Semi-regular Sets of Matrices and Applications

Xian-Mo Zhang
Department of Computer Science
The University of Wollongong
Wollongong NSW 2522, AUSTRALIA

Abstract

The concept of semi-regular sets of matrices was introduced by J. Seberry in "A new construction for Williamson-type matrices", Graphs and Combinatorics, 2(1986), 81-87. A regular s-set of matrices of order m was first discovered by J. Seberry and A. L. Whiteman in "New Hadamard matrices and conference matrices obtained via Mathon's construction", Graphs and Combinatorics, 4(1988), 355-377. In this paper we study the product of semi-regular sets of matrices and applications in various Williamson-like matrices. Using semi-regular sets of matrices we construct new classes of Willianson type matrices, new classes of complex Hadamard matrices and new Williamson type matrices with additional properties.

1 Introduction and Basic Definitions

Definition 1 Suppose $Q_{1}, \ldots, Q_{2 s}$ are (1, -1) matrices of order m satisfying

$$
\begin{gather*}
Q_{i} Q_{j}^{T}=J, \quad i-j \neq 0, \pm s, \quad i, j \in\{1, \ldots, 2 s\} \tag{1}\\
Q_{i} Q_{i+s}^{T}=Q_{i+s} Q_{i}^{T}, \quad i \in\{1, \ldots, s\} \tag{2}\\
 \tag{3}\\
\sum_{i=1}^{2 s} Q_{i} Q_{i}^{T}=2 s m I_{m}
\end{gather*}
$$

Call $\left\{Q_{1}, \ldots, Q_{2 s}\right\}$ a semi-regular s-set of matrices of order m.

Definition 2 Suppose A_{1}, \ldots, A_{s} are $(1,-1)$ matrices of order m satisfying

$$
\begin{gather*}
A_{i} A_{j}=J, \quad i, j \in\{1, \ldots, s\}, \tag{4}\\
A_{i}^{T} A_{j}=A_{j} A_{i}^{T}=J, \quad i \neq j, \quad i, j \in\{1, \ldots, s\}, \tag{5}\\
\sum_{i=1}^{s}\left(A_{i} A_{i}^{T}+A_{i}^{T} A_{i}\right)=2 s m I_{m} . \tag{6}
\end{gather*}
$$

Call $\left\{A_{1}, \ldots, A_{s}\right\}$ a regular s-set of matrices of order m [9], [11].

Regular sets of matrices are special semi-regular sets of matrices. To show this, suppose $\left\{A_{1}, \ldots, A_{s}\right\}$ is a regular s-set of matrices and set $Q_{j}=A_{j}, Q_{j+s}=A_{j}^{T}$, $j=1, \ldots, s$. Hence $\left\{Q_{1}, \ldots, Q_{2 s}\right\}$ is a semi-regular s-set of matrices. J. Seberry [8] constructed a semi-regular $\frac{1}{2}(q+1)$-set of matrices of order q^{2}, say S_{1}, \ldots, S_{q+1}, satisfying $Q_{i} Q_{j}^{T}=Q_{j} Q_{i}^{T}=J_{q^{2}}, i \neq j$, where $q \equiv 3(\bmod 4)$ is a prime power, and a semi-regular $(p+1)$-set of matrices of order p^{2}, for $p \equiv 1(\bmod 4)$, a prime power. J. Seberry and A. L. Whiteman $[9]$ proved that if $q \equiv 3(\bmod 4)$ is a prime power there exists a regular $\frac{1}{2}(q+1)$-set of matrices of order q^{2}, say $A_{i}, i=1, \ldots, \frac{1}{2}(q+1)$, satisfying $A_{i} J=J A_{i}=q J$.

Definition 3 Four ($1,-1$) matrices $X_{1}, X_{2}, X_{3}, X_{4}$ of order n satisfying

$$
X_{1} X_{1}^{T}+X_{2} X_{2}^{T}+X_{3} X_{3}^{T}+X_{4} X_{4}^{T}=4 n I_{n}
$$

and

$$
U V^{T}=V U^{T}
$$

where $U, V \in\left\{X_{1}, X_{2}, X_{3}, X_{4}\right\}$ will be called Williamson type matrices of order n [11]. Circulant, symmetric Williamson type matrices will be called Williamson matrices.

Williamson and Williamson type matrices are discussed extensively by Baumert, Miyamoto, Seberry, Whiteman, Yamada and Yamamoto ([1], [6], [7], [8], [10] [11], [16], [18], [19], [23], [24], [25]).

Definition 4 Williamson type matrices (Williamson matrices) $X_{1}, X_{2}, X_{3}, X_{4}$ will be called nice if $X_{1} X_{2}^{T}+X_{3} X_{4}^{T}=0$, perfect if $X_{1} X_{2}^{T}+X_{3} X_{4}^{T}=X_{1} X_{4}^{T}+X_{2} X_{3}^{T}=0$, special if $X_{1} X_{2}^{T}+X_{3} X_{4}^{T}=X_{1} X_{3}^{T}+X_{2} X_{4}^{T}=X_{1} X_{4}^{T}+X_{2} X_{3}^{T}=0$.

The concept of special Williamson type matrices was introduced by Turyn [15], who found symmetric, commuting and type 1 special Williamson type matrices of order 9^{j} for j a non-negative integer. Recently Xia [26] gave symmetric, commuting and type 1 special Williamson type matrices of order $N=9^{i} \prod_{j=1}^{t} q_{j}^{4 r_{j}}$, where $q_{j} \equiv 3(\bmod$ $4)$ is a prime power, and i, r_{j} are non-negative integers.

Definition 5 Type $1(1,-1)$ matrices $A_{1}, A_{2}, A_{3}, A_{4}$ of order n will be called tight Williamson-like matrices if $\sum_{j=1}^{4} A_{j} A_{j}^{T}=4 n I_{n}$ and $A_{1} A_{2}^{T}+A_{2} A_{1}^{T}+A_{3} A_{4}^{T}+A_{4} A_{3}^{T}=0$.

