2, (1, 8, 17, 19,∞, 13)2,
(0, 1, 2, 5, 4, 8)5, (0, 7, 9, 14, 13, 17)5, (1, 12, 13, 2,∞, 3)5,
(0, 1, 2, 5, 6, 7)9, (0, 6, 15, 18,∞, 10)9, (0, 11, 13, 19, 1, 17)9,
(0, 1, 2, 3, 6, 5)12, (0, 6, 13, 14, 4, 21)12, (0, 11, 17, 19, 3,∞)12,
(11, 21, 22, 17,∞, 2)16, (0, 1, 3, 16, 2, 9)16, (0, 5, 14, 22, 20, 17)16,
(0, 18, 2, 9, 21,∞)17, (0, 1, 3, 4, 14, 11)17, (0, 25, 5, 13, 20, 17)17,
(0, 1, 2, 3, 6, 7)19, (0, 1, 8, 12, 17, 23)19, (1, 6, 7, 22, 19,∞)19,
(20, 12, 4, 19, 21,∞)20, (0, 2, 3, 6, 13, 21)20, (1, 3, 22, 7, 8, 19)20

under the action of the mapping x 7→ x + 2 (mod 26), ∞ 7→ ∞. For the remaining
graph, the lack of a vertex of degree 2 makes the previous method impossible. With
vertex set Z27 the decomposition consists of

(3, 2, 19, 11, 7, 13)18, (6, 5, 22, 14, 10, 16)18, (9, 8, 25, 17, 13, 19)18,
(2, 23, 18, 0, 16, 14)18, (5, 26, 21, 3, 19, 17)18, (8, 2, 24, 6, 22, 20)18,
(17, 1, 20, 5, 0, 4)18, (20, 4, 23, 8, 3, 7)18, (23, 7, 26, 11, 6, 10)18,
(0, 22, 3, 12, 9, 19)18, (3, 25, 6, 15, 12, 22)18, (0, 24, 10, 6, 19, 18)18,
(1, 25, 4, 7, 22, 0)18
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under the action of the mapping x 7→ x + 9 (mod 27).
K28 Let the vertex set be Z28. The decompositions consist of

(0, 23, 3, 24, 1, 19)2, (14, 11, 18, 13, 24, 1)2, (11, 10, 0, 22, 2, 6)2,
(19, 1, 7, 5, 9, 23)2, (1, 10, 8, 24, 13, 4)2, (2, 24, 4, 13, 9, 15)2,
(0, 9, 5, 13, 22, 3)5, (25, 0, 11, 15, 4, 26)5, (2, 25, 7, 18, 13, 12)5,
(9, 3, 18, 15, 11, 19)5, (12, 0, 26, 1, 11, 19)5, (0, 6, 10, 2, 8, 19)5,
(0, 6, 5, 14, 1, 2)9, (4, 17, 25, 15, 3, 23)9, (22, 0, 9, 3, 26, 12)9,
(8, 24, 4, 3, 21, 9)9, (9, 6, 19, 2, 18, 21)9, (3, 7, 10, 15, 20, 1)9,
(0, 2, 15, 22, 26, 17)12, (17, 21, 10, 19, 24, 8)12, (21, 16, 13, 20, 3, 26)12,
(26, 7, 1, 3, 10, 25)12, (2, 24, 14, 27, 15, 4)12, (0, 7, 21, 27, 5, 16)12,
(0, 8, 7, 21, 22, 4)16, (0, 12, 10, 17, 11, 21)16, (23, 22, 3, 8, 10, 14)16,
(19, 0, 2, 25, 7, 3)16, (7, 14, 5, 2, 1, 25)16, (1, 14, 11, 13, 9, 8)16,
(0, 15, 13, 9, 14, 7)17, (24, 3, 2, 20, 4, 15)17, (12, 0, 1, 5, 15, 2)17,
(19, 1, 6, 9, 22, 25)17, (11, 6, 15, 12, 22, 2)17, (1, 14, 4, 22, 23, 5)17,
(0, 19, 3, 23, 5, 12)18, (19, 13, 6, 25, 18, 0)18, (21, 25, 10, 4, 12, 11)18,
(24, 4, 14, 8, 10, 23)18, (2, 7, 10, 5, 8, 4)18, (2, 11, 1, 19, 21, 26)18,
(0, 8, 12, 6, 17, 25)19, (1, 0, 22, 18, 8, 19)19, (15, 24, 11, 7, 9, 10)19,
(2, 5, 15, 10, 17, 14)19, (17, 12, 13, 3, 14, 9)19, (2, 16, 11, 19, 23, 20)19,
(0, 1, 12, 18, 5, 11)20, (16, 11, 8, 19, 14, 17)20, (19, 2, 5, 7, 15, 6)20,
(25, 22, 15, 3, 17, 24)20, (4, 15, 14, 0, 21, 2)20, (0, 13, 14, 25, 22, 10)20,

under the action of the mapping x 7→ x + 4 (mod 28).
K36 Let the vertex set be Z35 ∪ {∞}. The decompositions consist of

(0, 1, 3, 7, 11, 16)2, (0, 8, 17, 22, 20,∞)2,
(0, 1, 3, 7, 12, 13)9, (0, 10, 15, 27, 29,∞)9,
(0, 1, 3, 5, 11, 19)18, (0, 6, 15, 18, 22,∞)18

