KIRKMAN YEARS IN PG(3,2)

by

Alphonse Baartmans, Michigan Technological University Joseph Yucas,¹ Southern Illinois University

Abstract.

In this paper we give a bijection between the Kirkman years in PG(3,2) and the packings of the 3-subsets of an 8-set with (7,3,1)-designs thus showing the existence of and providing contructions for Kirkman years in PG(3,2).

It is well-known that the 35 lines in PG(3,2) can be partitioned into 7 sets, each containing 5 parallel lines, providing a solution to Kirkman's schoolgirl problem, see e.g. [2]. A set of 5 parallel lines in PG(3,2) is called a *Kirkman day* or a *parallel* class in PG(3,2) and such a partition of the 35 lines into 7 days is called a *Kirkman* week or a *Kirkman triple system* in PG(3,2). The main goal of this paper is to show that the collection of all Kirkman days in PG(3,2) can be partitioned into disjoint Kirkman weeks. Such a partition we call a *Kirkman year* in PG(3,2).

By a packing of the k-subsets of a set S with (v, k, λ) -designs we will mean a partition of all the k-subsets of S into (v, k, λ) -designs. Notice here we permit v < |S|. In [3], Sharry and Street used the term overlarge set for such a set of designs. We will construct a bijection between the packings of the 3-subsets of an 8-set with (7,3,1)-designs and the Kirkman years in PG(3,2). Hence to construct Kirkman years one needs only to construct these packings. This has been accomplished by Sharry and Street in [3] where they show that there are exactly 11 different such packings.

Before proceeding with the construction of the bijection we set some notation. \mathcal{P} , \mathcal{L} , \mathcal{D} , \mathcal{W} , and \mathcal{Y} will denote respectively the points, lines, Kirkman days, Kirkman weeks and Kirkman years in PG(3,2). $\mathbf{S} = \{1, 2, ..., 8\}$ and \mathbf{S}_j will denote the collection of *j*-subsets of \mathbf{S} . Finally, \mathbf{D} will denote the collection of all (7,3,1)-designs whose point set is a 7-subset of \mathbf{S} and \mathbf{P} will denote the collection of all packings of the 3-subsets of \mathbf{S} with (7,3,1)-designs.

Australasian Journal of Combinatorics 7(1993), pp. 129-132

¹This work resulted from the second author's visit to the Michigan Technological University. He is grateful for their support and hospitality.

In [1] we gave a geometric construction of the Steiner System S(4, 7, 23). The point set of this Steiner System was $\mathcal{P} \cup \mathbf{S}$. The blocks were of three types which we called planes, line sets and extended ovoid sets. The 70 line sets were of the form $K \cup l$ where $K \in \mathbf{S}_4$ and $l \in \mathcal{L}$. Each of the 70 elements of \mathbf{S}_4 appeared exactly once in the line sets and each of the 35 lines in \mathcal{L} appeared exactly twice in the line sets. Define $\psi : \mathbf{S}_4 \to \mathcal{L}$ by specifying that $\psi(K)$ is the line appearing with K in the line sets. The following properties of ψ have been verified in [1]:

- (1) For two 4-sets $K_1, K_2 \in \mathbf{S}_4$:
 - (i) $\psi(K_1) = \psi(K_2)$ iff $K_1 \cap K_2 = \emptyset$;
 - (ii) $|\psi(K_1) \cap \psi(K_2)| = 1$ iff $|K_1 \cap K_2| = 2$;
 - (iii) $\psi(K_1) \cap \psi(K_2) = \emptyset$ iff $|K_1 \cap K_2| = 1$ or 3.
- (2) For any $a \in \mathbf{S}$, $\{\psi(K) \mid a \in K \in \mathbf{S}_4\} = \mathcal{L}$.
- (3) Four points from P ∪ S appear at most once in the line sets K ∪ ψ(K), K ∈ S₄.

For a line $l \in \mathcal{L}$ notice that by (2) there is a unique 4-set $K \in \mathbf{S}_4$ containing 1 with $\psi(K) = l$. We will denote this K by $\psi^{-1}(l)$. For a day D in \mathcal{D} we let $S_D = \{\psi^{-1}(l) \mid l \in D\}.$

Proposition 1. Let $D \in \mathcal{D}$. Either $|\bigcap_{K \in S_D} K| = 3$ or there is a unique line $l_0 \in D$ with $\psi^{-1}(l_0) \cap \psi^{-1}(l) = \{1\}$ for every $l \in D \setminus \{l_0\}$.

