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Abstract

A complete solution of the maximum packing problem of K, with
hexagons is given. ‘

1 Introduction

A hezagon system is a pair (S, H) where H is a collection of edge-disjoint hexagons
which partition the edge set of the complete undirected graph K, with vertex set
S. The number |S| = n is called the order of the hexagon system (S5, H) and |H| =
n(n — 1)/12. In what follows we will denote the hexagon
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d
Figure 1:

by any cyclic shift of (a,b,¢,d, e, f) or (a, f,e,d,¢,b).

Example 1.1 (Hexagon systems of orders 9 and 13):

(1) S = {1,2,3,4,5,6,7,8,9% H, = {(1,2,3,6,7,8),(3,4,5,6,8,9),
(]'3 37 77 47 6) 9)) (2) 4) 17 5,7 37 8)7 (2’ 97 41 8? 5, 7)3 ( 7 6? 27 5’ 9) 7)}
@) S = {1,2,3,4,5,6,7,8,9,10,11,12,18}; H, = {(1,2,4,7,3,8),
(13,1,3,6,2,7),(12,13,2,5,1,6), (11,12,1,4,13,5), (10,11,13,3,12,4),
3,9,1),(6,7,9,12,8,13),

(9,10,12,2,11,3),(8,9,11,1,10,2),(7,8,10,

13,9
(5,6,8,11,7,12),(4,5,7,10,6,11),(3,4,6,9,5,10

); (273757814)9)}
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It is well-known that the spectrum (that is, set of all n such that hexagon system
of order n exists) is precisely the set of all n = 1 or 9 (mod 12). (See, for example
Ifn # 1 or 9 (mod 12), we cannot construct a hexagon system of order n. However,
it is of interest to see just how “close” we can come to a hexagon system. A packing of
K, with hexagons is a pair (5, P) where P is an edge-disjoint collection of hexagons.
The difference between a hexagon system (S, H) and a packing (S, P) is that the
hexagons in H partition the edge set of K, whereas the only requirement on the
hexagons in P is that they are edge-disjoint. (They may or may not partition the
edge set of K,.) If (S, P) is a packing of order n, then the set of uncovered edges L
is called the leave. Hence E(K,) = E(P)U E(L) and E(P)N E(L) = 0. If (S, P)is a
packing and |P| is as large as possible (so that |L| is as small as possible), then P is
called a mazimum packing. Of course, a hexagon system is just a maximum packing
with leave the empty set.

The object of this paper is to give a complete answer to each of the following
questions. For a given n:

(1) What is the number of hexagons in a maximum packing? For example, when
n =1 or 9 (mod 12), the number of hexagons is n(n — 1)/12.

(2) How is a maximum packing achieved?
(3) What does the leave of a maximum packing look like?

We will divide our work into six parts: (i) n =1 or 9 (mod 12) (hexagon systems),
(ii) n = 0,2,6, or 8 (mod 12) (leave a 1-factor), (iii) n = 3 or 7 (mod 12) (leave a
3-cycle), (iv) n = 5 (mod 12) (leave a 4-cycle), (v) n = 11 (mod 12) (leave a T-cycle
or a not necessarily disjoint 3-cycle and 4-cycle), and (vi) n = 4 or 10 (mod 12) (leave
a spanning subgraph with (n + 8)/2 edges, with all vertices of odd degree).

Not too surprisingly, we will begin with n = 1 or 9 (mod 12); i.e., with the
construction of hexagon systems.

2 Hexagon Systems

Before plunging into the construction of hexagon systems we will need a theorem
due to D. Sotteau, as well as the following definitions. A bipartite 2k-cycle system
(X,Y,C) is a collection C of edge-disjoint 2k-cycles, which partition the edges of
the complete undirected bipartite graph K., with vertex set XUY (XNY = 0).
If ¢ = |X| and y = |Y|, then (X,Y,C) is said to have order (z,y). As one might
expect, a bipartite hezagon system (BHS) is a triple (X, Y, B) where B is a collection
of edge-disjoint hexagons which partition the edge set of K, ,,.