Definition 6 Let C be a $(1,-1, i,-i)$ matrix of order c satisfying $C C^{*}=c I_{c}$, where C^{*} is the Hermitian adjoint of C. We call C a complex Hadamard matrix of order c.

From [17], any complex Hadamard matrix has order 1 or order divisible by 2. Let $C=X+i Y$, where X, Y consist of $1,-1,0$ and $X \wedge Y=0$ where \wedge is the Hadamard product. Clearly, if C is a complex Hadamard matrix then $X X^{T}+Y Y^{T}=c I_{c}$, $X Y^{T}=Y X^{T}$.

Definition 7 Four type $1(1,-1)$ matrices, say $T_{1}, T_{2}, T_{3}, T_{4}$ of order t will be called T-matrices if $T_{i} \wedge T_{j}=0$ for $i \neq j$, where \wedge is the Hadamard product, and $\sum_{j=1}^{4} T_{j} T_{j}^{T}=t I_{i}$.

Notation 1 For convenience, in this paper we write $N=9^{i} \prod_{j=1}^{t} q_{j}^{4 r_{j}}$, where $q_{j} \equiv$ $3(\bmod)$ is a prime power, and i, r_{j} are non-negative integers.

Let $M=\left(M_{i j}\right)$ and $N=\left(N_{g h}\right)$ be orthogonal matrices with t^{2} block M-structure [10] of order $t m$ and $t n$ respectively, where $M_{i j}$ is of order $m(i, j=1, \ldots, t)$ and $N_{g h}$ is of order $n(g, h=1,2, \ldots, t)$. We now define the the operation \bigcirc as the following:

$$
M \bigcirc N=\left[\begin{array}{llll}
L_{11} & L_{12} & \cdots & L_{1 t} \\
L_{21} & L_{22} & \cdots & L_{2 t} \\
& & \cdots & \\
L_{t 1} & L_{t 2} & \cdots & L_{t t}
\end{array}\right]
$$

where $M_{i j}, N_{i j}$ and $L_{i j}$ are of order of m, n, and $m n$, respectively and

$$
L_{i j}=M_{i 1} \times N_{1 j}+M_{i 2} \times N_{2 j}+\cdots+M_{i t} \times N_{t j},
$$

where \times is Kronecker product, $i, j=1,2, \ldots, t$. We call this the strong Kronecker multiplication of two matrices, see [13].

2 Existence of Semi-Regular Sets of Matrices

The following results are known:

Theorem 1 Let both $p \equiv 1(\bmod 4)$ and $q \equiv 3(\bmod 4)$ be prime powers. Then
(i) there exists a semi-regular ($p+1$)-set of matrices of order p^{2} (J. Seberry [8]),
(ii) there exists a regular $\frac{1}{2}(q+1)$-set of matrices of order q^{2} (J. Seberry and A. L. Whiteman [9]).

Theorem 2 If there exist a semi-regular s-set of matrices of order m and a semiregular $t(=s m)$-set of matrices of order n then there exists a semi-regular s-set of matrices of order mn.

Proof. Let $\left\{A_{1}=\left(a_{i j}^{1}\right), A_{2}=\left(a_{i j}^{2}\right), \ldots, A_{2 s}=\left(a_{i j}^{2 s}\right)\right\}$ be the semi-regular s-set of matrices of order m and $\left\{B_{1}, B_{2}, \ldots, B_{2 t}\right\}$ be the semi-regular t-set of matrices of order of n.
Define $C_{i}=\left(c_{k j}^{i}\right)=\left(a_{k j}^{i} B_{(i-1) m+j+k-1)}\right), i=1, \ldots, 2 s$ so that

$$
C_{i}=\left[\begin{array}{cccc}
a_{11}^{i} B_{(i-1) m+1} & a_{12}^{i} B_{(i-1) m+2} & \cdots & a_{1 m}^{i} B_{i m} \\
a_{21}^{i} B_{(i-1) m+2} & a_{22}^{i} B_{(i-1) m+3} & \cdots & a_{2 m}^{i} B_{(i-1) m+1} \\
& & \vdots & \\
a_{m 1}^{i} B_{i m} & a_{m 2}^{i} B_{(i-1) m+1} & \cdots & a_{m m}^{i} B_{i m-1}
\end{array}\right] .
$$

For any $i, j, i-j \neq 0, \pm s$, there exist no B_{u}, B_{v} such that $u-v= \pm t, B_{u}$ in C_{i}, B_{v} in C_{j}. Thus $C_{i} C_{j}=J_{m} \times J_{n}=J_{m n}$, for $i, j, i-j \neq 0, \pm s$. On the other hand, for a fixed i, write $C_{i} C_{i+s}^{T}=\left(D_{u v}\right)$, where $D_{u v}$ is of order $n, u, v=1, \ldots, m$. Obviously, $D_{u v}=J_{n}$, for $u \neq v$. Note that $D_{u u}=\sum_{k=1}^{m} a_{u k}^{i} a_{v k}^{i+s} B_{(i-1) m+k} B_{(i+s-1) m+k}^{T}$. Since $B_{k} B_{k+s}^{T}=B_{k+s} B_{k}^{T}, D_{u u}^{T}=D_{u u}$. Thus $C_{i} C_{i+s}^{T}$ is symmetric, i.e. $C_{i} C_{i+s}^{T}=C_{i+s} C_{i}^{T}$.

