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Abstract 

It is shown that a 4-(12,6,6) design, if it exists, must be rigid. The in­
timate relationship of such a design with 4-(12,5,4) designs and 5-(12,6,3) 
designs is presented and exploited. In this endeavor we found: (i) 30 non­
isomorphic 4-(12,5,4) designs; (ii) all cyclic 3-(11,5,6) designs; (iii) all 5-
(12,6,3) designs preserved by an element of order three fixing no points and 
no blocks; and (iv) all 5-(12,6,3) designs preserved by an element of order 
two fixing 2 points. 

1 Introduction 

A simple t-(v, k, A) design is a pair (X, D) where X is a v-element set of points and 
D is a collection of distinct k-element subsets of X called blocks such that: for all 
T C X, ITI = t, I{K ED: T C K}I = A. For v ~ 12,4-(12,6,6) is the only parameter 
case for which existence is unsettled. It is known that necessary conditions for the 
existence of a t-(v, k, A) design are that for each 0 ~ i ::; t 

(
V - i) (k - i) A . == 0 (modulo . ). 
t-'/, t-'/, 
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Given integers 0 :::; t ::::; k ::::; v the smallest positive integer A such that these necessary 
conditions hold is said to be the minimum A for the parameters t, k and v. It is usually 
denoted by ~. The largest such A is 1 = (~=!) and it is achieved when all k-element 

subsets are chosen as blocks. It is now easy to see that 0 :::; A :::; 1 and that ~ divides 
A. If A = 0 or if A 1 the design is said to be trivial. Furthermore, since whenever 
(X, D) is a t-( v, k, A) design, then (X, (~) - D) is a t-( v, k, >: A) design, we usually 

only search for t-( v, k, A) designs with 0 < A ::::; 1/2. The existence/nonexistence of 
4-(12,6,A) designs is given in Table I. 

Table I 

2 no Dehon [D] and Oberschelp [0]. 
4 yes 5-(12,6,1) as a 4-design. 
6 ? Unknown. 
8 yes 5-(12,6,2) as a 4-design. 
10 yes Kreher and Radziszowski [KR2]. 
12 yes 5-(12,6,3) as a 4-design. 
14 Extension of 

If a 4-(12,6,6) does not exist it would be the first known example when the yes's in 
such a table do not form an interval. This is perhaps strong evidence that a 4-(12,6,6) 
exists, but constructing the beast, as we shall see in the next sections, is a different 
matter. For the remainder of this paper (X, D) will denote the possible 4-(12,6,6) 
design we search for. 

2 Structure 

For I ~ X, let A(1) = I{K E V : K ~ I}I. If 0 :::; III i:::; 4, then A(1) = Ai = 

6 e42~D / (~=~). Thus ),0 = 198, Al = 99, ),2 = 45, A3 18 and A4 = 6. For S ~ X, 
lSI s, let ai(S) be the number of blocks in V intersecting S in exactly i points. 
Note that ai(S) 0, if i > s. The following equations hold: 

t (~) ai( S) = (~) Aj 
t=O J J 

(1) 

for all 0 :::; j :::; 4. For lSI = 6 there are only 4 solutions, A, B, C, and D to the 
equations in (1), and they are given in Table II. In particular a6 is at most 1 so if a 
4-(12,6,6) design exists it has no repeated blocks. Let NA , NB, Nc and N D , be the 
number of S ~ X, lSI 6 which yield solution A, B, C and D respectively. Clearly 
NA + ND = IVI Ao = 198. 

Table II 

ao a1 a2 a3 a4 as a6 solution 
0 8 50 80 55 4 1 A 
1 4 55 80 50 8 0 B 
0 9 45 90 45 9 0 C 
1 3 60 70 60 3 1 D 
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Remark: The existence of a 4-(12,6,2) is easily ruled out by using the equations in 
(1). In this case A = A4 = 2, A3 = 6, A2 = 15, Al = 33, Ao 66 and s = lSI = 6. An 
alternating sum of these equations yields ao + a5 + 5a6 3. But if S is a block, 
then a6 = 1 and this is a contradiction. 

Let /3i be the number of 5-subsets appearing in exactly i of the blocks in V. Note 
that /3i = 0 for i :.2: 6, since a5 is ::; 4 for solution A and D in Table II. Counting, (1) 
the number of 5-element subsets, (2) the number of pairs (F, K) E (~) X V such that 
F ~ K, and (3) the number of unordered pairs of blocks intersecting in 5 elements; 
the following system of equations on the /3i holds: 

/31 + 2/32 + 3/33 + 4/34 + 5/35 

/32 + 3/33 + 6/34 + 10/35 

( 15
2

) 4Ao ; 

(:) Ao = 6Ao ; 

(4NA + 3ND)/2 (NA + 3Ao)/2 . 

Taking the linear combination with coefficients +1,-1,+1 of these 3 equations, re­
spectively, gives 

Thus, 0 ::; NA Ao. But also NA + ND = 198 = Ao. Consequently NA = 198, 
N D 0 and /30 + (33 + 3/34 + 6(35 = 0 so /30 (33 (34 /35 0 and /31 = /32 = 
2Ao = C52) /2. Let 15 = {X - K : K E V} and for any S ~ X, lSI = s, set a(S) = 
[ao(S), al(S), ... , as(S)]. We have the following structure theorems. 

Theorem Sl: 15 n V = 0 and thus V U V is a simple 5-(12}6}3) design. 

Proof: To show that 15 U V is a 5-(12,6,3) design consider any 5-element set S ~ 
X. Let ~(S) = I{K E V : K n S = 0}1. Then by inclusion-exclusion .6.(S) = 
Ao - 5A1 + 10A2 10A3 + 5A4 - A5(S), where A5(S) is the number of blocks of V 
containing S. Thus the number of blocks in V U V containing S is ~(S) + A5(S) 3 
and therefore 'D U 'D is a 5-(12,6,3) design. In order for it to be simple we need 
15 n 'D = 0. This follows since NA = 198 and ND O. So from Table II we see that 
ao = O. 0 

Theorem S2: Let S be any 6-element subset in X. Then 

{ 

[0,8,50,80,55,4, 1] if S E 'D ; 
a(S) = [1,4,55,80,50,8,0] if S E 15; _ 

[0,9,45,90,45,9,0] if S fj. ('D U 'D) . 

Proof: This also follows from NA = 198, ND = 0 and Table II. 0 
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Theorem S3: 

(i) Exactly one half of the 5-element subsets are contained in precisely one block of 
V; the other half are in two. 

(ii) Exactly one half of the 'i-element subsets contain precisely one block of V; the 
other half contain two. 

Proof: (i) follows from /31 = /32 = es2) /2 and (ii) is because the complement of a 
5-element subset is a 7-element subset. 0 

Theorem S4: Every block K E V can be written uniquely as K = FK U PK where 

(i) FK = {ff,ff,ff,ff} and for eachi = 1,2,3,4 there is exactly one Ji E X-K 

with Ki (K - {fr}) U {Jr} E V and 

(ii) PK = {pf, pf} and the only block containing (K - {pf}) is K itself, i = 1, 2. 