Theorem 2.1 (D. Sotteau [{]) A bipartite 2k-cycle system of order (z,y) ezists if
and only if

(1) = and y are both even,
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(2) 2>k and y > k, and
(8) 2k|zy. 0

The n+12 Construction. [1] Let (K, H;) be a hexagon system of order n based
on X U{oo} and (Kia, H;) a hexagon system of order 13 based on Y J{co}. Since
Y| =12 and n = 1 or 9 (mod 12) implies | X| is even, Sotteau’s Theorem guarantees
that a BHS (X,Y, B) of order (|X|,|Y]) exists. Define a collection of hexagons H
on XUY U{oo} by H = Hi{JH,;JB. It is easily seen that (K412, H) is a hexagon
system. |

Theorem 2.2 (Folk Theorem) The spectrum for hezagon systems is precisely the set
ofalln =1 or 9 (mod 12).

Proof: Beginning with the hexagon systems (Ko, H;) and (K3, H;) in Example
1.1, the n + 12 Construction yields a hexagon system of every order n = 1 or 9 (mod
12). Coo

O

3 Necessary Conditions for Maximum Packings

If n is odd, every vertex of K,, has even degree, and since each vertex in a hexagon is
incident with 2 edges in that hexagon, we know the leave of a maximum packing, if
any, must have each of its vertices incident with an even number of edges. As we have
stated, if n =1 or 9 (mod 12) a hexagon system exists and the leave is the empty set.
fn=3or7(mod12) >1, 6][(’2‘) — 3], hence the smallest possible leave is a 3-cycle.

If n =5 (mod 12) > 17, 6|[(’;> — 4], hence the smallest possible leave is a 4-cycle. If

n =11 (mod 12), 6][(3) — 1], but, as we have noted, each vertex in the leave must
be incident with an even number of edges in the leave, so the smallest possible leave
has 7 edges: a 7-cycle, or a not necessarily disjoint 3-cycle and 4-cycle.

If n is even, since each vertex of K,, has odd degree, it is easily seen that the leave
must be a spanning subgraph with each vertex having odd degree. The smallest such
graph is a 1-factor and is the smallest possible leave for n = 0,2, 6, or 8 (mod 12) > 6,
since 6![(’2‘) ~ 2] for such n. However, if n = 4 or 10 (mod 12), 6}[(’2‘) — 2 — 4], hence
the smallest possible leave has (n + 8)/2 edges. The only possible degree sequences
for such a leave are: (9,1,..:,1),(7,3,1,...,1),(5,5,1,...,1),(5,3,3,1,...,1), and
(3,3,3,3,1,...,1). :

With this information, we can proceed with the examples necessary for our con-
struction.

4 Small Cases of Maximum Packings

In this section, we give a collection of the necessary small examples of maximum
packings for the general construction to follow.
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Example 4.1 (K, P): P ={(1,3,2,5,4,6),(1,2,4,3,6,5)};
L ={(1,4),(2,6),(3,5)}.

Example 4.2 (Ks, P): P ={(1,5,2,8,3,7),(1,8,4,7,6,2), (1,4,2,3,5,6),
(3: 4,5,7,8, 6)}» L= {(1: 3)7 (2: 7)7 (47 6): (51 8)}

Example 4.3 (K, P): P = {(1,2,3,4,6,7),(1,4,2,5,6,3),(1,6,2,7.3,5)};
L_{(4)5:7)}

Example 4.4 (Ky5,P): P = {(1,2,3 4,6,15),

6,15), (1, ,2,5 6,3), (1,6,2,15,3,5),
(15,7,8,11,12,13),(8,9,10,11, 13, 14), (15,8,

1,7,

1

(

,9,11,14),(7,9, 15,10, 8, 13),
8, ,9),(4 9,5,10,6,8),

) (4,13,5,14,6,12),
,5,15)}. :