To show

$$
\begin{equation*}
\sum_{i=1}^{2 s} C_{i} C_{i}^{T}=2 s m n I_{m n}, \tag{7}
\end{equation*}
$$

note that $\left(a_{k j}^{i}\right)^{2}=1$ so the diagonal element of $C_{i} C_{i}^{T}$ is $\sum_{j=1}^{m} B_{(i-1) m+j} B_{(i-1) m+j}^{T}$ and hence the diagonal element of $\sum_{i=1}^{2 s} C_{i} C_{i}^{T}$ is

$$
\sum_{j=1}^{2 s m} B_{j} B_{j}^{T}=\sum_{j=1}^{2 t} B_{j} B_{j}^{T}=2 t n I_{n}=2 s m n I_{n}
$$

The off-diagonal elements of $C_{i} C_{i}^{T}$ are given by

$$
\sum_{j=1}^{m}\left(a_{h j}^{i} a_{k j}^{i} B_{(i-1) m+j+h-1} B_{(i-1) m+j+k-1}^{T}\right)=\sum_{j=1}^{m} a_{h j}^{i} a_{k j}^{i} J(h \neq k) .
$$

Since

$$
\sum_{i=1}^{s} \sum_{j=1}^{m} a_{h j}^{i} a_{k j}^{i} J=0
$$

the off-diagonal element of $\sum_{i=1}^{s} C_{i} C_{i}^{T}$ is zero.

Corollary 1 Let both $p \equiv 1(\bmod 4)$ and $q \equiv 3(\bmod 4)$ be prime powers.
(i) if $(p+1) p^{2}-1$ is a prime power then there exists a semi-regular $(p+1)$-set of matrices of order $p^{2}\left((p+1) p^{2}-1\right)^{2}$,
(ii) if $2(p+1) p^{2}-1$ is a prime power then there exists a semi-regular $(p+1)$-set of matrices of order $p^{2}\left(2(p+1) p^{2}-1\right)^{2}$,
(iii) if $(q+1) q^{2}-1$ is a prime power then there exists a regular $\frac{1}{2}(q+1)$-set of matrices of order $q^{2}\left((q+1) q^{2}-1\right)^{2}$,
(iv) if $\frac{1}{2}(q+1) q^{2}-1$ is a prime power then there exists a semi-regular $\frac{1}{2}(q+1)$-set of matrices of order $q^{2}\left(\frac{1}{2}(q+1) q^{2}-1\right)^{2}$.

Proof. (i) by Theorem 1 there exists a regular $(p+1)$-set of matrices of order p^{2}. Since $(p+1) p^{2}-1 \equiv 1(\bmod 4)$, by Theorem 1 there exists a semi-regular $(p+1) p^{2}$-set of matrices of order $\left((p+1) p^{2}-1\right)^{2}$. Using Theorem 2 , there exists a semi-regular $(p+1)$-set of matrices of order $p^{2}\left((p+1) p^{2}-1\right)^{2}$.
(ii) By Theorem 1 there exists a semi-regular $(p+1)$-set of matrices of order p^{2}. Since $2(p+1) p^{2}-1 \equiv 3(\bmod 4)$, by Theorem 1 there exists a regular $(p+1) p^{2}$-set of matrices of order $\left(2(p+1) p^{2}-1\right)^{2}$. Using Theorem 2 , there exists a semi-regular $(p+1)$-set of matrices of order $p^{2}\left(2(p+1) p^{2}-1\right)^{2}$.
(iii) This is Corollary 2 of [12].
(iv) By Theorem 1 there exists a regular $\frac{1}{2}(q+1)$-set of matrices of order q^{2}. Case $1, q \equiv 3(\bmod 8)$. Then $\frac{1}{2}(q+1) q^{2}-1 \equiv 1(\bmod 4)$. By Theorem 1 there exists a semi-regular $\frac{1}{2}(q+1) q^{2}$-set of matrices of order $\frac{1}{2}\left((q+1) q^{2}-1\right)^{2}$. By Theorem 2 there exists a semi-regular $\frac{1}{2}(q+1)$-set of matrices of order $q^{2}\left(\frac{1}{2}(q+1) q^{2}-1\right)^{2}$. Case 2, $q \equiv 7(\bmod 8)$. This follows from Corollary 5 of [12].

3 Williamson Type Matrices and Complex Hadamard Matrices

We find new constructions for Williamson type matrices not given by Miyamoto [6] or Seberry and Yamada [10], [11]. This theorem differs from that of Seberry [8] as it does not need $A_{j} J=J A_{j}=a J$ where a is a constant [9].

Theorem 3 If there exist Williamson type matrices of order n and a semi-regular $s(=2 n)$-set of matrices of order m then there exist Williamson type matrices of order $n m$.

Proof. Let $A=\left(a_{i j}\right), B=\left(b_{i j}\right), C=\left(c_{i j}\right), D=\left(d_{i j}\right)$ be the Williamson type matrices of order n and let $R_{1}, \ldots, R_{2 s}$ be the semi-regular s-set of matrices of order m. Set $E=\left(a_{i j} R_{j+i-1}\right), F=\left(b_{i j} R_{n+j+i-1}\right), G=\left(c_{i j} R_{2 n+j+i-1}\right), H=\left(d_{i j} R_{3 n+j+i-1}\right)$, where $i, j=1, \ldots, n$ and the subscripts of R are reduced modulo n. By the same reasoning as in the proof for Theorem 4 of [8], E, F, G, H are Williamson type matrices of order $n m$.

Corollary 2 If n (odd) is the order of Williamson type matrices and $2 n-1$ is a prime power then there exist Williamson type matrices of order $n(2 n-1)^{2}$.

Proof. Since n is odd, $2 n-1 \equiv 1(\bmod 4)$. By Theorem 1 there exists a semi-regular $2 n$-set of matrices of order $(2 n-1)^{2}$. By Theorem 3 we have Williamson type matrices of order $n(2 n-1)^{2}$.

Corollary 3 (i) There exist Williamson type matrices of order $9^{k}\left(2 \cdot 9^{k}-1\right)^{2}$ if $2 \cdot 9^{k}-1$ is a prime power, where k is a non-negative integer,
(ii) there exist Williamson type matrices of order $7 \cdot 3^{k}\left(14 \cdot 3^{k}-1\right)^{2}$ if $14 \cdot 3^{k}-1$ is a prime power, where k is a non-negative integer.