Proof: This follows from D'.5(K) = 4 and Theorem S3. 0 

The sets {FK : K E V} are called special four-sets, the pairs {PK : K E V} are 
called special pairs. Let F ~ X be any 4-element set. We define the graph of F to be 
r(F) = (V, E) with vertices V = X - F and edges E = {{v,w} : F U {v,w} E V}. 
The graph r(F) is also often called the derived design of V with respect to F. 

Theorem S5: For any 4-element set F, r(F) is isomorphic to 

Proof: f(F) has only 6 edges since ),4 = 6. By Theorem S3(i), five element subsets 
are in either one or two blocks. Thus each vertex has degree 1 or 2. Also f(F) has no 
triangles by Theorem S3(ii). The only graphs on 8 vertices satisfying this are given 
above. 0 

Theorem S6: Let Fi = {S E (~) : I{K E V : K ;2 S}I i}, i 1,2. Then (X, F 1 ) 

and (X,F2) partition (~) into two disjoint 4-(12,5,4) designs. 

Proof: By Theorem S3 we have IF11 = IF21 = en/2 and that Fl n Fs = 0. Thus 
it need only be shown that F i , i = 1 or 2, is a 4-(12,5,4) design. Let F ~ X be 
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any 4-element set. Then by Theorem S5 the graph r( F) has precisely four vertices 
of degree 1 and four vertices of degree 2. The four vertices of degree i correspond to 
four blocks in Fi containing F. 0 

3 Automorphisms 

In this section aut(B) denotes the automorphism group of the set system B. In 
particular let G be the automorphism group of a possible 4-(12,6,6) design (X, D). 
Keep in mind that this means G is also the automorphism group of the 4-(12,6,6) 
design (X, D) and the 5-(12,6,3) design (X, Du15). The structure theorems establish: 

(1) KED if and only if K contains precisely two members of Fl and four members 
of F 2 ; 

(2) K E 15 if and only if K contains precisely four members of Fl and two members 
of F2 ; 

(3) S E Fl if and only if S is contained in precisely one member of D and two 
members of 15; and 

(4) S E F2 if and only if S is contained in precisely two members of D and one 
member of 15. 

This intimate relationship between the set systems F 1 , F 1 , V and 15 implies that 
their automorphism groups are identical. We therefore have the following theorem. 

Theorem AI: G = aut(Fl) = aut(F2) = aut(D) = aut(15). 

We now proceed systematically to rule out possible orders of automorphisms in G. 
We of course need not consider automorphisms of prime order exceeding 11 since G 
is a permutation group on 12 symbols. 

Theorem A2: Let F ~ X be any 4-element set. Then GF = {g E G: F9 = F} is 
a 2-group. 

Proof: If 9 E GF then g* = g\X-F is an automorphism of reF). But by Theorem S5, 
it is easy to see aut(r(F)) is a 2-group. 0 

Theorem A3: There are no elements of order 11 in G. 

Proof: Using a backtracking algorithm we have found that there are exactly 70 distinct 
(O,l)-solutions U to the system of 15 equations in 42 unknowns 

A3,5U = 6J, 

where A3 ,5 is the incidence matrix of 15 orbits of 3-sets versus 42 orbits of 5-sets 
for the group generated by 9 = (0,1,2,3,4,5,6, 7, 8, 9,10). These solutions yield all 
distinct cyclic 3-(11,5,6) designs. If G has an element of order 11, then its derived 
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design through the fixed point has to be one of the 70 designs obtained by the above 
procedure. The full automorphism group of these designs is by virtue of the element 9 
primitive. It is therefore easily checked that their full automorphism group is cyclic of 
order 11. Hence any two such designs are isomorphic if and only if they are isomorphic 
by an element of H = (g, h) where h = (1,2,4,8,5,10,9,7,3,6). The resulting set of 
7 nonisomorphic solutions is given in Table III. Theorems S3 and S6 imply that each 
4-set R must be covered 1 or 2 times in the derived design. However for each of the 
7 nonisomorphic cyclic 3-(11,5,6) designs a 4-set can be found that is covered 0 or at 
least 3 times, thus none of them extends to a 4-(12,6,6). 0 

Table III: The 7 nonisomorphic cyclic 3-(11,5,6) designs. 

No. Base blocks 

1 o 1 2 56 o 1 2 3 7 0245 6 01247 02357 
o 1 4 6 9 o 2 3 6 10 o 2 3 4 10 02589 

2 o 1 246 o 1 256 02348 o 1 2 3 8 o 1 2 5 8 
02 3 5 9 0245 9 o 2 3 6 10 o 2 3 5 10 

3 o 1 246 o 1 2 5 6 02347 01457 02 3 48 
o 1 238 02458 02 359 023 5 10 

4 o 1 246 0125 6 02347 02456 02357 
o 1 4 5 7 o 1 2 3 8 o 2 358 023 6 10 

5 o 1 236 o 1 456 o 1 247 02357 02568 
02 3 48 0245 9 o 2 3 6 10 o 234 10 

6 o 1 2 3 6 02347 o 245 6 o 1456 o 1 248 
023 58 o 1 459 o 2 3 5 10 o 246 10 

7 o 1 245 o 1 237 o 2456 o 12 5 7 02 3 48 
02358 o 1 458 02 35 10 o 246 10 

Theorem A4: There are no elements of order 7 in G. 

Proof: Every element of order 7 must fix a 4-element set. This IS impossible by 
Theorem A2. 0 

Theorem A5: There are no elements of order 5 in G. 

Proof: Let 9 E G, Igl = 5. Then 9 cannot fix 4 or more points for otherwise we 
violate Theorem A2. Thus we may assume without loss that X = {I, 2, 3, ... , 12} 
and 9 = (1,2,3,4,5)(6)(7,8,9,10,11 )(12). Now IVI = 198 == 3 (mod 5). So there 
is a KED ( in fact at least three of them) such that Kg = K. Without loss let 
K = {I, 2, 3,4,5, 6}. But by Theorem SI we know that al(K) = 8. This is impossible 
given the automorphism g. 0 

Theorem A6: Elements of order 3 in G fix no points and no blocks in 'D or in V. 

Proof: If 9 fixes a point then it must fix some set F of 4 points and act as an element 
of order 3 on the remaining points X-F. This is impossible by Theorem A2. 
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Suppose 9 fixes a block K. Then since by the above 9 fixes no points it is impossible 
for 9 to fix any block intersecting K in exactly one point. This contradicts al(K) = 8. 
This also holds for 15, since it is isomorphic to V. 0 

We show in Theorem A 7 with the aid of a computer that G contains no elements 
of order 3 and thus in particular 9 does not divide the order of G. This last fact can 
also be established by a much easier proof. If G contains an element 9 of order 9, 
then 93 would have order 3 and fix 3 points, contrary to Theorem A6. Thus, if 9 
divides the order of G then G contains a subgroup H isomorphic to Z3 X Z3. Then 
there exists a, bEG such that lal = Ibl = 3 and bab2 = a. By Theorem A6 neither a 
nor b can fix points. It is impossible to find such automorphisms on 12 points. 