under the action of the mapping x 7→ x + 1 (mod 35), ∞ 7→ ∞, and
(∞, 1, 4, 20, 27, 8)5, (4, 24, 31, 25, 12, 3)5, (21, 7, 22, 3, 2, 10)5,
(24, 29, 18, 7, 3, 30)5, (9, 20, 28, 0, 7, 26)5, (2, 34, 30, 27, 6, 8)5,
(30, 0, 34, 31, 33, 21)5, (33, 18, 32, 21, 28, 12)5, (0, 8, 27, 25, 17, 21)5,
(1, 31, 34, 23, 11, 24)5,
(0, 26,∞, 18, 3, 23)12, (10, 22, 12, 4, 23, 25)12, (23, 30, 25, 20, 6, 9)12,
(28, 11, 21, 15, 22, 29)12, (8, 14, 3, 12, 1, 7)12, (0, 8, 17, 34, 12, 4)12,
(3, 16, 28, 22, 7, 32)12, (15, 21, 24, 26, 4, 7)12, (1, 9, 32, 34, 10, 16)12,
(2, 34, 11, 29, 10,∞)12,
(9, 22, 18, 28,∞, 33)16, (31, 5,∞, 7, 32, 1)16, (7, 9, 26, 17, 19, 33)16,
(7, 2, 15, 30, 1, 23)16, (33, 17, 32, 0, 26, 14)16, (21, 23, 0, 6, 19, 5)16,
(2, 9, 16, 19, 28, 29)16, (28, 16, 8, 15, 34, 21)16, (0, 9, 4, 10, 8, 13)16,
(0, 16, 5, 24, 3, 6)16,
(31, 18,∞, 33, 19, 14)17, (31, 25, 14, 2, 34, 19)17, (34, 32, 1, 2, 22, 3)17,
(17, 7, 26, 0, 16, 14)17, (1, 31, 28, 0, 15, 11)17, (18, 10, 1, 0, 9, 30)17,
(15, 17, 13, 3, 18, 9)17, (18, 28, 4, 2, 11, 17)17, (0, 9, 34, 22, 4, 25)17,
(0, 16, 27, 28,∞, 29)17,
(23, 28, 7, 21, 20,∞)19, (31,∞, 9, 17, 25, 16)19, (12, 23, 22, 19, 27, 24)19,
(28, 23, 3, 9, 5, 0)19, (3, 20, 6, 32, 25, 16)19, (9, 4, 15, 29, 5, 6)19,
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(0, 9, 11, 17, 7, 15)19, (19, 34, 26, 8, 2, 32)19, (1, 2, 11, 10, 28, 7)19,
(4, 26, 21, 3, 25, 33)19,
(17, 26, 8, 0, 16,∞)20, (16,∞, 24, 27, 4, 11)20, (10, 14, 5, 9, 24, 27)20,
(17, 21, 32, 14, 4, 33)20, (31, 17, 1, 10, 13, 0)20, (1, 21, 30, 5, 23, 32)20,
(26, 33, 32, 15, 24, 9)20, (3, 33, 32, 4, 22, 2)20, (0, 8, 32, 33, 20, 18)20,
(0, 13, 3, 9, 24, 6)20

under the action of the mapping x 7→ x + 5 (mod 35), ∞ 7→ ∞.
K37 Let the vertex set be Z37. The decompositions consist of

(0, 1, 3, 7, 10, 12)2, (0, 5, 16, 24, 20, 14)2,
(0, 1, 2, 5, 7, 13)5, (0, 8, 9, 25, 22, 19)5,
(0, 1, 3, 7, 11, 13)9, (0, 9, 14, 25, 29, 18)9,
(0, 1, 3, 5, 11, 10)12, (0, 7, 18, 21, 6, 20)12,
(0, 1, 3, 7, 8, 18)16, (0, 9, 14, 25, 13, 28)16,
(0, 1, 3, 5, 9, 16)17, (0, 7, 23, 19, 10, 27)17,
(0, 1, 3, 5, 10, 18)18, (0, 6, 14, 21, 25, 1)18,
(0, 1, 2, 4, 7, 13)19, (0, 2, 14, 21, 22, 10)19,
(0, 1, 2, 4, 7, 13)20, (0, 8, 14, 20, 27, 35)20

under the action of the mapping x 7→ x + 1 (mod 37).
K45 Let the vertex set be Z44 ∪ {∞}. The decompositions consist of

(0,∞, 9, 18, 39, 17)2, (7, 29, 16, 2, 19, 22)2, (9, 38, 4, 12, 11, 2)2,
(5, 17, 3, 31, 1, 6)2, (37, 17, 6, 14, 16, 31)2, (13, 32, 21, 31, 20, 19)2,
(10, 0, 19, 4, 29, 38)2, (42, 20, 40, 43, 18, 37)2, (40, 3, 7, 10, 27, 12)2,
(2, 35, 14, 27, 8, 6)2,
(11, 16, 14, 7,∞, 4)5, (22, 28, 20, 16, 21, 5)5, (42, 24, 37, 16, 2, 18)5,
(31, 32, 16, 41, 8, 43)5, (21, 16, 1, 17, 3, 13)5, (36, 20, 26, 33, 39, 34)5,
(8, 25, 19, 38, 22, 41)5, (13, 43, 15, 42, 19, 23)5, (13, 11, 2, 34, 27,∞)5,
(2, 18, 37, 31, 7, 11)5,
(∞, 41, 42, 15, 37, 24)9, (10, 31, 39, 11, 12, 22)9, (37, 9, 19, 22, 15, 36)9,
(15, 8, 20, 1, 29, 36)9, (18, 7, 9, 42, 40, 22)9, (19, 6, 31, 16, 32, 25)9,
(43, 21, 13, 38, 1, 41)9, (1, 4, 28, 12, 30, 40)9, (29, 0, 22, 6, 30, 19)9,
(2, 4, 8, 39, 18, 5)9,
(∞, 33, 16, 23, 18, 34)12, (33, 22, 25, 13, 7, 5)12, (18, 33, 24, 7, 43, 3)12,
(8, 6, 14, 26, 35, 19)12, (34, 2, 30, 9, 8, 20)12, (10, 20, 7, 35, 11, 41)12,
(9, 20, 15, 30, 31, 40)12, (13, 16, 43, 9, 41, 8)12, (8, 43, 31, 36, 21, 40)12,
(33, 38, 8, 11, 12, 31)12,
(∞, 6, 29, 43, 20, 14)16, (37, 17, 21, 43, 25, 19)16, (29, 20, 39, 18, 15, 30)16,
(32, 37, 2, 16, 8, 30)16, (2, 5, 3, 34, 19, 4)16, (18, 37, 27, 0, 34, 8)16,
(5, 36, 23, 24, 32, 28)16, (26, 13, 24, 30, 6, 5)16, (2, 7, 12, 35, 41, 0)16,
(3, 15, 12, 23, 22, 19)16,
(∞, 10, 19, 36, 29, 30)17, (27, 17, 35, 6, 15, 2)17, (24, 29, 10, 33, 37, 21)17,
(13, 22, 14, 6, 37, 7)17, (7, 40, 37, 23, 20, 32)17, (4, 24, 8, 38, 37, 27)17,
(8, 6, 23, 18, 10, 11)17, (42, 20, 39, 1, 16, 8)17, (1, 6, 0, 31, 7, 37)17,
(3, 7, 5, 8, 21, 29)17,
(∞, 37, 7, 2, 4, 41)18, (21, 25, 6, 37, 31, 40)18, (21, 1, 39, 23, 28, 34)18,
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(36, 7, 31, 10, 22, 30)18, (32, 31, 15, 14, 10, 12)18, (11, 19, 7, 29, 32, 4)18,
(17, 34, 6, 3, 38, 5)18, (7, 16, 14, 0, 6, 32)18, (24, 37, 28, 32, 34, 17)18,
(1, 38, 0, 37, 24, 6)18,
(∞, 23, 18, 43, 33, 12)19, (0, 40, 9, 18, 34, 3)19, (43, 20, 31, 5, 25, 41)19,
(15, 35, 7, 26, 38, 40)19, (2, 22, 6, 39, 1, 9)19, (3, 37, 2, 4, 40, 43)19,
(37, 25, 41, 5, 7, 12)19, (43, 34, 21, 1, 20, 28)19, (8, 31, 6, 40, 4, 16)19,
(2, 41, 14, 20, 38, 36)19,
(∞, 32, 11, 5, 18, 28)20, (0, 14, 24, 25, 37, 13)20, (12, 19, 35, 17, 31, 18)20,
(20, 11, 31, 30, 22, 33)20, (27, 11, 28, 41, 40, 31)20, (3, 39, 8, 42, 26, 36)20,
(0, 42, 4, 8, 26, 5)20, (22, 10, 7, 14, 41, 29)20, (35, 11, 34, 17, 29, 10)20,
(1, 10, 21, 16, 37, 25)20