Proof. From the Index of [11], there exist Williamson type matrices of orders of 9^{k} and $7 \cdot 3^{k}$, where $k=0,1, \ldots$ Using Corollary 2 , the corollary is established.

Theorem 4 If there exist a complex Hadamard matrix of order $2 c$ and a semi-regular $s(=2 c)$-set of matrices of order m then there exists a complex Hadamard matrix of order 2 cm .

Proof. Let $\left\{A_{1}, \ldots, A_{2 s}\right\}$ be the semi-regular $s(=2 c)$-set of matrices of order m and $C=X+i Y$ be the complex Hadamard matrix of order $2 c$, where both X and Y are $(0,1,-1)$ matrices satisfying $X \wedge Y=0, X X^{T}+Y Y^{T}=2 c I_{2 c}, X Y^{T}=Y X^{T}$. Let $P=X+Y$ and $Q=X-Y$. Then both P and Q are $(1,-1)$ matrices of order $2 c$ and $P P^{T}+Q Q^{T}=4 c I_{2 c}, P Q^{T}=Q P^{T}$. Let $P=\left(p_{i j}\right)$ and $Q=\left(q_{i j}\right), i, j=1, \ldots, 2 c$. Set $E=\left(p_{i j} A_{i+j-1}\right)$ and $F=\left(q_{i j} A_{s+i+j-1}\right)$, where $i, j=1, \ldots, s$ and the subscripts of A are reduced modulo $s=2 c$. Clearly, both E and F are $(1,-1)$ matrices of order $2 c m$, since both P and Q are $(1,-1)$ matrices of order $2 c$.

We now prove

$$
E E^{T}+F F^{T}=4 c m I_{2 c m}
$$

Write

$$
E=\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{n}
\end{array}\right] \text { and } F=\left[\begin{array}{c}
F_{1} \\
F_{2} \\
\vdots \\
F_{n}
\end{array}\right]
$$

where E_{i} and F_{i} are matrices of order $m \times s m$.
Note that

$$
\begin{gathered}
E_{i} E_{i}^{T}+F_{i} F_{i}^{T}=\sum_{j=1}^{s}\left(p_{i j} p_{i j} A_{i+j-1} A_{i+j-1}^{T}+q_{i j} q_{i j} A_{s+i+j-1} A_{s+i+j-1}^{T}\right) \\
=\sum_{j=1}^{s}\left(A_{j} A_{j}^{T}+A_{s+j} A_{s+j}^{T}\right)=\sum_{j=1}^{2 s} A_{j} A_{j}^{T}=2 s m I_{m}
\end{gathered}
$$

On the other hand, if $i \neq k$,

$$
\begin{gathered}
E_{i} E_{k}^{T}+F_{i} F_{k}^{T}=\sum_{j=1}^{s}\left(p_{i j} p_{k j} A_{i+j-1} A_{k+j-1}^{T}+q_{i j} q_{k j} A_{s+i+j-1} A_{s+k+j-1}^{T}\right) \\
=\sum_{j=1}^{s}\left(p_{i j} p_{k j}+q_{i j} q_{k j}\right) J_{m}=0
\end{gathered}
$$

Thus

$$
E E^{T}+F F^{T}=2 s m I_{s m}=4 c m I_{2 c m}
$$

Next we prove

$$
E F^{T}=F E^{T}
$$

Write $E F^{T}=\left(D_{i j}\right)$, where $D_{i j}$ is of order $m, i, j=1, \ldots, 2 c$. Note that $D_{i j}=$ $\sum_{k=1}^{2 c} p_{i k} q_{j k} A_{i+k-1} A_{s+j+k-1}^{T}$. For $i \neq j, D_{i j}=\sum_{k=1}^{2 c} p_{i k} q_{j k} J_{m}$. Since $P Q^{T}=Q P^{T}$, $D_{i j}^{T}=D_{j i}, i \neq j$. Note that $D_{i i}=\sum_{k=1}^{2 c} p_{i k} q_{i k} A_{i+k-1} A_{s+i+k-1}^{T}$. From (2), Definition 1, $D_{i i}^{T}=D_{i i}$. Thus $E F^{T}$ is symmetric, i.e. $E F^{T}=F E^{T}$. Finally, Set $U=\frac{1}{2}(E+F)$ and $V=\frac{1}{2}(E-F)$. Thus both U and V are $(1,-1,0)$ matrices of order $2 c m$ satisfying $U \wedge \stackrel{V}{V}=0, U U^{T}+V V^{T}=\frac{1}{2}\left(E E^{T}+F F^{T}\right)=2 c m I_{2 c m}$. Since $E F^{T}=F E^{T}$, $U V^{T}=V U^{T}$. Thus $U+i V$ is a complex Hadamard matrix of order 2 cm .

Corollary 4 If both $p \equiv 1(\bmod 4)$ and $p^{j}(p+1)-1$ are prime powers then there exists a complex Hadamard matrix of order $p^{j}(p+1)\left(p^{j}(p+1)-1\right)^{2}$, where j is a positive integer.

Proof. Obviously, $p^{j}(p+1)-1 \equiv 1(\bmod 4)$. By Theorem 1 there exists a regular $p^{j}(p+1)$-set of matrices of order $\left(p^{j}(p+1)-1\right)^{2}$. From Corollary 18 of [5], there exists a complex Hadamard matrix of order $p^{j}(p+1)$. Using Theorem 4, we have a complex Hadamard matrix of order $p^{j}(p+1)\left(p^{j}(p+1)-1\right)^{2}$.

4 New Construction of Special, Perfect and Nice Williamson Type Matrices

Part (iii) of the next theorem is known in [15] where the special Williamson type matrices are symmetric and commuting. We include it here for completeness.