Theorem A 7: There are no elements of order 3 in G. 

Proof: If G contains an element of order 3, then we may assume by Theorem A6 that 
the 5-(12,6,3) design vu15 is fixed by the automorphism (0,1,2)(3,4,5)(6,7,8)(9,10,11) 
and that it fixes no blocks. A computer search by the method described in [R] 
establishes that there are exactly 7 such nonisomorphic designs. These 7 designs are 
displayed in Table IV and it is easily checked by a backtracking algorithm that none 
of them can be partitioned into the required 4-(12,6,6) designs. 0 

Table IV 

Design I. Gr = ((0,5,10)(1,3,11)(2,4,9)(6, 7,8), (0, 3, 9)(1,4,10)(2,5,11)(6,8, 7)) . 
IGrl = 9. 

Orbit representatives of Gr generating 5-(12,6,3) design 1. 

013684 013689 o 1 3 64 10 0136711 0136911 013849 
013879 0138711 o 1 3 8 10 11 o 1 347 10 0134711 o 1 3 4 10 11 
o 1 39 10 11 016847 0168711 0168911 016479 0164911 
0184911 0147911 o 1 7 9 10 11 0368411 0364711 0364911 
0384711 o 3 8 9 10 11 o 3 4 9 10 11 06 7 9 10 11 o 8 49 10 11 136847 
1368411 136879 136479 1 3 6 4 7 10 13~'±i:J11 134"1911 

1349115 1 3 7 9 10 11 1 6 8 9 10 11 1847911 3684911 36 8 9 10 11 
3 6 49 10 11 3479 10 11 

Design II. GIl = ((0,5)(1,3)(2,4)(6,10)(7,11)(8,9), 
(0,8)(1,6)(2, 7)(3, 10)(4,11 )(5,9), (0,11,1,9,2,10)(3,8,4,6,5, 7)). IGIlI = 12. 

Orbit representatives of GIl generating 5-(12,6,3) design II. 

013694 013697 013647 o 1 3 6 5 10 013687 013945 
013948 013958 0134511 o 1 3 4 5 10 013587 016958 
016957 0164511 016458 016487 o 1 6 48 10 016587 
o 14 5 8 10 036948 036458 036457 039457 069458 
136945 136958 1 3 6 9 5 10 136987 136458 1394811 
139487 169457 1 6 94 8 10 194587 1 94 5 8 10 
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Table IV (continued) 

Design III. GIll = ((0, 10, 1 )(2,9, l1 )(3, 7,6)(4,8,5), 
(0,2,1 )(3,5,4)(6,8,7)(9,11,10)). IGIlII 12. 

Orbit representatives of GIll generating 5-(12,6,3) design III. 

013684 013689 o 1 3 6 4 10 0136911 o 1 3 84 10 013879 
013479 o 1 3 9 10 11 016847 016879 o 1 6 8 7 10 0164711 
o 1 649 10 0164911 o 1 6 7 9 10 o 1 8 4 9 10 o 1 479 10 o 1 4 7 10 11 
o 1 79 10 11 0179115 0368411 036 89 10 036479 03641011 
036 79 10 038479 o 6 847 10 06 8 49 10 o 6 84 10 11 0647911 
o 679 10 11 136847 1 3 6 8 7 10 1 3 6 8 9 10 136479 1 3 6 4 9 10 
1 3 6 79 10 138795 1 8 4 7 9 10 3 6 847 10 

Design IV. GIV = ((0, l1, 1,9,2,10)(3,6,4,7,5,8), 
( 0, 4) ( 1, 3) ( 2, 5) ( 6, 11) ( 7, 10) ( 8, 9)). I G IV I 12. 

Orbit representatives of GIV generating 5-(12,6,3) design IV. 

013649 013645 013678 013479 013475 013498 
013795 013785 016479 0164711 016495 016485 
016798 0167511 016985 014785 017985 036478 
0364911 036795 0369811 034798 0349511 0379811 
064798 064795 0649811 0679511 0498511 136478 
136475 136498 1364911 136798 136795 136985 
134985 1679811 147985 

Design V. Gv ((0,10,6)(2,3,9)(5,7,11), (0,5,8)(1,3,6)(2,4,7)(9,10,11), 
(0, 1,3,4, 7, 8)(2, 10, 5, 9, 6, l1)). IGv I = 36. 

Orbit representatives of Gv generating 5-(12,6,3) design V. 

o 1 3 6 4 9 0 1 3 6 9 5 0 1 3 4 9 10 0 1 3 4 9 8 0 1 3 4 5 10 0 1 3 4 10 8 
o 1 6 4 9 5 0 1 6 4 5 10 0 3 6 4 9 10 1 3 6 4 9 8 1 3 6 4 5 8 1 3 6 9 5 8 

Design VI. GVI = ((0,4,10)(2,9,8)(5, 7,l1),(O,3,5,6,8,1)(2,l1,4,9, 7,10)). 
IGVI ! = 36. 

Orbit representatives of GVI generating 5-(12,6,3) design VI. 

013647 013479 0137511 016479 014798 036478 
036498 136478 136475 136498 134798 

Design VII. Gv II = ((0,4, l1 )(3,8,10)( 5, 7, 9), (0, 7,10)(1,3,6)(2,11,5)(4,9,8)). 
IGVIlI = 144. 

Orbit representatives of GVII generating 5-(12,6,3) design VII. 

013684 016847 0164711 0368411 136847 

10 



Theorem AS: Elements of order 2 in G fix two points and exactly ten blocks. 

Proof: Let fix(g) I{x EX: x9 = x}1 be the number of fixed points of g. There 
are three cases. 

Case 1 fix(g) E {4, 6, 8} 

In this case we may assume without loss of generality that 9 = (7,8)(9,10)(11,12), 
(5,6)(7,8)(9,10)(11,12) or (9,10)(11,12). For each possibility consider the 5-set 5 = 
{2, 3, 4, 5, 6}. By Theorem S3(i) there are exactly 3 blocks in '0 U 15 containing 5. 
At least one of them must therefore be fixed by g, as Ig\ = 2. Hence we may assume 
(interchanging the roles of '0 and 15 if necessary), that K = {I, 2, 3,4,5, 6} 'O. 
This is up to relabeling the only way to construct a block containing 5 that is fixed 
by g. Let FK {ff, ff, ff, ff} ~ K be the special 4-set of K as defined in 
Theorem S4. Then by examining the structure of the automorphism 9 we may assume 
(ff)9 ff 1 and if = 11. This implies that K' = {1l,2,3,4,5,6} E '0 and 
K" {12, 2, 3,4, 5, 6} E '0 Now we have three blocks K, K' and K" each containing 
the same 5-element set 5, contrary to Theorem S3(i). 