under the action of the mapping x 7→ x + 4 (mod 44), ∞ 7→ ∞.
K46 Let the vertex set be Z46. The decompositions consist of

(0, 22, 19, 23, 36, 39)2, (33, 7, 39, 41, 0, 38)2, (19, 1, 38, 34, 44, 3)2,
(42, 7, 8, 24, 36, 4)2, (0, 15, 5, 26, 37, 2)2,
(0, 35, 24, 8, 31, 3)5, (42, 17, 41, 3, 11, 8)5, (1, 37, 17, 35, 28, 6)5,
(15, 44, 38, 2, 37, 35)5, (0, 14, 18, 20, 5, 1)5,
(0, 17, 40, 28, 38, 20)9, (30, 34, 35, 33, 21, 38)9, (9, 19, 15, 24, 41, 40)9,
(3, 31, 22, 19, 38, 36)9, (0, 11, 36, 19, 4, 22)9,
(0, 3, 44, 35, 18, 1)12, (42, 25, 41, 18, 31, 32)12, (12, 43, 0, 37, 9, 23)12,
(13, 32, 26, 40, 8, 36)12, (2, 39, 43, 17, 5, 18)12,
(0, 16, 37, 33, 25, 44)16, (16, 36, 31, 38, 19, 35)16, (23, 25, 31, 43, 16, 39)16,
(37, 28, 40, 36, 24, 38)16, (1, 25, 36, 42, 16, 35)16,
(0, 40, 17, 8, 1, 6)17, (42, 33, 6, 24, 27, 13)17, (23, 30, 17, 26, 5, 10)17,
(11, 1, 32, 6, 8, 5)17, (1, 9, 36, 33, 3, 26)17,
(0, 40, 38, 37, 9, 32)18, (32, 12, 31, 35, 42, 27)18, (2, 34, 35, 6, 29, 13)18,
(35, 25, 13, 14, 39, 38)18, (17, 4, 33, 38, 35, 31)18,
(0, 30, 40, 16, 28, 29)19, (24, 12, 16, 35, 15, 39)19, (10, 42, 3, 31, 37, 7)19,
(32, 9, 11, 17, 37, 8)19, (1, 40, 11, 14, 41, 33)19,
(0, 9, 17, 24, 33, 22)20, (24, 8, 1, 27, 37, 2)20, (15, 19, 35, 21, 1, 30)20,
(44, 24, 4, 5, 12, 43)20, (0, 11, 43, 36, 42, 8)20

under the action of the mapping x 7→ x + 2 (mod 46).
K54 Let the vertex set be Z53 ∪ {∞}. The decompositions consist of

(0, 25, 46, 47, 43,∞)2, (0, 2, 5, 13, 16, 19)2, (0, 24, 9, 36, 4, 23)2,
(19, 52, 46, 2, 7,∞)9, (33, 37, 8, 26, 38, 14)9, (46, 36, 51, 14, 38, 5)9,
(25, 33, 13, 4, 51,∞)18, (0, 1, 3, 5, 10, 16)18, (0, 6, 22, 19, 36, 44)18

under the action of the mapping x 7→ x+ 1 (mod 53), ∞ 7→ ∞. With vertex set Z54

the decomposition into n16 consists of
(6, 48, 42, 20, 49, 34)16, (9, 51, 45, 23, 52, 37)16, (12, 0, 48, 26, 1, 40)16,
(15, 3, 51, 29, 4, 43)16, (18, 6, 0, 32, 7, 46)16, (21, 9, 3, 35, 10, 49)16,
(48, 27, 1, 35, 29, 38)16, (51, 30, 4, 38, 32, 41)16, (0, 33, 7, 41, 35, 44)16,
(3, 36, 10, 44, 38, 47)16, (6, 39, 13, 47, 41, 50)16, (9, 42, 16, 50, 44, 53)16,
(4, 6, 37, 35, 46, 1)16, (7, 9, 40, 38, 49, 4)16, (10, 12, 43, 41, 52, 7)16,
(13, 15, 46, 44, 1, 10)16, (16, 18, 49, 47, 4, 13)16, (19, 21, 52, 50, 7, 16)16,



A.D. FORBES AND T.S. GRIGGS/AUSTRALAS. J. COMBIN. 70 (1) (2018), 52–74 67

(51, 13, 10, 14, 36, 19)16, (0, 16, 13, 17, 39, 22)16, (3, 19, 16, 20, 42, 25)16,
(6, 22, 19, 23, 45, 28)16, (9, 25, 22, 26, 48, 31)16, (12, 28, 25, 29, 51, 34)16,
(3, 28, 41, 4, 13, 38)16, (6, 31, 44, 7, 16, 41)16, (9, 34, 47, 10, 19, 44)16,
(12, 37, 50, 13, 22, 47)16, (15, 40, 53, 16, 25, 50)16, (18, 43, 2, 19, 28, 53)16,
(15, 49, 11, 14, 39, 44)16, (18, 52, 14, 17, 42, 47)16, (21, 1, 17, 20, 45, 50)16,
(24, 4, 20, 23, 48, 53)16, (27, 7, 23, 26, 51, 2)16, (30, 10, 26, 29, 0, 5)16,
(31, 20, 13, 5, 9, 18)16, (34, 23, 16, 8, 12, 21)16, (37, 26, 19, 11, 15, 24)16,
(40, 29, 22, 14, 18, 27)16, (43, 32, 25, 17, 21, 30)16, (46, 35, 28, 20, 24, 33)16,
(23, 30, 33, 53, 2, 34)16, (26, 33, 36, 2, 5, 37)16, (29, 36, 39, 5, 8, 40)16,
(32, 39, 42, 8, 11, 43)16, (35, 42, 45, 11, 14, 46)16, (38, 45, 48, 14, 17, 49)16,
(46, 19, 27, 0, 32, 5)16, (52, 25, 33, 6, 38, 11)16, (2, 8, 14, 50, 38, 26)16,
(4, 31, 12, 39, 44, 17)16, (5, 11, 17, 53, 41, 29)16