Theorem 5 (i) If there exist nice Williamson type matrices of orders n and m then there exist Williamson type matrices of order nm,
(ii) if there exist nice Williamson type matrices of order n and special Williamson type matrices of order m then there exist nice Williamson type matrices of order $n m$,
(iii) if there exist special Williamson type matrices of orders n and m then there exist special Williamson type matrices of order $n m$.

Proof. Let $X_{1}, X_{2}, X_{3}, X_{4}$ be nice Williamson type matrices of order n and $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ be nice Williamson type matrices of order m. Set
$Z_{1}=\frac{1}{2}\left(X_{1}+X_{2}\right) \times Y_{1}+\frac{1}{2}\left(X_{1}-X_{2}\right) \times Y_{2}, Z_{2}=\frac{1}{2}\left(X_{1}+X_{2}\right) \times Y_{3}+\frac{1}{2}\left(X_{1}-X_{2}\right) \times Y_{4}$,
$Z_{3}=\frac{1}{2}\left(X_{3}+X_{4}\right) \times Y_{1}+\frac{1}{2}\left(X_{3}-X_{4}\right) \times Y_{2}, Z_{4}=\frac{1}{2}\left(X_{3}+X_{4}\right) \times Y_{3}+\frac{1}{2}\left(X_{3}-X_{4}\right) \times Y_{4}$.
Then $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ are $(1,-1)$ matrices of order $n m$. Note that

$$
\begin{aligned}
Z_{1} Z_{1}^{T} & =\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{1}+X_{2}\right)^{T} \times Y_{1} Y_{1}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{1}-X_{2}\right)^{T} \times Y_{2} Y_{2}^{T} \\
& +\frac{1}{2}\left(X_{1}+X_{2}\right)\left(X_{1}-X_{2}\right)^{T} \times Y_{1} Y_{2}^{T} \\
Z_{2} Z_{2}^{T} & =\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{1}+X_{2}\right)^{T} \times Y_{3} Y_{3}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{1}-X_{2}\right)^{T} \times Y_{4} Y_{4}^{T} \\
& +\frac{1}{2}\left(X_{1}+X_{2}\right)\left(X_{1}-X_{2}\right)^{T} \times Y_{3} Y_{4}^{T} \\
Z_{3} Z_{3}^{T} & =\frac{1}{4}\left(X_{3}+X_{4}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{1} Y_{1}^{T}+\frac{1}{4}\left(X_{3}-X_{4}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{2} Y_{2}^{T} \\
& +\frac{1}{2}\left(X_{3}+X_{4}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{1} Y_{2}^{T} \\
Z_{4} Z_{4}^{T} & =\frac{1}{4}\left(X_{3}+X_{4}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{3} Y_{3}^{T}+\frac{1}{4}\left(X_{3}-X_{4}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{4} Y_{4}^{T} \\
& +\frac{1}{2}\left(X_{3}+X_{4}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{3} Y_{4}^{T}
\end{aligned}
$$

It is easy to check that

$$
Z_{1} Z_{1}^{T}+Z_{2} Z_{2}^{T}+Z_{3} Z_{3}^{T}+Z_{4} Z_{4}^{T}
$$

$=\frac{1}{4}\left(X_{1} X_{1}^{T}+X_{2} X_{2}^{T}+X_{3} X_{3}^{T}+X_{4} X_{4}^{T}\right) \times\left(Y_{1} Y_{1}^{T}+Y_{2} Y_{2}^{T}+Y_{3} Y_{3}^{T}+Y_{4} Y_{4}^{T}\right)=4 n m I_{n m}$.
Obviously, $Z_{i} Z_{j}^{T}=Z_{j} Z_{i}^{T}$, for $i, j=1,2,3,4$. Thus, $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ are Williamson type matrices of order $n m$.

In particular, let $X_{1}, X_{2}, X_{3}, X_{4}$ be nice Williamson type matrices of order n and $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ be special Williamson type matrices of order m. Note that

$$
\begin{gathered}
Z_{1} Z_{2}^{T}=\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{1}+X_{2}\right)^{T} \times Y_{1} Y_{3}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{1}-X_{2}\right)^{T} \times Y_{2} Y_{4}^{T} \\
+\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{1}-X_{2}\right)^{T} \times Y_{1} Y_{4}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{1}+X_{2}\right)^{T} \times Y_{2} Y_{3}^{T}
\end{gathered}
$$

where

$$
\begin{gathered}
\left(X_{1}+X_{2}\right)\left(X_{1}-X_{2}\right)^{T} \times Y_{1} Y_{4}^{T}+\left(X_{1}-X_{2}\right)\left(X_{1}+X_{2}\right)^{T} \times Y_{2} Y_{3}^{T} \\
=\left(X_{1} X_{1}^{T}-X_{2} X_{2}^{T}\right) \times\left(Y_{1} Y_{4}^{T}+Y_{2} Y_{3}^{T}\right)=0 .
\end{gathered}
$$

Then

$$
Z_{1} Z_{2}^{T}=\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{1}+X_{2}\right)^{T} \times Y_{1} Y_{3}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{1}-X_{2}\right)^{T} \times Y_{2} Y_{4}^{T}
$$

Similarly,

$$
Z_{3} Z_{4}^{T}=\frac{1}{4}\left(X_{3}+X_{4}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{1} Y_{3}^{T}+\frac{1}{4}\left(X_{3}-X_{4}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{2} Y_{4}^{T}
$$

Hence

$$
Z_{1} Z_{2}^{T}+Z_{3} Z_{4}^{T}=\frac{1}{4}\left(X_{1} X_{1}^{T}+X_{2} X_{2}^{T}+X_{3} X_{3}^{T}+X_{4} X_{4}^{T}\right) \times\left(Y_{1} Y_{3}^{T}+Y_{2} Y_{4}^{T}\right)=0
$$