Case 2 fix(g) = 10 

Here without loss of generality 9 = (11,12). Let K D be any block containing 
the pair 11,12, and write K FK U PK , the decomposition into special sets, and 
set A K {11,12}. If 11 E FK , then there is x E X - K such that K' = 
((K - {11}) U {x}) E 'O. So, K" = (K')9 = ((K - {12}) U {x}) ED is also a block. 
But now r(A) contains the edges {1l,12}, {11, x} and {12, x}, a triangle. This is 
contrary to Theorem S5. The same result holds for 12. That is PK = {11, 12} is a 
special pair in every block that contains it. 

Now let {x,y} E X - {11, 12} and set H = {x,y, 11, 12}. Thus for every edge 
{a,b} E r(H) we have {a,b,x,y,11,12} E '0, and {11,12} is the special pair in this 
block. But this implies a and b both have degree 2 in r( H). The edge {a, b} was 
arbitrary so every vertex has degree 2, contradicting Theorem S5. 

Case 3 fix(g) E {0,2} 

Let X = Al U A2 U ... U A6 be any partition of X into parts all of size 2. A subset 
5 ~ X will be of type type(5) = lao, al, a2] just when ai = I{j : IAj n 51 = i}l. 
Let T[ao,al,a2l = {5 ~ X : type(5) = lao, aI, a2]} and set bi = I{K ED: type(K) 
[i,6 - 2i, i]}l. The following equations hold: 

bo + bl + b2 + b3 198 

b2 + 3b3 L I{K E 1) : K ;;2 F}I = 6 (~) = 90 
FET[4,O,2j 

6bI + 10b2 + 12b3 L I{K E '0 : K ;;2 F}I = 6 (:) 24 = 1440 
FET[3,2,lj 

15bo + 9b1 + 4b2 L I{K E '0: K;;2 F}I = 6(:)24 = 1440 
FET[2,4,Oj 
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The general solution to these equations is given by 

lbo, bl , b2 , b3 ] = (18 - b3 , 90 + 3b3 , 90 3b3 , b3 ]. 

However, 0 :s: b3 :s. (~) /2 = 10 since whenever K E V we have K rf. V. Thus 
bo ~ 8. But if the partition AI, A 2 , ••• , A6 is given by the six 2-cycles in a supposed 
automorphism 9 of order 2 fixing no points, then bo = o. For if not then there would 
be a block K E 1) with Kg n K = 0. Hence there can be no such automorphism. 
We therefore conclude that an automorphisms 9 of order 2 must fix two points. Let 
Al {x,y} be the set of fixed points of g, and let A 2 ,A3 , ... ,A6 be the five sets of 
pairs given by the 2-cycles of g. The equations and solution given above must also 
hold for this partition. If S is any 5-element subset of X fixed by g, then there is 
some block K in the 5-(12,6,3) design V U 15 that contains S and is also fixed by g. 
Hence, either K or K is a member of V. We may therefore assume that at least half 
of the 6-element subsets fixed by 9 are blocks in V. It follows that exactly ten of the 
6-element subsets fixed by 9 are blocks in the design V. 0 

Theorem A9: The order of G is not divisible by 4. 

Proof: By Theorem A8 it is easy to see that G cannot contain an element of order 4. 
Thus any subgroup of G of order 4 must be generated by two commuting elements a 
and b of order 2. This is impossible without contradicting Theorem A8. 0 

Applying the above Theorems we now know that if a 4-(12,6,6) design (X, V) 
exists, then either IGI = 1 or G contains exactly one nontrivial automorphism: a 
permutation of order 2 fixing 2 points and 10 blocks. Furthermore we also know that 
vu15 is a 5-(12,6,3) design. Of course the automorphism group of vu15 may contain 
additional automorphisms besides this permutation of order 2 fixing 2 points and 10 
blocks. Using the same backtracking algorithm that established Theorem A 7, we ran 
a complete search for all 5-(12,6,3) designs whose automorphism group contained an 
automorphism of order 2 fixing two points. There are exactly 6 such designs and we 
present them in Table V. The fact that A = 3 and t = 5 for these designs made this 
search feasible. Each of these designs were checked to see if they could be split into 
4-(12,6,6) designs 1) and 15. Theorem S5, the automorphism and the backtracking 
algorithm were the principal tools used to do this splitting. We found after running 
searches to completion that none of the 5-(12,6,3) designs split. We conclude: 

Theorem AIO: If a 4-(12}6}6) design exists} then it must be rigid. 
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Table V: The 6 nonisornorphic 5-(12,6,3) designs fixed by (0,1 )(2,3)( 4,5)(6,7)(8,9) 

Design 1. HI = ((0,1)(2,3)(4,5)(6,7)(8,9), (2,8)(3,9)(10,11), (0, 1)(3,9)(4,7), 
(0,5,4)(2,10,9)(3,8,11 )(1,6, 7)), IHII = 48 

Orbit representatives of Hl 

012348 012345 012456 123456 014567 012568 123458 
o 2 3 5 6 8 0 1 2 3 8 9 0 1 2 4 7 8 0 2 4 5 7 8 2 3 4 5 8 9 0 1 2 3 4 10 2 3 5 6 8 9 
2 3 4 5 6 7 0 2 3 4 6 10 2 3 4 7 8 10 0 2 3 5 8 10 0 2 3 8 9 10 2 3 4 5 8 10 2 3 8 9 10 11 

Design 2. H2 = ((0,1 )(2,3)( 4,5)( 6, 7)(8, 9), (10,11)( 4,8)(5,9), (1,6)(2,3)(4,8), 
(0,1,2)(3,7,6)(10,8,5)( 4,9,11 )), IH21 = 48 

Orbit representatives of H2 

023478 023458 012345 012346 013456 012367 012458 
123468 124568 012478 014567 014589 145689 234589 
o 1 4 5 6 10 0 4 5 7 8 10 2 4 5 8 9 10 0 2 4 5 8 10 0 3 4 5 6 10 1 3 4 5 8 10 4 5 8 9 10 11 

Design 3. H3 = ( (0,1 )(2,3)( 4,5)(6, 7)(8, 9), (2,8)(3,9)(10,11), 

(2,8)(1, 7)(4,5)(10,11) ), IH31 = 16 

Orbit representatives of H3 

123478 012346 012345 013456 012348 012367 
023458 012468 024568 012678 o 1 2 3 6 10 012389 
234589 023689 o 1 2 4 5 10 0245 6 10 o 1 2 4 6 10 o 2 3 5 6 10 o 1 2 5 8 10 1 2 3 4 8 10 1 2 4 5 8 10 o 1 2 7 8 10 o 2 3 6 8 10 2 3 4 8 9 10 
1 246 7 10 2 3 4 5 6 10 o 2 3 78 10 1 2 3 5 6 10 o 2 3 5 8 10 o 1 2 4 10 11 o 2 34 10 11 o 1 6 7 10 11 o 1 2 6 10 11 23 4 5 10 11 045 6 10 11 o 3 4 6 10 11 
1 2 3 8 10 11 o 2 6 8 10 11 245 8 10 11 2 3 8 9 10 11 1 2 7 8 10 11 

014567 
124578 
o 1 4 6 7 10 
o 1 4 5 10 11 
o 1 2 3 10 11 
o 2 4 8 10 11 

Design 4. H4 = ((0,1)(2,3)(4,5)(6,7)(8,9), (2,3)(4,7)(1,9), (11,10)(4, 7)(6,5)), IH41 = 
16 