under the action of the mapping x 7→ x + 18 (mod 54).
K55 Let the vertex set be Z55. The decompositions consist of

(0, 21, 31, 33, 29, 42)2, (36, 47, 50, 41, 40, 6)2, (0, 17, 1, 37, 32, 27)2,
(0, 11, 2, 3, 53, 12)9, (29, 43, 3, 48, 25, 8)9, (0, 17, 24, 49, 44, 16)9,
(0, 11, 23, 28, 42, 35)16, (10, 1, 16, 20, 26, 34)16, (0, 18, 20, 21, 14, 43)16,
(0, 13, 50, 38, 9, 2)18, (43, 35, 14, 12, 15, 1)18, (0, 10, 3, 16, 43, 14)18,

under the action of the mapping x 7→ x + 1 (mod 55).
K63 Let the vertex set be Z62 ∪ {∞}. The decompositions consist of

(0, 49, 57, 14,∞, 9)2, (43, 32, 39, 55, 61, 40)2, (10, 57, 12, 4, 40, 36)2,
(25, 57, 1, 36, 15, 24)2, (45, 17, 4, 19, 46, 23)2, (58, 18, 42, 14, 55, 6)2,
(0, 5, 19, 42, 12, 31)2,
(49, 56, 52, 10,∞, 38)5, (50, 46, 41, 20, 3, 53)5, (2, 36, 43, 37, 1, 47)5,
(23, 60, 7, 0, 48, 21)5, (53, 27, 22, 40, 45, 31)5, (1, 58, 11, 43, 34, 35)5,
(1, 6, 20, 12, 46, 30)5,
(13, 42, 45, 16,∞, 58)9, (44, 39, 56, 2, 26, 53)9, (21, 6, 31, 29, 59, 61)9,
(46, 19, 31, 42, 5, 24)9, (59, 21, 40, 39, 42, 55)9, (37, 32, 16, 26, 50, 53)9,
(49, 55, 48, 0, 24, 22)9,
(19, 22, 38, 49,∞, 30)12, (47, 49, 11, 48, 36, 43)12, (17, 56, 25, 50, 22, 27)12,
(52, 54, 34, 47, 60, 30)12, (42, 27, 5, 55, 48, 47)12, (20, 16, 31, 30, 47, 61)12,
(22, 31, 13, 54, 27, 43)12,
(27, 45, 6, 16,∞, 2)16, (13, 18, 45, 60, 41, 1)16, (29, 38, 35, 4, 42, 20)16,
(39, 40, 2, 4, 51, 46)16, (1, 61, 25, 9, 15, 44)16, (6, 9, 20, 52, 47, 5)16,
(0, 9, 8, 58, 23, 16)16,
(25, 56, 14, 40,∞, 38)17, (30, 53, 11, 57, 39, 52)17, (57, 55, 45, 22, 20, 10)17,
(36, 25, 31, 28, 23, 58)17, (38, 44, 48, 59, 10, 37)17, (44, 51, 35, 21, 61, 3)17,
(0, 22, 41, 36, 3, 35)17,
(11, 2, 13, 8, 44,∞)19, (17, 9, 21, 24, 47, 58)19, (25, 61, 19, 44, 47, 36)19,
(55, 31, 18, 16, 36, 3)19, (47, 23, 31, 22, 24, 6)19, (36, 29, 24, 58, 38, 26)19,
(1, 0, 36, 4, 45, 28)19,
(26, 4, 50, 17, 3,∞)20, (60, 39, 31, 12, 21, 1)20, (18, 20, 29, 10, 25, 26)20,
(35, 10, 50, 4, 54, 30)20, (48, 43, 3, 5, 15, 11)20, (0, 9, 55, 12, 34, 57)20,
(1, 15, 17, 14, 37, 44)20
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under the action of the mapping x 7→ x+ 2 (mod 62), ∞ 7→ ∞. With vertex set Z63

the decomposition into n18 consists of
(53, 15, 17, 24, 14, 12)18, (56, 18, 20, 27, 17, 15)18, (59, 21, 23, 30, 20, 18)18,
(36, 55, 14, 29, 26, 28)18, (39, 58, 17, 32, 29, 31)18, (42, 61, 20, 35, 32, 34)18,
(51, 37, 24, 5, 57, 58)18, (54, 40, 27, 8, 60, 61)18, (57, 43, 30, 11, 0, 1)18,
(44, 39, 26, 16, 59, 34)18, (47, 42, 29, 19, 62, 37)18, (50, 45, 32, 22, 2, 40)18,
(14, 52, 58, 56, 61, 48)18, (17, 55, 61, 59, 1, 51)18, (20, 58, 1, 62, 4, 54)18,
(0, 10, 31, 48, 23, 30)18, (3, 13, 34, 51, 26, 33)18, (6, 16, 37, 54, 29, 36)18,
(11, 27, 25, 31, 30, 48)18, (14, 30, 28, 34, 33, 51)18, (17, 33, 31, 37, 36, 54)18,
(61, 24, 50, 38, 56, 55)18, (1, 27, 53, 41, 59, 58)18, (4, 30, 56, 44, 62, 61)18,
(41, 34, 45, 32, 6, 21)18, (44, 37, 48, 35, 9, 24)18, (47, 40, 51, 38, 12, 27)18,
(0, 1, 34, 16, 42, 9)18, (1, 13, 25, 40, 52, 33)18, (1, 30, 9, 37, 31, 21)18,
(6, 7, 40, 22, 48, 37)18

under the action of the mapping x 7→ x + 9 (mod 63).
K64 Let the vertex set be Z63 ∪ {∞}. The decomposition consists of

