KIRKMAN YEARS IN PG(3,2)

by
Alphonse Baartmans, Michigan Technological University
Joseph Yucas, ${ }^{1}$ Southern Illinois University

Abstract

. In this paper we give a bijection between the Kirkman years in $P G(3,2)$ and the packings of the 3 -subsets of an 8 -set with (7,3,1)-designs thus showing the existence of and providing contructions for Kirkman years in $P G(3,2)$.

It is well-known that the 35 lines in $P G(3,2)$ can be partitioned into 7 sets, each containing 5 parallel lines, providing a solution to Kirkman's schoolgirl problem, see e.g. [2]. A set of 5 parallel lines in $P G(3,2)$ is called a Kirkman day or a parallel class in $P G(3,2)$ and such a partition of the 35 lines into 7 days is called a Kirkman week or a Kirkman triple system in $P G(3,2)$. The main goal of this paper is to show that the collection of all Kirkman days in $P G(3,2)$ can be partitioned into disjoint Kirkman weeks. Such a partition we call a Kirkman year in $\operatorname{PG}(3,2)$.

By a packing of the k-subsets of a set S with (v, k, λ)-designs we will mean a partition of all the k-subsets of S into (v, k, λ)-designs. Notice here we permit $v<|S| . \operatorname{In}[3]$, Sharry and Street used the term overlarge set for such a set of designs. We will construct a bijection between the packings of the 3 -subsets of an 8 -set with ($7,3,1$)-designs and the Kirkman years in $P G(3,2)$. Hence to construct Kirkman years one needs only to construct these packings. This has been accomplished by Sharry and Street in [3] where they show that there are exactly 11 different such packings.

Before proceeding with the construction of the bijection we set some notation. \mathcal{P}, $\mathcal{L}, \mathcal{D}, \mathcal{W}$, and \mathcal{Y} will denote respectively the points, lines, Kirkman days, Kirkman weeks and Kirkman years in $P G(3,2) . \mathbf{S}=\{1,2, \ldots, 8\}$ and \mathbf{S}_{j} will denote the collection of j-subsets of \mathbf{S}. Finally, \mathbf{D} will denote the collection of all $(7,3,1)$ designs whose point set is a 7 -subset of \mathbf{S} and \mathbf{P} will denote the collection of all packings of the 3 -subsets of \mathbf{S} with ($7,3,1$)-designs.

[^0]Australasian Journal of Combinatorics 7(1993), pp.i29-132

In [1] we gave a geometric construction of the Steiner System $S(4,7,23)$. The point set of this Steiner System was $\mathcal{P} \cup S$. The blocks were of three types which we called planes, line sets and extended ovoid sets. The 70 line sets were of the form $K \cup l$ where $K \in \mathbf{S}_{4}$ and $l \in \mathcal{L}$. Each of the 70 elements of \mathbf{S}_{4} appeared exactly once in the line sets and each of the 35 lines in \mathcal{L} appeared exactly twice in the line sets. Define $\psi: \mathbf{S}_{4} \rightarrow \mathcal{L}$ by specifying that $\psi(K)$ is the line appearing with K in the line sets. The following properties of ψ have been verified in [1]:
(1) For two 4 -sets $K_{1}, K_{2} \in \mathbf{S}_{\mathbf{4}}$:
(i) $\psi\left(K_{1}\right)=\psi\left(K_{2}\right)$ iff $K_{1} \cap K_{2}=\emptyset$;
(ii) $\left|\psi\left(K_{1}\right) \cap \psi\left(K_{2}\right)\right|=1$ iff $\left|K_{1} \cap K_{2}\right|=2$;
(iii) $\psi\left(K_{1}\right) \cap \psi\left(K_{2}\right)=\emptyset$ iff $\left|K_{1} \cap K_{2}\right|=1$ or 3 .
(2) For any $a \in \mathbf{S},\left\{\psi(K) \mid a \in K \in \mathbf{S}_{4}\right\}=\mathcal{L}$.
(3) Four points from $\mathcal{P} \cup S$ appear at most once in the line sets $K \cup \psi(K), K \in \mathbf{S}_{\mathbf{4}}$.

For a line $l \in \mathcal{L}$ notice that by (2) there is a unique 4 -set $K \in \mathbf{S}_{4}$ containing 1 with $\psi(K)=l$. We will denote this K by $\psi^{-1}(l)$. For a day D in \mathcal{D} we let $S_{D}=\left\{\psi^{-1}(l) \mid l \in D\right\}$.

Proposition 1. Let $D \in \mathcal{D}$. Either $\left|\bigcap_{K \in S_{D}} K\right|=3$ or there is a unique line $l_{0} \in D$ with $\psi^{-1}\left(l_{0}\right) \cap \psi^{-1}(l)=\{1\}$ for every $l \in D \backslash\left\{l_{0}\right\}$.