Orbit representatives of H4 

012345 012456 023456 014567 012348 234567 013458 
012568 023568 023478 045678 024578 012389 015689 
014589 o 1 3 5 6 10 o 2 3 4 5 10 o 1 4 5 6 10 1 2 3 5 6 10 o 2 4 5 6 10 2 4 5 6 7 10 
o 1 2 4 8 10 o 2 3 5 8 10 o 1 3 4 6 10 o 2 4 5 8 10 o 1 4 7 8 10 o 4 5 6 8 10 o 1 2 3 6 10 
o 1 2 8 9 10 o 2 4 6 7 10 o 1 2 3 10 11 o 1 5 7 8 10 o 1 3 5 8 10 o 1 3 4 10 11 1 2 4 5 10 11 
o 1 4 5 10 11 2 3 4 5 10 11 o 2 5 6 10 11 2 3 5 6 10 11 1 4 5 6 10 11 4 5 6 7 10 11 o 2 4 8 10 11 
o 2 3 8 10 11 o 5 6 8 10 11 o 1 5 8 10 11 o 4 7 8 10 11 o 1 8 9 10 11 
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Table V (continued) 

Design 5. Hs 
6 

((0,1 )(2,3)( 4,5)(6,7)(8,9), (0, 5, 9)(2, 3, 10)(1,8,4)(11,6,7)), IHsl 

Orbit representatives of Hs 

023468 023467 012456 012345 012356 012367 124567 
o 4567 234567 0134 8 123468 014568 023568 024568 
123458 134568 012678 034678 124678 012358 013578 
012478 023578 013478 135678 234578 124578 024578 
123678 015678 025678 012389 3 4 5 6 7 8 0 1 3 4 8 9 0 2 3 4 6 10 
125 89 2 4589 014589 235689 o 2 3 4 5 10 0 1 6 7 8 9 2 3 6 7 8 9 
o 1 3 4 6 10 0 1 2 3 6 10 0 2 3 6 8 9 0 1 3 5 6 10 1 3 4 5 6 10 0 1 4 6 7 10 1 3 4 6 7 10 
1 2 4 6 10 2 4 6 7 10 1 2 3 4 8 10 1 2 3 6 8 10 1 5 6 7 8 10 2 3 5 6 8 10 0 2 3 7 8 10 
1 3 5 6 1 3 6 7 8 10 2 6 7 8 9 10 2 4 6 7 8 10 o 2 4 6 7 11 0 2 6 7 8 10 0 4 6 7 8 10 
o 1 2 6 7 11 1 3 4 6 7 11 0 4 5 6 7 11 0 3 5 6 8 10 o 1 3 6 8 9 4 5 6 7 8 10 4 5 6 7 8 9 
3 4 6 7 8 9 1 4 6 7 8 9 0 3 6 7 8 10 2 3 6 7 8 11 0367811 2567811 1467811 
2 3 6 7 10 11 

Design 6. H6 ((0,1 )(2,3)( 4,5)(6,7)(8, IH61 = 2 

Orbit representatives of H6 

o 1 2 
234567 
1 3 4 6 8 
012378 
015678 

023456 
012458 
024568 
034578 
3 5 6 7 8 

012356 
012468 
013578 
023578 
125678 

014589 012689 234589 
234689 034689 0256 
2 3 6 7 8 9 1 4 6 7 8 9 0 1 2 3 4 10 
1 3 4 6 7 10 1 2 5 6 10 1 3 4 5 6 10 
012481001348100125810 
o 1 3 6 8 10 1 3 4 7 8 10 0 4 5 6 8 10 
1 2 3 7 8 10 2 4 5 6 8 10 0 1 2 7 8 10 
o 2 5 7 8 10 2 4 5 7 8 10 4 5 6 7 8 10 
3 5 6 7 8 10 0 2 8 9 10 0 2 3 8 9 10 
1245611 1268910 1468910 
2 6 7 8 9 10 0 1 2 4 5 11 0 1 3 5 6 11 
0236711 2345611 0246711 
0135811 12348111235811 

46811 0236811 0456 11 
56811 0147811 1357811 
67811 3467811 0367811 

0148911 1248911 2458911 
1268911 1368911 0468911 
1 2 3 4 10 11 0 2 4 5 10 11 2 3 4 5 10 11 
o 3 5 6 10 11 1 3 5 6 10 11 2 3 6 7 10 11 
4 5 6 7 10 11 0 1 3 8 10 11 0 3 4 8 10 11 
2 3 5 8 10 11 1 4 5 8 10 11 0 2 6 8 10 11 
2 4 6 8 10 11 0 5 6 8 10 11 3 5 6 8 10 11 
3 5 7 8 10 11 4 5 7 8 10 11 0 1 8 9 10 11 

o 1 2 6 7 
013468 
024678 
023478 
2 3 5 7 8 

013467 
013568 
034678 
014578 
023489 

o 2 3 6 8 10 0 1 4 5 6 10 
035689 245689 
4 5 6 7 8 9 0 2 3 4 6 10 
o 3 4 5 6 10 0 1 2 6 7 10 
o 2 3 5 8 10 1 3 4 5 8 10 
2 3 4 6 8 10 1 2 3 6 8 10 
o 1 4 7 8 10 0 2 6 7 8 10 
1 4 6 7 8 10 0 3 6 7 8 10 

1 2 4 8 9 10 0 4 5 8 9 10 
o 4 6 8 9 10 3 5 6 8 9 10 
0234611 0134611 

1246711 0234811 
0245811 0345811 
2356811 1456811 
2347811 0257811 
1367811 2467811 
1348911 2468911 
1 5 6 8 9 11 0 1 2 3 10 11 
o 3 4 6 10 11 0 1 4 6 10 11 
2 4 5 6 10 11 0 1 6 7 10 11 
o 2 4 8 10 11 1 2 4 8 10 11 
1 3 6 8 10 11 0 3 7 8 10 11 
1 2 7 8 10 11 0 4 7 8 10 11 
2 6 7 8 10 11 1 6 7 8 10 11 

2 3 8 9 10 11 3 4 8 9 10 11 0 6 8 9 10 11 5 6 8 9 10 11 6 7 8 9 10 11 
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024567 
123468 
124678 
124578 
012389 
026789 
145689 
o 1 2 4 6 10 
1 2 4 6 7 10 
o 3 4 5 8 10 
1 2 5 6 8 10 
1 3 5 7 8 10 
o 4 6 7 8 10 
o 1 6 8 9 10 
3 4 6 8 9 10 
1234611 
0456711 
o 1 2 6 10 11 
1347811 

1457811 
0567811 
2368911 
4678911 
1 2 3 6 10 11 
3 4 6 7 10 11 
o 1 5 8 10 11 
1 4 6 8 10 11 
2 3 7 8 10 11 
4 5 8 9 10 11 

014567 
023568 
123458 
123678 
013489 
135689 
016789 
1 2 3 5 6 10 
2 3 4 6 7 10 
2 3 4 5 8 10 
o 1 5 6 8 10 
2 3 4 7 8 10 
1 5 6 7 8 10 