(35, 37,∞, 24, 6, 12)18, (38, 40,∞, 27, 9, 15)18, (41, 43,∞, 30, 12, 18)18,
(34, 35, 54, 27, 51, 55)18, (37, 38, 57, 30, 54, 58)18, (40, 41, 60, 33, 57, 61)18,
(8, 44, 45, 5, 3, 35)18, (11, 47, 48, 8, 6, 38)18, (14, 50, 51, 11, 9, 41)18,
(5, 51, 53, 18, 61, 38)18, (8, 54, 56, 21, 1, 41)18, (11, 57, 59, 24, 4, 44)18,
(55, 13, 43, 19, 18, 5)18, (58, 16, 46, 22, 21, 8)18, (61, 19, 49, 25, 24, 11)18,
(30, 39, 45, 12, 31, 1)18, (33, 42, 48, 15, 34, 4)18, (36, 45, 51, 18, 37, 7)18,
(59, 21, 55, 17, 14, 23)18, (62, 24, 58, 20, 17, 26)18, (2, 27, 61, 23, 20, 29)18,
(60, 11, 58, 21, 20, 40)18, (0, 14, 61, 24, 23, 43)18, (3, 17, 1, 27, 26, 46)18,
(50, 22, 40, 13, 18, 61)18, (53, 25, 43, 16, 21, 1)18, (56, 28, 46, 19, 24, 4)18,
(13, 16, 47, 56, 59, 44)18, (40, 16, 35, 29, 0, 46)18, (49, 10, 5, 62, 33, 28)18,
(1, 25, 20, 14, 48, 37)18, (1, 44, 32, 4, 61, 35)18,

under the action of the mapping x 7→ x + 9 (mod 63), ∞ 7→ ∞. �

Proof of Lemma 4.2
K6,6,6,6 Let the vertex set be Z24 partitioned according to residue classes modulo 4.
The decompositions consist of

(0, 1, 3, 10, 6, 11)2, (0, 1, 2, 11, 7, 5)5, (0, 1, 7, 10, 12, 2)9,
(0, 1, 3, 7, 12, 11)12, (0, 2, 3, 9, 5, 15)16, (0, 1, 7, 15, 2, 4)17,
(0, 1, 3, 6, 10, 17)18, (0, 1, 2, 10, 7, 13)19, (0, 1, 2, 6, 11, 9)20

under the action of the mapping x 7→ x + 1 (mod 24).
K9,9,9,9 Let the vertex set be {0, 1, . . . , 35} partitioned into {3j+i : j = 0, 1, . . . , 8},
i = 0, 1, 2, and {27, 28, . . . , 35}. The decompositions consist of

(0, 1, 5, 27, 8, 10)2, (0, 13, 2, 32, 29, 33)2,
(0, 1, 2, 27, 5, 10)5, (0, 28, 29, 14, 7, 16)5,
(0, 1, 5, 27, 12, 13)9, (0, 2, 10, 30, 35, 32)9,
(0, 1, 5, 8, 27, 30)12, (0, 2, 13, 35, 3, 27)12,
(0, 1, 5, 27, 11, 30)16, (0, 32, 8, 25, 7, 20)16,
(0, 1, 5, 8, 27, 29)17, (0, 2, 13, 35, 29, 12)17,
(0, 1, 5, 8, 27, 18)18, (0, 13, 2, 28, 34, 8)18,
(0, 1, 2, 5, 27, 13)19, (0, 1, 11, 30, 33, 20)19,
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(0, 1, 2, 5, 27, 12)20, (0, 8, 11, 28, 32, 24)20
under the action of the mapping x 7→ x+1 (mod 27) for x < 27, x 7→ (x+1 (mod 9))+
27 for x ≥ 27.
K6,6,6,9 Let the vertex set be {0, 1, . . . , 26} partitioned into {3j+i : j = 0, 1, . . . , 5},
i = 0, 1, 2, and {18, 19, . . . , 26}. The decompositions consist of

(0, 13, 5, 25, 18, 19)2, (17, 13, 9, 22, 15, 25)2, (10, 17, 3, 18, 20, 5)2,
(1, 0, 17, 21, 23, 25)2, (2, 9, 1, 26, 20, 18)2,
(0, 16, 17, 19, 18, 23)5, (2, 15, 10, 23, 4, 0)5, (10, 6, 17, 18, 14, 24)5,
(6, 7, 17, 22, 2, 21)5, (1, 2, 6, 19, 20, 26)5,
(0, 21, 11, 16, 10, 20)9, (21, 8, 4, 3, 20, 15)9, (15, 20, 1, 11, 12, 22)9,
(19, 16, 14, 6, 20, 1)9, (2, 0, 19, 13, 17, 18)9,
(0, 1, 19, 22, 2, 20)12, (8, 6, 22, 20, 16, 13)12, (16, 12, 21, 17, 10, 2)12,
(0, 21, 11, 13, 15, 17)12, (1, 26, 9, 17, 24, 11)12,
(0, 16, 24, 14, 23, 11)16, (0, 17, 10, 19, 4, 24)16, (18, 9, 4, 14, 15, 22)16,
(23, 10, 3, 14, 4, 25)16, (3, 5, 4, 20, 11, 19)16,
(0, 17, 19, 21, 11, 13)17, (17, 10, 12, 24, 1, 0)17, (14, 4, 24, 23, 6, 17)17,
(15, 23, 10, 11, 19, 9)17, (0, 25, 4, 1, 20, 2)17,
(0, 1, 19, 21, 5, 2)18, (5, 6, 22, 23, 16, 0)18, (12, 14, 18, 25, 1, 13)18,
(0, 13, 11, 14, 18, 20)18, (0, 20, 8, 4, 16, 23)18,
(0, 1, 25, 20, 14, 11)19, (14, 9, 24, 13, 4, 6)19, (3, 7, 20, 24, 5, 2)19,
(10, 5, 0, 19, 22, 9)19, (2, 0, 16, 18, 23, 13)19,
(0, 13, 23, 14, 2, 6)20, (20, 14, 0, 1, 4, 19)20, (24, 6, 17, 7, 13, 21)20,
(8, 3, 15, 19, 18, 14)20, (19, 4, 16, 2, 6, 20)20

under the action of the mapping x 7→ x+3 (mod 18) for x < 18, x 7→ (x+3 (mod 9))+
18 for x ≥ 18.
K6,6,6 Let the vertex set be {0, 1, . . . , 17} partitioned into {2j + i : j = 0, 1, . . . , 5},
i = 0, 1, and {12, 13, . . . , 17}. The decompositions consist of