We have now proved $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ are nice Williamson type matrices of order $n m$.
Further suppose $X_{1}, X_{2}, X_{3}, X_{4}$ are special Williamson type matrices of order n and $Y_{1}, Y_{2}, Y_{3}, Y_{4}$ are special Williamson type matrices of order m.

$$
\begin{aligned}
& Z_{1} Z_{3}^{T}=\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{1} Y_{1}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{2} Y_{2}^{T} \\
& \quad+\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{1} Y_{2}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{2} Y_{1}^{T}
\end{aligned}
$$

Note that

$$
\left(X_{1}+X_{2}\right)\left(X_{3}+X_{4}\right)^{T}=\left(X_{1}-X_{2}\right)\left(X_{3}-X_{4}\right)^{T}=0
$$

then

$$
Z_{1} Z_{3}^{T}=\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{1} Y_{2}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{2} Y_{1}^{T}
$$

Similarly,

$$
Z_{2} Z_{4}^{T}=\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{3} Y_{4}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{4} Y_{3}^{T}
$$

Clearly, $Z_{1} Z_{3}^{T}+Z_{2} Z_{4}^{T}=0$. Finally, by the same reasoning for $Z_{1} Z_{3}^{T}$ and $Z_{2} Z_{4}^{T}$, we have

$$
Z_{1} Z_{4}^{T}=\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{1} Y_{4}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{2} Y_{3}^{T}
$$

and

$$
Z_{2} Z_{3}^{T}=\frac{1}{4}\left(X_{1}+X_{2}\right)\left(X_{3}-X_{4}\right)^{T} \times Y_{3} Y_{2}^{T}+\frac{1}{4}\left(X_{1}-X_{2}\right)\left(X_{3}+X_{4}\right)^{T} \times Y_{4} Y_{1}^{T}
$$

Clearly $Z_{1} Z_{4}^{T}+Z_{2} Z_{3}^{T}=0$. Thus $Z_{1}, Z_{2}, Z_{3}, Z_{4}$ are special Williamson type matrices of order $n m$.

Corollary 5 If there exist nice Williamson type matrices of orders n and m then there exist Williamson type matrices of order $n m N$, where N was defined in Notation 1.

Proof. From [26], there exist special Williamson type matrices of order N. By Theorem 5 there exist nice Williamson type matrices of order $m N$ and hence Williamson type matrices of order $n m N$.

Let $q \equiv 1(\bmod 4)$ be a prime power and $n=\frac{1}{2}(1+q)$. By Theorem 1 there exists a semi-regular $2 n=(q+1)$-set of matrices of order $q^{2}, Q_{1}, \ldots, Q_{4 n}$ satisfying

$$
Q_{i} Q_{j}^{T}=J_{q^{2}}, \text { if } i-j \neq \pm 2 n, 0, Q_{i} Q_{i+2 n}^{T}=Q_{i+2 n} Q_{i}^{T}
$$

and

$$
\sum_{j=1}^{4 n} Q_{j} Q_{j}^{T}=4 q^{2}(1+q) I_{q^{2}} .
$$

Suppose $A=\left(a_{i j}\right), B=\left(b_{i j}\right), C=\left(b_{i j}\right), D=\left(d_{i j}\right)$ are Williamson type matrices of order n. Set

$$
E=\left(a_{i j} Q_{j-i}\right), F=\left(b_{i j} Q_{n+j-i}\right), G=\left(c_{i j} Q_{2 n+j-i}\right), H=\left(d_{i j} Q_{3 n+j-i}\right),
$$

where the subscripts of Q are reduced modulo n to the residue class $\{1, \ldots, n\}$. By the same reasoning as in the proof of Theorem 4 of [8], E, F, G, H are Williamson type matrices of order $n q^{2}$. Further suppose $A B^{T}+C D^{T}=0$, i.e. A, B, C, D are nice Williamson type matrices of order n. Write $E F^{T}=\left(X_{i j}\right), G H^{T}=\left(Y_{i j}\right)$, where $X_{i j}, Y_{i j}$ are of order $q^{2}, i, j=1, \ldots n$. Note that

$$
X_{i j}=\sum_{k=1}^{n} a_{i k} Q_{k-i} b_{j k} Q_{n+k-j}^{T}=\sum_{k=1}^{n} a_{i k} b_{j k} J_{q^{2}},
$$

since $(n+k-j)-(k-i) \neq 0,2 n$. Similarly,

$$
Y_{i j}=\sum_{k=1}^{n} c_{i k} Q_{2 n+k-i} b_{j k} Q_{3 n+k-j}^{T}=\sum_{k=1}^{n} c_{i k} d_{j k} J_{q^{2}},
$$

since $(3 n+k-j)-(2 n+k-i) \neq 0,2 n$. Note that $A B^{T}+C D^{T}=0$ thus $X_{i j}+Y_{i j}=0$ and then $E F^{T}+G H^{T}=0$. Similarly, if $A D^{T}+B C^{T}=0$ then $E H^{T}+F G^{T}=0$. Note that if n is odd, then $2 n-1 \equiv 1(\bmod 4)$. Hence we have proved

Theorem 6 If there exist nice (perfect) Williamson type matrices of order n, where n is odd and $2 n-1$ is a prime power then there exist nice (perfect) Williamson type matrices of order $n(2 n-1)^{2}$.

Corollary 6 Let N, N_{1} and N_{2} be three products of the kind defined by Notation 1. If $2 N-1$ is a prime power then there exist
(i) perfect Williamson type matrices of order $N(2 N-1)^{2}$,
(ii) nice Williamson type matrices of order $N(2 N-1)^{2} N_{1}$,
(iii) Williamson type matrices of order $N(2 N-1)^{2} N_{1}\left(2 N_{1}-1\right)^{2} N_{2}$, if $2 N_{1}-1$ is a prime power.

Proof. (i), (ii) and (iii) hold by Theorem 6, Theorem 5 and Corollary 5 respectively.