Proof: Suppose $|\bigcap_{K \in S_D} K| \neq 3$. Since lines in D are parallel we have by (1)(iii) that $|\psi^{-1}(l) \cap \psi^{-1}(l')| = 1$ or 3 for $l \neq l' \in D$.

<u>Case 1</u>. If $|\psi^{-1}(l) \cap \psi^{-1}(l')| = 3$ for every $l \neq l' \in D$ then consider any two elements $\{1, a, b, c\}$ and $\{1, a, b, d\}$ of S_D . An element of S_D which does not contain 1, a and b must be a subset of $\{1, a, b, c, d\}$ since it must intersect both $\{1, a, b, c\}$ and $\{1, a, b, d\}$ in three places. Hence we may assume there is at least one more element of S_D containing 1, a and b for else we would have five 4-subsets of $\{1, a, b, c, d\}$ each contain 1. There are only $\binom{4}{3} = 4$ of these. Assume then that $\{1, a, b, e\}$ is in S_D . Now an element of S_D which does not contain all three of 1, a and b must contain 1, c, d, e and one of a or b. This clearly cannot be done with a 4-set.

<u>Case 2</u>. If there are two lines $l, l' \in D$ with $\psi^{-1}(l) \cap \psi^{-1}(l') = \{1\}$ then we may

assume $\{1, a, b, c\}$ and $\{1, d, e, f\}$ are in S_D with $\{a, b, c\} \cap \{d, e, f\} = \emptyset$. Another element of S_D cannot intersect both $\{1, a, b, c\}$ and $\{1, d, e, f\}$ in 3 places and cannot intersect both $\{1, a, b, c\}$ and $\{1, d, e, f\}$ in 1 place so we may assume S_D contains $\{1, a, b, g\}$ with $g \notin \{1, a, b, c, d, e, f\}$. Notice that any other element of S_D which intersects $\{1, d, e, f\}$ in three places must intersect one of $\{1, a, b, c\}$ or $\{1, a, b, g\}$ in two places since $\{1, a, b, c\} \cup \{1, d, e, f\} \cup \{1, a, b, g\} = \mathbf{S}$. Consequently every other element of S_D intersects $\{1, d, e, f\}$ in exactly one place and intersects $\{1, a, b, c\}$ in exactly three places. Take $l_0 = \psi(\{1, d, e, f\})$.

Define $\Gamma : \mathbf{S}_3 \to \mathcal{D}$ by

$$\Gamma(J) = \{ \psi(J \cup \{x\}) \mid x \in \mathbf{S} \backslash J \}.$$

Notice that the image of Γ is actually inside \mathcal{D} , for if $\alpha \in \psi(J \cup \{x\}) \cap \psi(J \cup \{y\})$ then $J \cup \{\alpha\}$ is a 4-subset of $(J \cup \{x\}) \cup \psi(J \cup \{x\})$ and of $(J \cup \{y\}) \cup \psi(J \cup \{y\})$ contradicting (3).

Define $X : \mathcal{D} \to \mathbf{S}_3$ as follows:

$$\begin{split} X(D) &= \bigcap_{K \in S_D} K, \text{ if } |\bigcap_{K \in S_D} | = 3 \\ &= \psi^{-1}(l_0) \setminus \{1\} \text{ where } l_0 \text{ is the unique line in } D \\ &\text{ of Proposition 1, otherwise.} \end{split}$$

Theorem 2. Γ and X are bijections between \mathbf{S}_3 and \mathcal{D} .

Proof: To show that $\Gamma \circ X$ is the identity on \mathcal{D} let $D \in \mathcal{D}$. If $J = \bigcap_{K \in S_D} K$ has size 3 then clearly $\Gamma(J) = \{\psi(J \cup \{x\}) \mid x \in \mathbf{S} \setminus J\} = D$. If not then suppose $\psi^{-1}(l_0) = \{1, a, b, c\}$. For $l_0 \neq l \in D$, $\psi^{-1}(l) \cap \{a, b, c\} = \emptyset$ so $S_D = \{\{1, a, b, c\}, \{1, d, e, f\}, \{1, d, e, g\}, \{1, d, f, g\}, \{1, e, f, g\}\}$ where $\mathbf{S} = \{1, a, b, \ldots, g\}$. Consider all 4-subsets of \mathbf{S} containing a, b and c. They are $\{a, b, c, 1\}, \{a, b, c, d\}, \{a, b, c, e\}, \{a, b, c, f\}$ and $\{a, b, c, g\}$. Notice that the last four of these are just the complements of the last four in S_D and the first is the same as the first in S_D . It follows from (1)(i) that $\Gamma(\{a, b, c\}) = D$. To show $X \circ \Gamma$ is the identity on \mathbf{S}_3 let $J \in \mathbf{S}_3$ and let $D = \Gamma(J)$. If $1 \in J$ then $\bigcap_{K \in S_D} K = J$ and hence X(D) = J. If $1 \notin J$ let $l_0 = \psi(J \cup \{1\})$. Notice that for $x \in \mathbf{S} \setminus (J \cup \{1\}), \psi^{-1}(\psi(J \cup \{x\}))$ is