(0, 12, 13, 3, 1, 5)5, (0, 12, 1, 3, 17, 5)12, (0, 3, 12, 14, 5, 4)17,
(0, 2, 3, 12, 17, 5)19, (0, 1, 3, 12, 16, 10)20

under the action of the mapping x 7→ x+1 (mod 12) for x < 12, x 7→ (x+1 (mod 6))+
12 for x ≥ 12.
K3,3,3,3 Let the vertex set be Z12 partitioned according to residue class modulo 4.
The decompositions consist of

(0, 7, 5, 10, 6, 9)2, (7, 2, 8, 9, 4, 1)2, (3, 6, 4, 5, 9, 8)2,
(2, 0, 1, 3, 11, 5)2, (8, 11, 1, 6, 5, 10)2, (10, 4, 9, 11, 1, 3)2,
(0, 5, 7, 10, 6, 2)5, (2, 9, 5, 4, 8, 3)5, (3, 1, 10, 4, 0, 8)5,
(6, 4, 9, 7, 11, 3)5, (8, 1, 5, 7, 6, 11)5, (11, 1, 9, 10, 2, 0)5,
(0, 7, 9, 2, 6, 10)9, (6, 8, 3, 1, 2, 4)9, (8, 7, 10, 5, 1, 9)9,
(1, 2, 4, 11, 5, 0)9, (4, 9, 10, 3, 11, 7)9, (11, 0, 5, 6, 3, 8)9,
(0, 9, 2, 11, 3, 10)16, (5, 11, 4, 10, 0, 6)16, (2, 3, 8, 5, 4, 9)16,
(1, 10, 0, 7, 11, 8)16, (4, 6, 1, 3, 7, 5)16, (7, 8, 6, 9, 2, 1)16
(0, 10, 3, 7, 1, 5)17, (7, 1, 6, 8, 9, 2)17, (2, 3, 9, 5, 0, 8)17,
(4, 11, 2, 1, 7, 10)17, (5, 6, 0, 4, 11, 3)17, (8, 9, 11, 10, 6, 4)17,
(0, 5, 10, 6, 7, 3)19, (3, 8, 2, 5, 1, 4)19, (10, 9, 3, 4, 8, 1)19,
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(1, 8, 6, 11, 7, 0)19, (4, 9, 2, 6, 7, 11)19, (11, 0, 2, 9, 5, 10)19,
(0, 2, 7, 9, 1, 4)20, (4, 2, 10, 5, 3, 7)20, (3, 1, 5, 6, 8, 0)20,
(7, 6, 2, 9, 8, 11)20, (10, 8, 0, 9, 11, 3)20, (11, 4, 5, 1, 6, 10)20.

K6,6,6,3 Let the vertex set be {0, 1, . . . , 20} partitioned into {3j+i : j = 0, 1, . . . , 5},
i = 0, 1, 2, and {18, 19, 20}. The decomposition consists of

(0, 19, 10, 5, 15, 1)12, (9, 11, 13, 18, 0, 10)12, (9, 1, 14, 5, 6, 2)12,
(10, 2, 18, 6, 13, 3)12, (0, 16, 2, 11, 4, 20)12, (1, 20, 3, 8, 19, 11)12

under the action of the mapping x 7→ x + 6 (mod 18) for x < 18, x 7→ x for x ≥ 18.
K18,18,18,18,18,27 Let the vertex set be {0, 1, . . . , 116} partitioned into {5j + i : j =
0, 1, . . . , 17}, i = 0, 1, 2, 3, 4, and {90, 91, . . . , 116}. The decompositions consist of

(0, 9, 68, 88, 99, 78)12, (13, 77, 102, 54, 3, 103)12, (26, 103, 73, 33, 65, 9)12,
(73, 40, 101, 86, 23, 76)12, (25, 87, 101, 31, 27, 26)12, (79, 3, 55, 91, 71, 90)12,
(0, 19, 72, 95, 24, 102)12,
(0, 81, 78, 77, 67, 103)18, (42, 103, 16, 26, 84, 55)18, (4, 62, 41, 114, 110, 6)18,
(60, 109, 4, 11, 21, 30)18, (58, 89, 1, 101, 104, 69)18, (27, 20, 114, 63, 19, 0)18,
(0, 38, 44, 99, 62, 7)18

under the action of the mapping x 7→ x + 1 (mod 90) for x < 90, x 7→ (x − 90 +
3 (mod 27)) + 90 for x ≥ 90. �

Proof of Lemma 5.1
K18 With vertex set Z18 the decomposition consists of

(6, 5, 7, 15, 1, 14)15, (16, 2, 7, 12, 5, 17)15, (7, 0, 14, 17, 8, 9)15,
(6, 0, 13, 16, 8, 10)15, (5, 0, 11, 12, 4, 10)15, (5, 8, 13, 14, 2, 9)15,
(6, 4, 11, 17, 2, 3)15, (2, 11, 14, 15, 0, 1)15, (2, 10, 13, 17, 4, 8)15,
(4, 9, 14, 16, 1, 7)15, (1, 9, 11, 13, 3, 5)15, (15, 3, 9, 17, 0, 8)15,
(4, 12, 13, 15, 0, 3)15, (3, 8, 11, 16, 7, 13)15, (12, 1, 8, 17, 6, 9)15,
(10, 3, 12, 14, 0, 9)15, (10, 1, 15, 16, 7, 11)15.