Proof: Suppose $\left|\bigcap_{K \in S_{D}} K\right| \neq 3$. Since lines in D are parallel we have by (1)(iii) that $\left|\psi^{-1}(l) \cap \psi^{-1}\left(l^{\prime}\right)\right|=1$ or 3 for $l \neq l^{\prime} \in D$.

Case 1. If $\left|\psi^{-1}(l) \cap \psi^{-1}\left(l^{\prime}\right)\right|=3$ for every $l \neq l^{\prime} \in D$ then consider any two elements $\{1, a, b, c\}$ and $\{1, a, b, d\}$ of S_{D}. An element of S_{D} which does not contain $1, a$ and b must be a subset of $\{1, a, b, c, d\}$ since it must intersect both $\{1, a, b, c\}$ and $\{1, a, b, d\}$ in three places. Hence we may assume there is at least one more element of S_{D} containing $1, a$ and b for else we would have five 4 -subsets of $\{1, a, b, c, d\}$ each contain 1. There are only $\binom{4}{3}=4$ of these. Assume then that $\{1, a, b, e\}$ is in S_{D}. Now an element of S_{D} which does not contain all three of $1, a$ and b must contain $1, c, d, e$ and one of a or b. This clearly cannot be done with a 4 -set.

Case 2. If there are two lines $l, l^{\prime} \in D$ with $\psi^{-1}(l) \cap \psi^{-1}\left(l^{\prime}\right)=\{1\}$ then we may
assume $\{1, a, b, c\}$ and $\{1, d, e, f\}$ are in S_{D} with $\{a, b, c\} \cap\{d, e, f\}=\emptyset$. Another element of S_{D} cannot intersect both $\{1, a, b, c\}$ and $\{1, d, e, f\}$ in 3 places and cannot intersect both $\{1, a, b, c\}$ and $\{1, d, e, f\}$ in 1 place so we may assume S_{D} contains $\{1, a, b, g\}$ with $g \notin\{1, a, b, c, d, e, f\}$. Notice that any other element of S_{D} which intersects $\{1, d, e, f\}$ in three places must intersect one of $\{1, a, b, c\}$ or $\{1, a, b, g\}$ in two places since $\{1, a, b, c\} \cup\{1, d, e, f\} \cup\{1, a, b, g\}=\mathbf{S}$. Consequently every other element of S_{D} intersects $\{1, d, e, f\}$ in exactly one place and intersects $\{1, a, b, c\}$ in exactly three places. Take $l_{0}=\psi(\{1, d, e, f\})$.

Define $\Gamma: \mathbf{S}_{3} \rightarrow \mathcal{D}$ by

$$
\Gamma(J)=\{\psi(J \cup\{x\}) \mid x \in \mathbf{S} \backslash J\} .
$$

Notice that the image of Γ is actually inside \mathcal{D}, for if $\alpha \in \psi(J \cup\{x\}) \cap \psi(J \cup\{y\})$ then $J \cup\{\alpha\}$ is a 4 -subset of $(J \cup\{x\}) \cup \psi(J \cup\{x\})$ and of $(J \cup\{y\}) \cup \psi(J \cup\{y\})$ contradicting (3).

Define $X: \mathcal{D} \rightarrow \mathbf{S}_{3}$ as follows:

$$
\begin{aligned}
X(D)= & \bigcap_{K \in S_{D}} K, \text { if }\left|\bigcap_{K \in S_{D}}\right|=3 \\
= & \psi^{-1}\left(l_{0}\right) \backslash\{1\} \text { where } l_{0} \text { is the unique line in } D \\
& \text { of Proposition } 1, \text { otherwise. }
\end{aligned}
$$