 $S \setminus (J \cup \{x\})$. Consequently, $\psi^{-1}(l_0) \cap \psi^{-1}(l) = \{1\}$ for each $l \neq l_0$ in D. This shows that l_0 is the unique line of Proposition 1 and hence $X(D) = \psi^{-1}(l_0) = J$. \Box

Lemma 3. For $J_1, J_2 \in S_3$, $\Gamma(J_1) \cap \Gamma(J_2) = \emptyset$ iff $|J_1 \cap J_2| = 1$.

Proof: Suppose first that $|J_1 \cap J_2| = 0$ and let a, b be the two points in $S \setminus (J_1 \cup J_2)$. Notice that $K_1 = J_1 \cup \{a\}$ and $K_2 = J_2 \cup \{b\}$ are disjoint so by (1)(i), $\psi(K_1) = \psi(K_2)$ and $\Gamma(J_1) \cap \Gamma(J_2) \neq \emptyset$. Next suppose $|J_1 \cap J_2| = 1$ and let $x \in J_1 \cap J_2$. If $l \in \Gamma(J_1) \cap \Gamma(J_2)$ then $\{x\} \cup l$ is a 4-set of points from $\mathcal{P} \cup S$ appearing in two line sets contradicting (3). Finally, f $|J_1 \cap J_2| = 2$ let $c \in J_1 \setminus J_2$ and $d \in J_2 \setminus J_1$. Then $\psi(J_1 \cup \{d\}) = \psi\{J_2 \cup \{c\}\}$ so $\Gamma(J_1) \cap \Gamma(J_2) \neq \emptyset$.

Theorem 4. Γ induces a bijection $\hat{\Gamma} : \mathbf{D} \to \mathcal{W}$.

Proof: Since any two blocks of a (7,3,1)-design intersect in one place we see by Lemma 3 that $\hat{\Gamma}(\mathbf{D}) \subseteq \mathcal{W}$. Let $\mathcal{W} \in \mathcal{W}$. $S_{\mathcal{W}} = \{\Gamma^{-1}(D) \mid D \in \mathcal{W}\}$ is a set of seven blocks of size 3 on say v points. Since any two days in \mathcal{W} are disjoint we have by Lemma 3 that any two blocks of $S_{\mathcal{W}}$ intersect in exactly one place. Let $J \in S_{\mathcal{W}}$. Since each of the remaining six blocks of $S_{\mathcal{W}}$ must intersect J in exactly one place and since $|\mathbf{S}| = 8$ we see that no point of J can occur more than 3 times in the blocks of $S_{\mathcal{W}}$. On the other hand, a point of J occurring fewer than 3 times in the blocks of $S_{\mathcal{W}}$ forces another point of J to occur more than 3 times. Hence every point of J occurs exactly 3 times in the blocks of $S_{\mathcal{W}}$. Since J has an arbitrary block of $S_{\mathcal{W}}$ we have that every point of \mathbf{S} which occurs at all occurs exactly 3 times in the blocks of $S_{\mathcal{W}}$. This shows that the dual of $S_{\mathcal{W}}$ is a (7,3,1)-design. Hence $S_{\mathcal{W}}$ is also.

The following Corollary now follows from Theorem 2 and Theorem 4: Corollary 5. $\hat{\Gamma}$ induces a bijection $\hat{\hat{\Gamma}}: \mathbf{P} \to \mathcal{Y}$.

References

- 2. Hirshfeld, J., Projective Geometries over Finite Fields. Oxford University Press, 1983.
- 3. Sharry, M.J., and Street, A.P., Partitioning sets of triples into designs, Ars Combinatoria 26B (1988), 51-66.

(Received 7/7/92)

Baartmans, A., Wallis, W., and Yucas, J., A geometric construction of the Steiner System S(4,7,23), Discrete Math., 102(1992) 177-186.