K19 With vertex set Z19 the decomposition consists of
(0, 1, 3, 8, 4, 10)15

under the action of the mapping x 7→ x + 1 (mod 19).
K27 With vertex set Z26 ∪ {∞} the decomposition consists of

(0, 23, 1, 16,∞, 19)15, (20, 11, 25, 12, 0, 22)15, (1, 6, 18, 21, 3, 11)15
under the action of the mapping x 7→ x + 2 (mod 26), ∞ 7→ ∞.
K28 With vertex set Z28 the decomposition consists of

(0, 5, 15, 4, 17, 3)15, (22, 14, 10, 8, 13, 5)15, (13, 6, 1, 19, 16, 15)15,
(24, 15, 8, 6, 17, 4)15, (25, 19, 22, 21, 10, 16)15, (2, 3, 19, 23, 7, 12)15

under the action of the mapping x 7→ x + 4 (mod 28).
K36 With vertex set Z35 ∪ {∞} the decomposition consists of

(∞, 4, 26, 13, 12, 30)15, (20, 0, 6, 31, 29, 27)15, (1, 19, 16, 27, 10, 20)15,
(4, 34, 11, 17, 23, 15)15, (15, 18, 29, 19, 10, 2)15, (20, 19, 4, 33, 21, 18)15,
(24, 17, 16, 12, 30, 27)15, (31, 1, 17, 13, 33, 29)15, (0, 2, 12, 18, 23, 28)15,
(3, 2, 17, 28, 11, 18)15

under the action of the mapping x 7→ x + 5 (mod 35), ∞ 7→ ∞.
K37 With vertex set Z37 the decomposition consists of

(0, 1, 3, 8, 9, 20)15, (0, 4, 16, 22, 10, 23)15
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under the action of the mapping x 7→ x + 1 (mod 37).
K45 With vertex set Z44 ∪ {∞} the decomposition consists of

(3, 2, 13, 39, 12,∞)15, (33, 38, 7, 3,∞, 30)15, (21, 34, 30, 15, 8, 6)15,
(42, 12, 17, 40, 15, 28)15, (27, 24, 0, 43, 3, 32)15, (33, 17, 29, 36, 34, 13)15,
(31, 20, 21, 29, 1, 43)15, (13, 40, 19, 30, 28, 35)15, (42, 32, 20, 24, 4, 10)15,
(2, 7, 10, 30, 9, 20)15

under the action of the mapping x 7→ x + 4 (mod 44), ∞ 7→ ∞.
K46 With vertex set Z46 the decomposition consists of

(0, 42, 6, 29, 13, 21)15, (42, 22, 7, 10, 44, 13)15, (27, 26, 15, 31, 36, 18)15,
(19, 1, 40, 21, 25, 26)15, (39, 20, 36, 44, 3, 17)15

under the action of the mapping x 7→ x + 2 (mod 46).
K54 With vertex set Z54 the decomposition consists of

(32, 1, 16, 38, 7, 52)15, (22, 7, 38, 44, 28, 32)15, (13, 28, 44, 50, 47, 51)15,
(34, 1, 9, 49, 33, 42)15, (7, 1, 15, 40, 11, 25)15, (21, 7, 13, 46, 37, 53)15,
(47, 30, 45, 53, 15, 38)15, (51, 5, 36, 53, 24, 33)15, (5, 3, 11, 42, 10, 15)15,
(32, 0, 13, 42, 48, 51)15, (38, 6, 19, 48, 0, 3)15, (44, 0, 12, 25, 11, 21)15,
(39, 6, 32, 46, 34, 35)15, (12, 38, 45, 52, 3, 4)15, (4, 18, 44, 51, 46, 48)15,
(46, 18, 42, 49, 23, 52)15, (48, 1, 24, 52, 3, 21)15, (30, 0, 4, 7, 5, 12)15,
(27, 1, 3, 6, 5, 50)15, (12, 7, 9, 33, 46, 47)15, (13, 15, 18, 39, 12, 26)15,
(32, 24, 43, 44, 29, 30)15, (38, 30, 49, 50, 28, 35)15, (2, 1, 36, 44, 22, 31)15,
(46, 3, 25, 37, 34, 38)15, (31, 9, 43, 52, 35, 48)15, (49, 4, 15, 37, 11, 13)15,
(26, 11, 28, 52, 17, 31)15, (17, 4, 32, 34, 24, 38)15, (38, 10, 23, 40, 29, 36)15,
(27, 2, 15, 32, 22, 24)15, (8, 21, 33, 38, 6, 16)15, (14, 27, 39, 44, 22, 47)15,
(16, 3, 34, 51, 4, 11)15, (22, 3, 9, 40, 17, 42)15, (9, 15, 28, 46, 44, 53)15,
(29, 7, 10, 37, 0, 53)15, (16, 13, 35, 43, 18, 36)15, (41, 19, 22, 49, 11, 34)15,
(29, 2, 3, 17, 26, 42)15, (8, 9, 23, 35, 4, 52)15, (41, 14, 15, 29, 8, 44)15,
(26, 15, 19, 30, 1, 46)15, (36, 21, 25, 32, 27, 28)15, (27, 31, 38, 42, 0, 9)15,
(0, 5, 16, 48, 10, 35)15, (0, 6, 11, 22, 1, 14)15, (17, 6, 12, 28, 14, 50)15,
(37, 11, 27, 47, 17, 19)15, (53, 17, 33, 43, 22, 23)15, (5, 23, 39, 49, 1, 18)15,
(23, 2, 7, 20, 32, 37)15, (25, 23, 24, 42, 5, 9)15

under the action of the mapping x 7→ x + 18 (mod 54).
K55 With vertex set Z55 the decomposition consists of

(0, 42, 4, 30, 31, 16)15, (23, 0, 1, 3, 2, 9)15, (0, 8, 18, 27, 5, 11)15
under the action of the mapping x 7→ x + 1 (mod 55).
K63 With vertex set Z62 ∪ {∞} the decomposition consists of

(1, 27, 28, 50,∞, 48)15, (1, 21, 56, 0, 51, 60)15, (11, 27, 25, 16, 28, 54)15,
(8, 20, 16, 40, 22, 6)15, (27, 46, 31, 21, 5, 38)15, (10, 0, 59, 28, 15, 43)15,
(0, 17, 25, 55, 23, 41)15

under the action of the mapping x 7→ x + 2 (mod 62), ∞ 7→ ∞.
K64 With vertex set Z63 ∪ {∞} the decomposition consists of

(1, 0, 8, 18, 38, 53)15, (1, 3, 4, 10, 39, 41)15, (1, 2, 5, 37, 6, 33)15,
(0, 7, 10, 23, 5, 51)15, (1, 15, 17, 20, 7, 12)15, (22, 1, 30, 47, 0, 20)15,
(0, 31, 42, 55, 11, 36)15, (24, 1, 35,∞, 59, 4)15, (1, 42, 43, 49, 50, 59)15,
(1, 31, 44, 52, 16, 25)15, (1, 34, 48, 62, 26, 60)15, (0, 21, 56, 61, 12, 62)15,
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(0, 33, 43, 58, 19, 41)15, (0, 6, 25, 54, 28, 48)15, (0, 4, 13, 35, 37, 49)15,
(0, 16, 17, 50, 52, 60)15, (0, 26, 32, 44, 2, 39)15, (0, 29, 59,∞, 24, 47)15,
(14, 0, 30, 40, 16, 2)15, (3, 25, 49,∞, 15, 31)15, (7, 3, 26, 40, 17, 43)15,
(6, 2, 43, 50, 15, 62)15, (2, 22, 25, 29, 35, 52)15, (2, 13, 15, 49, 34, 51)15,
(8, 2, 12, 31, 62, 4)15, (5, 15, 23, 43, 16, 4)15, (6, 3, 24, 30, 44, 5)15,
(14, 3, 21, 51, 49, 4)15, (11, 2, 33, 53, 19, 1)15, (23, 2, 26, 57, 50, 4)15,
(3, 2, 41, 47, 16, 34)15, (3, 8, 23, 44, 57, 0)15.