For example, by Corollary 6 there exist perfect Williamson type matrices of order $9 \cdot 17^{2}$, nice Williamson type matrices of order $9 \cdot 17^{2} \mathrm{~N}$ and Williamson type matrices of order $9^{2} \cdot 17^{4} \mathrm{~N}$.

5 Tight Williamson-like Matrices and Applications

Some tight Williamson-like matrices were found by Xia [22]. For example, from [20], we construct cyclic tight Williamson-like matrices of orders 5 and 13 with first rows

$$
\begin{aligned}
& +-++-,++-++,--++-,++++- \text { and } \\
& ++---+--++-++,--+++-+++++-+ \\
& +--+-+++--+-,+-++++++-++- \text { respectively. }
\end{aligned}
$$

From [20] we construct type 1 tight Williamson-like matrices of order 25. Any
element in the abelian group $Z_{5} \oplus Z_{5}$ can be expressed as (a, b), where $a, b \in Z_{5}$, and the addition in $Z_{5} \oplus Z_{5}$ can be defined as $(a, b)+(c, d)=(a+b, c+d)$. Set

$$
\begin{aligned}
S_{1} & =\{(0,0),(0,1),(1,2),(3,3),(0,3),(4,4),(3,4),(2,0),(2,2),(1,0),(1,4), \\
& (0,2),(3,0)\}, \\
S_{2} & =\{(0,1),(4,0),(3,1),(4,4),(0,4),(4,2),(1,0),(1,1),(3,2)\}, \\
S_{3} & =\{(1,2),(3,3),(1,3),(4,1),(3,4),(2,0),(2,3),(4,3),(1,4),(0,2),(2,4), \\
& (2,1)\}, \\
S_{4} & =\{(3,3),(4,1),(0,3),(2,0),(4,3),(2,2),(0,2),(2,1),(3,0)\} .
\end{aligned}
$$

The type $1(1,-1)$ incidence matrices of $S_{1}, S_{2}, S_{3}, S_{4}$ form tight Williamson-like matrices of order 25 .

Tight Williamson-like matrices are not Williamson type matrices but they are suitable for use in the Goethals-Seidel or Wallis-Whiteman arrays [14] with cross correlation types of properties (see Definition 4). Besides forming Hadamard matrices of Goethals-Seidel or Wallis-Whiteman type [14], tight Williamson-like matrices can be used to form Hadamard matrices in the following special array.

Let $A_{1}, A_{2}, A_{3}, A_{4}$ be tight Williamson-like matrices of order n. Set

$$
H=\left[\begin{array}{cccc}
A_{1} & A_{2} & A_{3} & A_{4} \\
A_{2} & A_{1} & A_{4} & A_{3} \\
A_{3}^{T} & A_{4}^{T} & -A_{1}^{T} & -A_{2}^{T} \\
A_{4}^{T} & A_{3}^{T} & -A_{2}^{T} & -A_{1}^{T}
\end{array}\right] .
$$

Hence H is an Hadamard matrices of order $4 n$ with 4×4 type 1 blocks.
Let $A_{1}, A_{2}, A_{3}, A_{4}$ be the tight Williamson-like matrices of order n and $T_{1}, T_{2}, T_{3}, T_{4}$ be T-matrices of order t.
Write

$$
\begin{aligned}
& E_{1}=T_{1} \times A_{1}+T_{2} \times A_{2}+T_{3} \times A_{3}^{T}+T_{4} \times A_{4}^{T}, \\
& E_{2}=T_{1} \times A_{2}+T_{2} \times A_{1}+T_{3} \times A_{4}^{T}+T_{4} \times A_{3}^{T}, \\
& E_{3}=T_{1} \times A_{3}+T_{2} \times A_{4}-T_{3} \times A_{1}^{T}-T_{4} \times A_{2}^{T}, \\
& E_{4}=T_{1} \times A_{4}+T_{2} \times A_{3}-T_{3} \times A_{2}^{T}-T_{4} \times A_{1}^{T} .
\end{aligned}
$$

Clearly, each E_{j} is a $(1,-1)$-matrix. It is easy to check that $\sum_{j=1}^{4} E_{j} E_{j}^{T}=4 t n I_{t n}$. Note that the E_{j} are of type 1, hence we can construct an Hadamard matrix of order $4 t n$ by using Theorem 3 of [14]. This proves the more general result:
If there exist tight Williamson-like matrices of order n and T-matrices of order t then there exists an Hadamard matrix of order 4tn.

Xia proved [22] that if there exist tight Williamson-like matrices of order n and type 1 special Williamson type matrices of order m then there exist tight Williamson-like matrices of order $n m$. Since there exist tight Williamson-like matrices of orders 5 , 13,25 and N is the order of type 1 special Williamson type matrices, there exist
tight Williamson-like matrices of orders $5 N, 13 N, 25 N$ and thus there exist Hadamard matrices of orders $5 t N, 13 t N, 25 t N$ where t is the order of the T-matrices.

Let A, B, C, D be tight Williamson-like matrices of order n. Set

$$
P=\frac{1}{2}\left[\begin{array}{cc}
A+B & C+D \\
C^{T}+D^{T} & -A^{T}-B^{T}
\end{array}\right] \text { and } \quad Q=\frac{1}{2}\left[\begin{array}{cc}
A-B & C-D \\
C^{T}-D^{T} & -A^{T}+B^{T}
\end{array}\right] .
$$

Thus P and Q are two disjoint $W(2 n, n)$ and then we have two disjoint $W(2 n, n)$ where $n=5 N, 13 N, 25 N$.

By Corollary 2.11 of [4] a $W(2 n, n)$, where n is odd, only exists when n is a sum of two squares. Hence we have reproved that if n (odd) is the order of tight Williamson-like matrices then n is a sum of two squares (Xia [21]), in other words, the factorization of n into powers of distinct primes contains no odd powers of primes congruent to $3(\bmod 4)$.