2 6 8 11 
2 5 6 8 9 10 
0125611 
0123811 
1256811 
0127811 
2 4 5 7 8 11 
2567811 
0368911 
o 1 4 5 10 11 
o 2 5 6 10 11 
o 4 6 7 10 11 
1 2 5 8 10 11 
3 4 6 8 10 11 
o 5 7 8 10 11 
02891011 



4 The known 4-(12,5,4) designs 

In this section we list the known 4-(12,5,4) designs. Because of Theorem 86, it was 
anticipated that an existing 4-(12,5,4) might lead directly to the construction of a 
4-(12,6,6). In particular, if (X, B) is a 4-(12,5,4) design let Di {S E (!) : I{F E B : 
F ~ S}I = i} i 0" 1, ... ,6. Then (X, D2 ), (or (X, D4 )), might just be a 4-(12,6,6). 
In several cases (see our list below) D2 had exactly the right number, namely 198, of 6-
sets temporarily to boost our enthusiasm that a 4-(12,6,6) would arise in this fashion. 
Unfortunately, we did not find a 4-(12,6,6) via this process. In view of Theorem A10, 
we know now that many of these 4-(12,5,4)'s could not yield a 4-(12,6,6), but it is 
still of independent interest to list what is known concerning 4-(12,5,4)'s. For each 
known 4-(12,5,4) we give generators of its automorphism group G and the size of 
this group. We also give the vector V, where V[i] = IDil, i = 0,1, ... , 6. Finally, we 
used a graph-isomorphism program, (due to Brendan McKay) to aid in determining 
nonisomorphism between our 4-(12,5,4)'s. 

A.E. Brouwer in [B] reports that Design 1 was known to R.H.F. Denniston. 

Design 1. G l = ((0,1,2,3,4)(6,7,8,9,10), (0, 5)(2, 3)(6, 11)(8,9), 
(1,2,4,3)(7,8,10,9)). IGII = 120. Vi = (7,0,135,640,135,0,7). 

Orbit representatives of G1 generating 4-(12,5,4) design l. 

o 1 2 3 4 0 1 3 4 8 0 1 6 8 10 0 6 7 8 9 0 1 2 6 7 0 1 3 6 8 0 1 8 9 10 

Designs 2 through 16 were found by the authors and are apparently new. 

Design 2. G2 = ((0,1,2,3,4)(6, 7,8,9,10), (0, 5)(2, 3)(6,11 )(8,9)). 
IG2 1 = 60. V2 = (11,6,75,740,75,6,11). 

Orbit representatives of G2 generating 4-(12,5,4) design 2. 

o 1 2 3 4 0 1 3 7 8 0 1 6 7 9 0 3 4 7 8 0 1 3 4 6 0 1 3 8 10 
o 1 7 8 9 0 6 7 8 10 0 1 3 6 7 0 1 4 7 8 0 1 7 8 10 0 7 8 9 10 

Design 3. G3 = ((0,1,2,3,4,5,6,7,8,9,10)). 
IG3 1 = 11. V3 = (0,0,198,528,198,0,0). 

Orbit representatives of G3 generating 4-(12,5,4) design 3. 
o 1 234 01269 o 136 8 014911 01235 o 1 278 
013611 o 1 5 79 o 123 7 012711 o 1 3 78 015711 
o 1 246 o 1 2 8 9 o 1 379 015911 012411 012811 
013811 016811 o 1 2 5 8 o 1 346 o 1458 016911 
o 1 259 01349 o 146 9 017911 012511 013511 
o 1 479 02468 o 1 2 6 7 o 136 7 014811 024811 

Design 4. Complement of Design 3. G4 = G3 and V4 = V3 as Design 3. 
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Design 5. G5 = ((0,1,2,3,4,5,6,7,8,9,10)). 
IG5 1 = 11. V5 = (0,0,198,528,198,0,0). 

Orbit representatives of G5 generating 4-(12,5,4) design 5. 
o 1 234 o 1 26 9 013511 o 1 479 o 1 2 3 5 o 1 2 7 8 
o 1 3 6 8 014711 o 1 237 012711 013611 014911 
o 124 5 012811 o 1 3 78 o 1 5 79 o 1 248 012911 
013711 015811 o 1 2 5 9 o 1 346 013911 015911 
012511 o 1 34 9 o 145 8 016811 o 1 2 6 7 o 1 3 5 6 
o 146 9 o 246 8 o 1 2 6 8 o 1 358 014611 024611 

Design 6. Complement of design 5. G6 = G5 and V6 V5 as Design 5. 

Design 7. G7 = ((0,1,2,3,4,5)(6,7,8,9,10,11)). 
IG7 1 = 6. V7 = (1,6,165,580,165,6,1). 

Orbit representatives of G7 generating 4-(12,5,4) design 7. 

o 1 2 3 7 o 1 2 3 9 o 1 2 3 10 012311 o 1 2 4 6 o 1 247 
o 1 248 o 1 249 o 1 2 6 8 012611 o 1 2 78 012711 
o 1 2 9 10 o 1 2 10 11 o 1 346 o 1 347 o 1 3 6 8 o 1 3 6 10 
013711 o 1 3 8 9 o 1 3 8 10 013911 o 14 6 9 014611 
o 1 4 7 10 o 1 4 8 10 014811 o 1 4 10 11 o 1 6 78 o 1 6 7 9 
o 1 6 7 10 016811 o 1 6 9 10 o 1 6 9 11 o 1 789 o 1 7 8 10 
o 1 7 9 10 017911 018911 o 1 8 10 11 02467 o 2 469 
02679 026711 o 2 689 o 2 6 8 10 026811 o 2 6 10 11 
o 278 10 o 2 79 10 027911 o 2 8 9 10 028911 o 2 9 10 11 
03678 o 3 6710 036711 03 689 o 3 6 10 11 037811 
o 6 7 10 11 o 6 8 9 10 o 6 9 10 11 078911 o 7 8 10 11 6 7 8 9 10 

Design 8. Complement of design 7. Gg = G7 and Vg V7 . 

Design 9. Gg = ((0,1,2,3,4,5)(6,7,8,9,10,11)). 
IGgl = 6. 11g = (1,0,189,544,189,0,1). 

Orbit representatives of Gg generating 4-(12,5,4) design 9. 

o 1 2 3 6 o 12 3 9 o 1 2 3 10 012311 o 1 2 46 o 1 247 
01248 o 1249 01267 o 1 2 6 10 012 79 012711 
o 1 2 8 10 012811 o 1 347 o 1 348 013 67 o 1 3 6 8 
01379 o 1 3 8 9 o 1 3 9 10 o 1 3 10 11 01469 o 146 10 
014611 o 147 10 014811 014911 016 78 016711 
o 1 6 8 9 o 1 6 9 10 016911 o 1 789 o 1 7 8 10 017811 
o 1 7 10 11 o 1 8 9 10 o 1 8 10 11 0191011 02467 024611 
02679 o 26 7 10 02 6 8 9 o 2 6 8 10 026911 o 2 6 10 11 
o 2 7 8 10 o 279 10 027911 028911 02 8 10 11 o 2 9 10 11 
03679 036711 o 3 6 8 10 036811 03 6 10 11 o 3 78 10 
067 8 10 067811 068911 o 6 9 10 11 o 7 9 10 11 6 789 10 

Design 10. Complement of design 9. GlO = Gg and Via = 11g. 
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Design 11. Gll = ((0,1,2,3,4,5)(6,7,8,9,10,11)). 
IGnl 6. ViI (1,0,189,544,189,0,1). 