under the action of the mapping x 7→ x + 9 (mod 63), ∞ 7→ ∞.
K81 With vertex set Z81 the decomposition consists of

(0, 1, 4, 54, 2, 40)15, (0, 9, 19, 21, 58, 78)15, (0, 6, 7, 45, 61, 64)15,
(0, 14, 23, 69, 8, 25)15, (0, 20, 22, 35, 13, 75)15, (0, 29, 48, 62, 15, 39)15,
(0, 26, 32, 80, 16, 50)15, (0, 17, 33, 56, 18, 71)15, (0, 44, 46, 55, 30, 59)15,
(0, 47, 57, 70, 34, 79)15, (0, 52, 66, 73, 37, 67)15, (0, 24, 60, 74, 38, 51)15,
(0, 65, 76, 77, 49, 68)15, (2, 1, 22, 38, 8, 20)15, (5, 1, 21, 47, 31, 2)15,
(2, 11, 32, 68, 3, 52)15, (26, 2, 30, 50, 62, 3)15, (1, 20, 46, 74, 13, 40)15,
(2, 16, 49, 66, 53, 79)15, (48, 2, 70, 78, 1, 19)15, (34, 2, 39, 43, 41, 1)15,
(2, 75, 76, 80, 51, 62)15, (3, 12, 44, 49, 15, 57)15, (3, 5, 13, 39, 21, 77)15,
(1, 12, 15, 78, 11, 51)15, (1, 39, 60, 67, 33, 70)15, (3, 51, 53, 61, 76, 78)15,
(1, 25, 53, 66, 57, 68)15, (1, 28, 62, 77, 65, 69)15, (1, 7, 23, 26, 8, 42)15,
(1, 43, 49, 58, 16, 17)15, (7, 4, 44, 53, 61, 2)15, (4, 25, 35, 49, 32, 50)15,
(24, 1, 32, 52, 58, 2)15, (6, 1, 59, 76, 44, 62)15, (41, 4, 42, 62, 0, 3)15,
(14, 4, 26, 33, 44, 1)15, (4, 43, 60, 69, 16, 67)15, (5, 16, 34, 59, 15, 44)15,
(5, 7, 42, 69, 11, 0)15

under the action of the mapping x 7→ x + 9 (mod 81).
K82 With vertex set Z82 the decomposition consists of

(0, 51, 73, 64, 77, 74)15, (44, 15, 60, 67, 55, 61)15, (33, 7, 19, 35, 67, 57)15,
(6, 12, 74, 62, 52, 35)15, (65, 6, 69, 27, 20, 64)15, (16, 70, 12, 43, 55, 35)15,
(32, 73, 80, 65, 45, 10)15, (49, 50, 52, 17, 3, 60)15, (0, 5, 30, 72, 43, 61)15

under the action of the mapping x 7→ x + 2 (mod 82). �

Proof of Lemma 5.2
K6,6,6,6 Let the vertex set be Z24 partitioned according to residue classes modulo
4. The decomposition consists of

(0, 1, 3, 10, 5, 11)15
under the action of the mapping x 7→ x + 1 (mod 24).
K6,6,6,3 Let the vertex set be {0, 1, . . . , 20} partitioned into {3j+i : j = 0, 1, . . . , 5},
i = 0, 1, 2, and {18, 19, 20}. The decomposition consists of

(0, 2, 16, 18, 7, 14)15, (17, 1, 19, 0, 16, 15)15, (10, 2, 3, 19, 15, 5)15,
(6, 17, 10, 18, 11, 1)15, (1, 5, 9, 18, 3, 14)15, (2, 1, 15, 20, 4, 12)15

under the action of the mapping x 7→ x+6 (mod 18) for x < 18, x 7→ (x+1 (mod 3))+
18 for x ≥ 18.
K3,3,3,3,3 Let the vertex set be Z15 partitioned according to residue class modulo 5.
The decomposition consists of

(0, 1, 3, 7, 2, 9)15, (2, 1, 4, 8, 3, 14)15
under the action of the mapping x 7→ x + 3 (mod 15).
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K18,18,18,18,27 Let the vertex set be {0, 1, . . . , 98} partitioned into {4j + i : j =
0, 1, . . . , 17}, i = 0, 1, 2, 3, and {72, 73, . . . , 98}. The decomposition consists of

(0, 83, 51, 34, 37, 93)15, (32, 2, 63, 74, 93, 38)15, (57, 35, 32, 73, 8, 91)15,
(75, 56, 63, 10, 16, 15)15, (46, 37, 19, 32, 31, 73)15, (0, 10, 39, 80, 2, 79)15

under the action of the mapping x 7→ x + 1 (mod 72) for x < 72, x 7→ (x − 72 +
3 (mod 27)) + 72 for x ≥ 72.
K18,18,18,18,18,27 Let the vertex set be {0, 1, . . . , 116} partitioned into {5j + i : j =
0, 1, . . . , 17}, i = 0, 1, 2, 3, 4, and {90, 91, . . . , 116}. The decomposition consists of

(0, 59, 96, 88, 71, 28)15, (20, 32, 64, 110, 71, 17)15, (46, 70, 93, 54, 60, 103)15,
(43, 36, 115, 30, 65, 103)15, (29, 8, 111, 81, 11, 2)15, (76, 53, 110, 12, 19, 20)15,
(0, 11, 53, 116, 4, 103)15

under the action of the mapping x 7→ x + 1 (mod 90) for x < 90, x 7→ (x − 90 +
3 (mod 27)) + 90 for x ≥ 90.
K3,3,3,3,3,3,3 Let the vertex set be Z21 partitioned according to residue class modulo
7. The decomposition consists of

(0, 1, 4, 16, 2, 10)15
under the action of the mapping x 7→ x + 1 (mod 21). �
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