Theorem 2. Γ and X are bijections between \mathbf{S}_{3} and \mathcal{D}.
Proof: To show that $\Gamma \circ X$ is the identity on \mathcal{D} let $D \in \mathcal{D}$. If $J=\bigcap_{K \in S_{\mathcal{D}}} K$ has size 3 then clearly $\Gamma(J)=\{\psi(J \cup\{x\}) \mid x \in \mathbf{S} \backslash J\}=D$. If not then suppose $\psi^{-1}\left(l_{0}\right)=\{1, a, b, c\}$. For $l_{0} \neq l \in D, \psi^{-1}(l) \cap\{a, b, c\}=\emptyset$ so $S_{D}=$ $\{\{1, a, b, c\},\{1, d, e, f\},\{1, d, e, g\},\{1, d, f, g\},\{1, e, f, g\}\}$ where $\mathbf{S}=\{1, a, b, \ldots, g\}$. Consider all 4 -subsets of \mathbf{S} containing a, b and c. They are $\{a, b, c, 1\},\{a, b, c, d\}$, $\{a, b, c, e\},\{a, b, c, f\}$ and $\{a, b, c, g\}$. Notice that the last four of these are just the complements of the last four in S_{D} and the first is the same as the first in S_{D}. It follows from (1)(i) that $\Gamma(\{a, b, c\})=D$. To show $X \circ \Gamma$ is the identity on \mathbf{S}_{3} let $J \in \mathbf{S}_{3}$ and let $D=\Gamma(J)$. If $1 \in J$ then $\bigcap_{K \in S_{D}} K=J$ and hence $X(D)=J$. If $1 \notin J$ let $l_{0}=\psi(J \cup\{1\})$. Notice that for $x \in \mathbf{S} \backslash(J \cup\{1\}), \psi^{-1}(\psi(J \cup\{x\}))$ is
$S \backslash(J \cup\{x\})$. Consequently, $\psi^{-1}\left(l_{0}\right) \cap \psi^{-1}(l)=\{1\}$ for each $l \neq l_{0}$ in D. This shows that l_{0} is the unique line of Proposition 1 and hence $X(D)=\psi^{-1}\left(l_{0}\right)=J$.

Lemma 3. For $J_{1}, J_{2} \in \mathrm{~S}_{3}, \Gamma\left(J_{1}\right) \cap \Gamma\left(J_{2}\right)=\emptyset$ iff $\left|J_{1} \cap J_{2}\right|=1$.
Proof: Suppose first that $\left|J_{1} \cap J_{2}\right|=0$ and let a, b be the two points in $S \backslash\left(J_{1} \cup J_{2}\right)$. Notice that $K_{1}=J_{1} \cup\{a\}$ and $K_{2}=J_{2} \cup\{b\}$ are disjoint so by (1)(i), $\psi\left(K_{1}\right)=\psi\left(K_{2}\right)$ and $\Gamma\left(J_{1}\right) \cap \Gamma\left(J_{2}\right) \neq \emptyset$. Next suppose $\left|J_{1} \cap J_{2}\right|=1$ and let $x \in J_{1} \cap J_{2}$. If $l \in \Gamma\left(J_{1}\right) \cap \Gamma\left(J_{2}\right)$ then $\{x\} \cup l$ is a 4 -set of points from $\mathcal{P} \cup S$ appearing in two line sets contradicting (3). Finally, $\mathrm{f}\left|J_{1} \cap J_{2}\right|=2$ let $c \in J_{1} \backslash J_{2}$ and $d \in J_{2} \backslash J_{1}$. Then $\psi\left(J_{1} \cup\{d\}\right)=\psi\left\{J_{2} \cup\{c\}\right\}$ so $\Gamma\left(J_{1}\right) \cap \Gamma\left(J_{2}\right) \neq \emptyset$.

Theorem 4. Γ induces a bijection $\hat{\Gamma}: \mathrm{D} \rightarrow \mathcal{W}$.
Proof: Since any two blocks of a (7,3,1)-design intersect in one place we see by Lemma 3 that $\hat{\Gamma}(\mathrm{D}) \subseteq \mathcal{W}$. Let $W \in \mathcal{W} . S_{W}=\left\{\Gamma^{-1}(D) \mid D \in W\right\}$ is a set of seven blocks of size 3 on say v points. Since any two days in W are disjoint we have by Lemma 3 that any two blocks of S_{W} intersect in exactly one place. Let $J \in S_{W}$. Since each of the remaining six blocks of S_{W} must intersect J in exactly one place and since $|S|=8$ we see that no point of J can occur more than 3 times in the blocks of S_{W}. On the other hand, a point of J occurring fewer than 3 times in the blocks of S_{W} forces another point of J to occur more than 3 times. Hence every point of J occurs exactly 3 times in the blocks of S_{W}. Since I ais an artibitiaíy block of S_{W} we have that every point of S which occurs at all occurs exactly 3 times in the blocks of S_{W}. This shows that the dual of S_{W} is a (7,3,1)-design. Hence S_{W} is also.

The following Corollary now follows from Theorem 2 and Theorem 4:
Corollary 5. $\hat{\Gamma}$ induces a bijection $\hat{\Gamma}: \mathrm{P} \rightarrow \mathcal{Y}$.

References

1. Baartmans, A., Wallis, W., and Yucas, J., A geometric construction of the Steiner System $S(4,7,23)$, Discrete Math., 102(1992) 177-186.
2. Hirshfeld, J., Projective Geometries over Finite Fields. Oxford University Press, 1983.
3. Sharry, M.J., and Street, A.P., Partitioning sets of triples into designs, Ars Combinatoria 26B (1988), 51-66.

[^0]: ${ }^{1}$ This work resulted from the second author's visit to the Michigan Technological University. He is grateful for their support and hospitality.