Orbit representatives of Gn generating 4-(12,5,4) design 11. 
o 1 236 o 1 2 3 8 o 1 239 o 1 2 3 10 o 1 246 01247 
o 1 2 4 10 012411 o 1269 012611 01278 o 1 279 
o 1 2 8 10 o 1 2 10 11 o 1346 o 134 8 o 1 3 67 o 1 378 
o 1 3 7 10 013711 013811 o 1 3 9 10 o 1 4 6 10 01479 
014711 o 148 9 o 148 10 014911 o 1 6 7 10 016711 
o 1 689 o 1 6 8 10 016811 o 1 6 9 10 016911 o 1 789 
o 1 7 8 10 o 1 7 10 11 018911 o 1 9 10 11 02469 024611 
02 6 78 0267 10 026711 02689 o 2 6 8 10 027811 
02 79 10 027911 o 2 8 9 10 028911 02 8 10 11 o 29 10 11 
03 6 79 036711 o 3 6 8 9 036811 o 3 6 10 11 o 3 7 8 10 
067811 0679 10 o 6 8 10 11 o 7 8 9 10 07 9 10 11 6 789 10 

Design 12. Complement of design 11. Gl2 = Gn and Vi2 ViI, 

Design 13. G13 = ((0,1,2)(3,4,5)(6,7,8)(9,10,11), (0, 1 )(3,4)(6,7)(9,10)). 
IG13 1 6. V13 = (1,18,117,652,117,18,1). 

Orbit representatives of Gn generating 4-(12,5,4) design 13. 
o 1 237 o 1 2 3 10 o 1 2 6 10 o 1 346 o 1 3 4 8 013411 
o 1 3 5 8 o 1 3 5 9 o 1 3 5 10 013511 o 1 3 6 7 o 1 3 6 9 
o 1 36 10 o 1 3710 o 138 9 013911 o 1 567 o 1 568 
015611 o 1 5 9 10 o 1 678 o 1 6 89 016811 o 1 6 9 10 
o 1 6 10 11 018911 o 1 9 10 11 03456 o 3 457 0345 9 
0346 8 0346 10 034711 o 3 489 o 3 49 10 034 10 11 
03678 036711 o 3 6 9 10 03 7 8 9 o 3 7 8 10 o 3 7 9 10 
o 3 7 10 11 04569 o 456 10 04578 o 4 5 7 10 046 7 10 
046711 04689 046811 046911 0478 9 047811 
o 479 10 047911 048 9 10 048 10 11 o 4 9 10 11 0678 9 
067911 06 7 10 11 34569 345 9 10 34678 34679 
346 8 10 346811 346911 346 10 11 3 4 8 9 10 36789 
3 6 79 10 379 10 11 6 78 9 10 6 7 9 10 11 

Design 14. G14 ((0,1,2)(3,4,5)(6,7,8)(9,10,11), (0, 1 )(3,4)(6,7)(9,10)). 
IG14 1 6. Vi4 = (4,12,114,664,114,12,4). 

Orbit representatives of G14 generating 4-(12,5,4) design 14. 
o 123 7 o 1 2 3 10 o 1 26 10 o 1 346 o 1 348 013411 
o 1 3 5 8 o 1 3 5 9 o 1 3 5 10 013511 o 1 3 6 7 o 1 36 9 
o 1 3 6 10 o 1 3 7 10 o 1 3 8 9 013911 o 1 5 6 7 01568 
015611 o 1 5 9 10 o 1 678 o 1 6 8 9 016811 o 1 6 9 10 
o 1 6 10 11 018911 o 1 9 10 11 0345 6 03457 0345 9 
03468 034 6 10 034711 03489 o 349 10 03 4 10 11 
o 3 678 036711 o 3 6 9 10 03 789 037810 03 79 10 
o 3 7 10 11 04569 045 6 10 04578 045 7 10 0467 10 
046711 04689 046811 046911 04789 047811 
0479 10 047911 o 4 8 9 10 04 8 10 11 o 49 10 11 0678 9 
067911 067 10 11 34569 345 9 10 34678 34679 
3 4 6 8 10 346811 346911 346 10 11 3 48 9 10 3678 9 
3 6 79 10 379 10 11 6 789 10 6 7 9 10 11 
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Design 15. G15 = ((0,1,2,3,4)(6,7,8,9,10)). 
IG15 1 5. Vi5 (1,11,145,610,145,11,1). 

Orbit representatives of G15 generating 4-(12,5,4) design 15. 
o 1 2 3 5 o 1 2 3 8 o 1 2 3 9 o 1 2 3 10 012 57 o 1 2 5 10 
01267 o 126 9 o 1 2 6 10 012611 012 78 012811 
012911 o 1 2 10 11 o 1 3 5 9 013511 o 1 3 6 8 o 1 369 
o 1 3 6 10 o 1 3 7 9 o 1 3 7 10 013711 013811 o 1 3 10 11 
o 1 5 6 8 o 1 5 6 10 015611 o 1 578 o 1 5 7 10 015711 
o 1 5 8 9 o 1 5 8 10 015911 o 1 679 016711 o 1 689 
016811 o 178 9 o 1 7 8 10 o 1 79 10 o 1 8 9 10 o 1 9 10 11 
02567 o 2 569 025 6 10 o 2 579 025711 o 2 589 
025 8 10 025811 o 2 5 9 10 o 2 678 o 2 6 7 10 026811 
026 10 11 02789 o 2 7 9 10 o 2 7 10 11 028 9 10 028911 
056 7 10 0568 9 o 5 6 8 10 056911 057811 057911 
058 10 11 o 5 9 10 11 067811 o 6 7 9 10 067911 o 6 8 9 10 
o 6 8 10 11 o 6 9 10 11 078911 o 7 8 10 11 079 10 11 5 6 78 9 
567811 6 7 8 9 10 

Design 16. G16 = ((0,1,2,3,4)(6,7,8,9,10)). 
IG16 1 = 5. Vi6 = (1,6,165,580,165,6,1). 

