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Abstract 

A graph G is pluperfect if one can add new multiple edges to obtain a 

multi graph M satisfying: 

(1) G spans M, 

(2) the degrees of the nodes of M are consecutive integers, 

(3) G and M have the same minimum degree. 

Our purpose is to display several families of pluperfect graphs in order to 

L Introduction 

My good friends Mehdi Behzad and Gary Chartrand wrote a note [1] titled "No 

graph is perfect". They did this in jest in order to parody the last line, "Nobody's 

perfect" of the celebrated film "Some Like It Hot". They defined a perfect graph as 

one whose n nodes have distinct degrees and noted that there are none! Such a 

multigraph is now called irregular. 

Theorem A. No nontrivial graph is irregular. 

Proof Assume there exists such a graph G with n;:::: 2 nodes. Then its degree 

sequence is (n - 1, n - 2, ... , 3, 2, 1, 0). The node of degree 0 is isolated but the node 

of degree n - 1 is adjacent to all the other nodes, a contradiction. 0 
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The underlying graph G(M) of a multigraph M is the spanning subgraph of 

M having a single edge wherever M has either a single edge or multiple edges. In 

general we follow the notation and terminology of [2] and [4]. 

Recently Chartrand and et al. proved in [3] that for each connected graph G 

with n ~ 3 nodes, there exists an irregular multigraph M having G as its underlying 

graph. 

2. Pluperfect graphs 

We now call a connected graph G with n ~ 3 nodes and minimum degree 8 

plupeTject if there exists a multigraph M with underlying graph G such that the 

degree sequence (J of M is consecutive and as small as possible: 

(J = (n + 8 - 1, n + 8 - 2, ... , 8 + 2, 8 + 1, 8) (1) 

Our observations are elementary but novel. Ou~ purpose is to present several 

pluperfect graphs in order to stimulate research on the question in the title of this note. 

In [6], we defined the irregularity cost ic(G) as the minimum number of new 

multiple edges in an irregular multigraph M with underlying graph G. Let q(G) and 

q(M) be the number of edges of graph G and of multigraph M, respectively. 

Similarly let 8(G) and 8(M) be their minimum degrees. 

Theorem 1. For a pluperfect graph G with spanning supermultigraph M satisfying 

(1), ic(G) = q(M) - q(G). 

Proof As 8(M) = 8(G), a multigraph satisfying (1) must necessarily have the smallest 

possible number of new multiple edges among all irregular multigraphs M with 

G = G(M). 0 

Question 1. If G is pluperfect does there exist a unique multigraph M satisfying (1)? 
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Although each pluperfect graph of order 4 has a unique irregular multi graph in 

which (1) holds, not all pluperfect graphs do. 

In providing the next theorems which specify those paths and cycles that are 

pluperfect, it is convenient to use the following more general result which holds for all 

graphs. 

Lemma 2a. Some necessary conditions for a graph to be pluperfect are: 

(i) No graph with n == 2 (mod 4) is pluperfect. 

(ii) No graph with n == 1 (mod 4) and odd minimum degree is pluperfect. 

(iii) No graph with n == 3 (mod 4) and even minimum degree is pluperfect. 

Proof The sum S of the degrees of the multigraph M(G) of a pluperfect graph G 

of order n and minimum degree 0 is given by 

(2) 

To prove (i), observe that when n = 4k + 2 is inserted into (2), we obtain 

S = 4ko + 20 + (2k + 1)(4k + 1) 

which is odd. The proofs of (ii) and (iii) are similar and hence are omitted. 0 

The next result specifies the pluperfect paths. 

Theorem 2. The pluperfect paths P n for n;?: 3 are precisely those with n == 0 or 3 

(mod 4). 

Proof The necessity of the theorem follows at once from Lemma 2a, (i) and (ii), as 

8 = 1 for paths. To show sufficiency we consider two cases. Edge multiplicities shall 

be denoted by positive integer weights. 
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Case 1. nE 3 (mod 4). 

Assign the following weights to the edges of P n consecutively: 

(1,2,3, ... , LnJ2J, TnJ21, rnJ21 - 2, rnJ21 - 2, rnJ21 - 4, rnJ21 - 4, ... ,4,4,2,2). 

The resulting degree sequence listed consecutively is 

(1, 3, 5, ... , n, n - 1, n - 3, ... , 6, 4, 2). 

Case 2. n E 0 (mod 4). 

The (consecutive) edge weights are now 

(1, 2, 3, ... , nJ2, nJ2, (nJ2) - 2, (nJ2) - 2, (nJ2) - 4, (nJ2) - 4, ... , 4, 4, 2, 2) 

with resulting degree sequence 

(1, 3, 5, ... , n - 1, n, n - 2, ... , 6, 4, 2). 0 

Figure 1 illustrates these sequences for P7 and PS' 

2 3 4 2 2 
.--e __ e ___ • ___ • __ • ___ • 

2 3 4 4 2 2 
e ___ e ___ e ___ • ___ e ___ e ___ e __ e 

Figure 1. The paths P7 and Ps are pluperfect. 

Using Theorem 2, it is easy to decide which cycles are pluperfect. 

Corollary 2a. The pluperfect cycles C are precisely those with n E 0 or 1 (mod 4). 
n 

Proof The necessity follows readily from Lemma 2a, (i) and (iii), as 8 = 2 for 

cycles. We prove the sufficiency by the following construction. A pluperfect cycle 

C 4t is obtained by increasing each edge weight of a pluperfect path P 4t-l (as 

obtained in the proof of Theorem 2) by one, and then joining a new node v to the 

endnodes of the path using edges of unit weight. The resulting C 4t is easily seen to 

be pluperfect. The pluperfect cycle C 4t-l is obtained from the pluperfect path P 4t in 

exactly the same way. 0 

Figure 2 exhibits the pluperfect cycles C8 and C
9 

obtained from the paths of 
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Figure 1. 

2 3 4 5 3 3 
M(Cg): 

v 

2 3 4 5 5 3 3 
M(C

9
): 

v 

Figure 2. The pluperfect cycles Cg and C9 obtained from the pluperfect 

paths P7 and Pg. 

Remark. The construction of Corollary 2a as illustrated in Figure 2 are reminiscent of 

the pioneering work of Hayes [7] who introduced the graph theoretic model for node 

fault tolerance in computers. He mentioned that given the path P n' the smallest 

number of edges in a supergraph G with n + 1 nodes such that for each node 

U E V(G), the subgraph G - u :::> P n is realized by the cycle, G = Cn+ 1. In fact, each 

G - u = P , an observation which led us to the concept mentioned in [5] of "exact fault 
n 

tolerance". 

Theorem 3. No star K1 with r ~ 3 is pluperfect. ,r 

Proof The unique multigraph M(K1 ) has edge-multiplicities 1, 2, ... ,r so that the ,r 

irregularity cost of the star is: 

(3) 

Theorem 4. The five connected graphs of order n = 4 other than the star are 

pluperfect. 
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Proof By Theorems 2 and 3, the path P 4 is pluperfect and the star Kl,3 is not. The 

remaining four connected graphs of order 4 are the cycle C4, the graph K3 · K2 

obtained by coalescing a node of a triangle with a node of a single edge, the so-called 

[4] random graph K4 - e and the complete graph K4. They are all pluperfect as 

Figure 3 demonstrates. 0 

M(C4) M(K3'~) M(K4 -e) M(K4) 

I I2 ~ 03~ 
3 3 

Figure 3. Pluperfect graphs of order 4. 
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