Two disjoint $W(2 n, n)$ are often used for constructing Hadamard matrices [2], [3].
Also we can construct two disjoint $W(2 n, n)$ by using nice Williamson type matrices. Let A, B, C, D be nice Williamson type matrices of order n. Set $P=$ $\frac{1}{2}\left[\begin{array}{cc}A+B & C+D \\ C+D & -A-B\end{array}\right]$ and $Q=\frac{1}{2}\left[\begin{array}{cc}A-B & C-D \\ C-D & -A+B\end{array}\right]$. It is easy to verify that P and Q are two disjoint $W(2 n, n)$. Thus there exist two disjoint $W(2 n, n)$ for $n=N(2 N-1)^{2} N_{1}$ where N, N_{1} were defined by Notation 1 and $2 N-1$ is a prime power (see Corollary 6).

The constructions of all the above matrices P and Q were previously given in [2].
The following table shows the existence of tight Williamson-like matrices of odd orders <60. Tight Williamson-like matrices for odd order n can only exist for $n \equiv 1(\bmod$ 4), where the factorization of n into powers of distinct primes contains no odd powers of primes congruent to $3(\bmod 4)$. Hence the following list contains only those n which exist or could possibly exist.
order construction

5 [22], see Section 5
$9^{t} \quad[15]$, since type 1 special Williamson type are tight Williamson-like matrices
[22], see Section 5 unknown [22], see Section 5 unknown
unknown
unknown
[22], see this paper unknown unknown

Acknowlegement: I wish to thank Professor Jennifer Seberry for her help and encouragement.

References

[1] L. D. Baumert and M. Hall, Jr. Hadamard matrices of Williamson type. Math. Comp., 19:442-447, 1965.
[2] R. Craigen. Constructing Hadamard matrices with orthogonal pairs. To appear in Ars Combinatoria.
[3] R. Craigen, Jennifer Seberry, and Xian-Mo Zhang. Product of four Hadamard matrices. Journal of Combinatorial Theory, Ser. A, 59:318-320, 1992.
[4] A. V. Geramita and J. Seberry. Orthogonal Designs: Quadratic Forms and Hadamard Matrices. Marcel Dekker, New York-Basel, 1979.
[5] H. Kharaghani and Jennifer Seberry. Regular complex Hadamard matrices. Congress. Num., 24:149-151, 1990.
[6] Masahiko Miyamoto. A construction for Hadamard matrices. Journal of Combinatorial Theory, Ser. A, 57:86-108, 1991.
[7] Jennifer Seberry. Some matrices of Williamson-type. Utilitas Math., 4:147-154, 1973.
[8] Jennifer Seberry. A new construction for Williamson-type matrices. Graphs and Combinatorics, 2:81-87, 1986.
[9] Jennifer Seberry and Albert Leon Whiteman. New Hadamard matrices and conference matrices obtained via Mathon's construction. Graphs and Combinatorics, 4:355-377, 1988.
[10] Jennifer Seberry and Mieko Yamada. On the products of Hadamard matrices, Williamson matrices and other orthogonal matrices using M-structures. JCMCC, 7:97-137, 1990.
[11] Jennifer Seberry and Mieko Yamada. Hadamard matrices, sequences and block designs. In J. Dinitz and D. Stinson, editors, Surveys in Contemporary Design Theory, Wiley-Interscience Series in Discrete Mathematics. John Wiley, New York, 1992.
[12] Jennifer Seberry and Xian-Mo Zhang. Regular sets of matrices and applications. To appear in Graphs and Combinatorics.
[13] Jennifer Seberry and Xian-Mo Zhang. Some orthogonal designs and complex Hadamard matrices by using two Hadamard matrices. Australasian Journal of Combinatorics, 4:93-102, 1991.
[14] J. Seberry-Wallis. On Hadamard matrices. Journal of Combinatorial Theory, Ser. A, 18:149-164, 1975.
[15] R. J. Turyn. A special class of Williamson matrices and difference sets. Journal of Combinatorial Theory, Ser. A, 36:111-115, 1984.
[16] Jennifer Seberry Wallis. Construction of Williamson type matrices. Linear and Multilinear Algebra, 3:197-207, 1975.
[17] W. D. Wallis, A. Penfold Street, and J. Seberry Wallis. Combinatorics: Room Squares, sum-free sets, Hadamard Matrices, volume 292 of Lecture Notes in Mathematics. Springer-Verlag, Berlin- Heidelberg- New York, 1972.
[18] Albert Leon Whiteman. An infinite family of Hadamard matrices of Williamson type. Journal of Combinatorial Theory, Ser. A. 14:334-340, 1973.
[19] Albert Leon Whiteman. Hadamard matrices of Williamson type. J. Austral. Math. Soc., 21:481-486, 1976.
[20] Ming Yuan Xia. Some supplementary difference sets and Hadamard matrices. Acta. Math. Sci., 4 (1):81-92, 1984.
[21] Ming Yuan Xia. On construction of some supplementary difference sets and others. Journal of Central China Normal University (Natural Sciences), Monograph of Mathematics, No. 1:204-208, 1989.
[22] Ming Yuan Xia. Hadamard matrices. Combinatorial designs and applications, Lecture Notes in Pure and Appl. Math., Dekker, New York, 126:179-181, 1990.
[23] Mieko Yamada. On the Williamson matrices of Turyn's type and and type j. Comment. Math. Univ. San Pauli, 31:71-73, 1982.
[24] K. Yamamoto. On a generalized Williamson equation. Colloq. Math. Janos Bolyai, 37:839-850, 1981.
[25] K. Yamamoto and Mieko Yamada. Williamson matrices of Turyn's type and Gauss sums. J. Math. Soc. Japan, 37:703-717, 1985.
[26] Ming Yuan Xia. Some infinite classes of special Williamson matrices and difference sets. To appear in Journal of Combinatorial Theory, Ser A.