Orbit representatives of G16 generating 4-(12,5,4) design 16. 
o 1 2 3 4 0 1 2 3 5 0 1 2 3 8 0 1 2 3 9 0 1 2 5 7 0 1 2 5 10 
o 1 2 6 7 o 1 269 o 1 2 6 10 012611 o 1 2 78 012811 
o 1 2 9 10 012911 o 1 2 10 11 o 1 359 013511 o 1 368 
o 1 3 6 9 o 1 3 6 10 o 1 379 o 1 3 7 10 013711 o 1 3 8 10 
013811 o 1 3 10 11 o 156 8 o 1 5 6 10 015611 o 1 5 7 8 
o 1 5 7 10 015711 o 1 5 8 9 o 1 5 8 10 o 1 5 9 11 o 1 6 7 9 
016711 o 1 689 016811 o 1 789 o 1 7 8 10 o 1 79 10 
o 1 9 10 11 02 567 o 2 5 6 9 025 6 10 02579 025711 
02589 o 2 5 8 10 025811 o 2 5 9 10 026 78 o 2 6 7 10 
026811 o 2 6 10 11 o 2 789 027 10 11 o 2 8 9 10 028911 
o 5 6 7 10 o 5 6 8 9 o 5 6 8 10 056911 057811 057911 
058 10 11 o 5 9 10 11 067811 0679 10 067911 o 6 8 9 10 
o 6 8 10 11 o 6 9 10 11 o 789 10 078911 o 7 8 10 11 o 7 9 10 11 
5 678 9 567811 

In Table VI we list the starting blocks of one of the 6-(14,7,4) designs found in 
[KR1] because the following fourteen designs arise either by taking doubly derived 
deigns of this 6-(14,7,4) design or by taking complements of these doubly derived 
designs. Each starting block generates 13 blocks using the cyclic automorphism 
(0,1,2,3,4,5,6,7,8,9,10,11,12)(13). In this list of 4-(12,5,4)'s we will let KR-Design 
(i, j) be the doubly derived design using points i and j. Observe that because 
of the above cyclic automorphism we may assume without loss that i = ° and 
j E {1, 2, 3, 4, 5,6, 13}. This gives rise to designs 17 through 30 each has the iden­
tity group as an automorphism group and each has Vi = (0,0,198,528,198,0,0), for 
17 ~ i ~ 30. 
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o 1 2 345 13 
o 1456 9 13 
o 1 2 3 4 6 13 
o 24 5 6 9 13 
o 1 2 4 5 6 13 
o 1 2479 13 
o 1 2 3 5 7 13 
o 1 347 9 13 
o 1 346 7 13 
o 1 2 5 79 13 
o 23 4 6 7 13 
o 1 3 5 7 9 13 
o 1 3 5 6 7 13 
o 34 5 79 13 
o 2 3 5 6 7 13 
o 23 6 79 13 
o 145 6 7 13 
o 146 7 9 13 
o 245 6 7 13 
o 346 79 13 
o 1 24 5 8 13 
o 2 5 6 79 13 

Design 17. 
Design 18. 
Design 19. 
Design 20. 
Design 21. 
Design 22. 
Design 23. 
Design 24. 
Design 25. 
Design 26. 
Design 27. 
Design 28. 
Design 29. 
Design 30. 

KR-Design (0,13). 
Complement of Design 17. 
KR-Design (0,1). 
Complement of Design 19. 
KR-Design (0,2). 
Complement of Design 2l. 
KR-Design (0,3). 
Complement of Design 23. 
KR-Design (0,4). 
Complement of Design 25. 
KR-Design (0,5). 
Complement of Design 27. 
KR-Design (0,6). 
Complement of Design 29. 

Table VI: Starting blocks of a 6-(14,7,4) design. 

o 2 3 4 5 8 13 o 1 3 5 7 8 13 4 7 8 9 10 11 12 5 6 7 9 10 11 12 
o 3 5 6 7 9 13 03 6 7 8 9 13 1 4 7 8 10 11 12 2 5 6 7 10 11 12 
o 1 2 3 6 8 13 o 2 3 5 7 8 13 2 7 8 9 10 11 12 4 6 7 9 10 11 12 
o 2 3 4 8 9 13 o 1 247 10 13 1 2 7 8 10 11 12 3 4 6 7 10 11 12 
o 1 3 4 6 8 13 o 2 4 5 7 8 13 1 7 8 9 10 11 12 2 6 7 9 10 11 12 
o 1 3 5 8 9 13 o 2 3 4 7 10 13 4 5 6 8 10 11 12 1 3 6 7 10 11 12 
o 1 2 5 6 8 13 o 1 2 6 7 8 13 5 6 8 9 10 11 12 3 5 7 9 10 11 12 
o 2 3 5 8 9 13 o 1 2 5 7 10 13 1 5 6 8 10 11 12 1 2 6 7 10 11 12 
o 1 3 5 6 8 13 02 5 6 78 13 3 6 8 9 10 11 12 1 5 7 9 10 11 12 
o 1 4 5 8 9 13 o 1 45 7 10 13 1 46 8 10 11 12 2 4 5 7 10 11 12 
o 1 45 6 8 13 04 5 6 7 8 13 2 6 8 9 10 11 12 1 47 9 10 11 12 
o 1 2 6 8 9 13 o 2 4 5 7 10 13 2 3 6 8 10 11 12 1 45 7 10 11 12 
o 3 4 5 6 8 13 o 1 34 5 9 13 1 6 8 9 10 11 12 1 3 7 9 10 11 12 
o 2 4 6 8 9 13 o 1 4 6 7 10 13 1 3 6 8 10 11 12 2 3 5 7 10 11 12 
o 1 2 3 7 8 13 o 2 3 4 5 9 13 4 5 8 9 10 11 12 3 4 6 9 10 11 12 
o 3 4 6 8 9 13 o 1 3 5 8 10 13 3 4 5 8 10 11 12 1 3 5 6 10 11 12 
o 1 2 4 7 8 13 o 1 2 3 6 9 13 3 5 8 9 10 11 12 2 3 6 9 10 11 12 
o 2 5 6 8 9 13 o 2 4 5 8 10 13 2 4 5 8 10 11 12 1 2 5 6 10 11 12 
o 1 3478 13 o 2 3 4 6 9 13 348 9 10 11 12 1 2 6 9 10 11 12 
o 3 5 6 8 9 13 o 2 3 6 8 10 13 1 3 5 8 10 11 12 1 34 6 10 11 12 
o 2 3 4 7 8 13 o 1 2 5 6 9 13 1 2 8 9 10 11 12 2 4 5 9 10 11 12 
o 1 47 8 9 13 o 2 4 6 8 10 13 2 3 4 8 10 11 12 1 2 4 6 10 11 12 

1 4 5 9 10 11 12 
2 5 6 8 9 11 12 
2 3 5 9 10 11 12 
2 4 6 8 9 11 12 
1 3 5 9 10 11 12 
1 46 8 9 11 12 
1 2 5 9 10 11 12 
2 4 5 8 9 11 12 
2 3 4 9 10 11 12 
1 45 8 9 11 12 
1 2 4 9 10 11 12 
1 3 5 8 9 11 12 
4 6 7 8 10 11 12 
1 3 4 8 9 11 12 
3 6 7 8 10 11 12 
1 46 79 11 12 
3 5 7 8 10 11 12 
2 3 6 79 11 12 
2 5 7 8 10 11 12 
2 4 5 79 11 12 
2 4 7 8 10 11 12 
2 3 5 7 9 11 12 
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