Example 4.5 (Ky7, P): P ={(1,3,5,7,9,17),(1,5,6,7,8,16), (1,6,2,7,3,8),
(1,7,4,6,8,9),(2,17,16,15,14,13),(1,15,17, 14,12, 11), (1, 14, 16, 13, 15, 12),
(4,5,8,10,11,9), (4,8,11,13, 12 ,17),(2,4,10,6,12 5) (1,10,2, 11,3,13),
(3,6,9,10,12,16),(2,8,12,7,10,14),(2,12 9,5,10,15),(2,9, 14,117, 16),
(3,17,5,16,9,15),(3,14,5,15,4,12), (4, 14,8, 15,6, 16),(5,13,7, 14,6,11),
(6,17,11,16,10,13),(4,11,15,7,17,13),(3,9,13,8,17,10)}; L = {(1,2,3, 4)}.

12
(7,14,9,13,10,12), (15,11,7, 10, 14, 12), (1,7, 2
(1,8,5,7,3,10),(2,9,6,7,4,10), (1,11, 2,
(

3,
1,12,5,11,3,14),(2,13,6,11,4,14)}; L = {(

Example 4.6 (K, P): P ={(1,11,2,10,3,9),(1,10,9,11,7, 8),(1,7,9,8, 10,6),
(1,4,2,6,11,5),(2,5,3,6,4,9),(2,7,3,11,4,8),(3,4,10,7,5,8), (8,6,9,5,10, 11)};
L =1{(1,2,3),(4,5,6,7)}.

Example 4.7 (Ky;, P): P ={(1,11,2,10,3,9),(2,9,10,11,8, 7), (1,8, 2,6, 10, 5),
(1 1089116)(1411573)(246835)(4711369)(4859710)}
L=1{(1,2,3,4,56,7)}.

Example 4.8 (Ku, P): P ={(1,4,6,7,10,11),(1,5,11,9, 10, 8), (1,6,2,10,5,9),
(1 7,2,8610)(248579)(25310411)(3749811)(3,8,71169)}
L ={(1,2,3),(3,4,5,6)}.

Example 4.9 (K, P): P ={(1,6,2,7,9,10),(1,7,3,8,9,11),(1,8,10,11,6,9),
(2457118)(2587610)(29410511)(3107486),(,, 5,6,4,11)};
L =1{(1,3,5),(1,2,3,4)}.

Example 4.10 (Kio, P): P ={(1,3,2,5,4,6),(1,2,4,3,6,5), (1 7,2,8,3,9),
(4951068)(1857310)(2967410)}L {(14)(26)(35)(79)( 9),
(9,10),(7,8,10)}.

Example 4.11 (Ky, P): P ={(1,4,2,3,6,8,),(1,5,2,6,7,9),(1,6,9,8,5,10),
(2738410)(2946108)(3954710)}L—{(12)(78)(56)( %),
(9,10),(1,3,5,7)}.
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Example 4.12 (Ko, P): P ={(1,2,3,6,7,8),(3,4,5,6,8,9), (1,3,7,4,6,9),
(2,4,1,5,3,8),(2,9,4,8,5,7),(1,6,2,5,9, 1)} L = {(1,10),(2, 10), (3,10), (4, 10),
(5,10), (6,10, (7, 10),(8,10), (9, 10)}. .

Example 4.13 (Ko, P): P = {(1,3,6,4,5,7),(1,4,2,6,9,8),(1,5,9,7,08,‘10),, .
(1,6,10,7,3, 9),(2,10,5,8,4, 7),(2,8,3,10,4, Ny L = {(1,2),(3,4),(5, 6),(6,7),
(6,8),(9,10),(2,3,5)} - ,

Example 4.14 (Ko, P): P = {(1,3,6,4,8,9),(1,4,7, 10,8,6), (1,5,7,9,6,10),
(1,7,2,9,5,8),(2,6,7,3,10,5),(2,8,3,9,4,10)}; L = {(1,2),(3,4),(5,6),(7,8),
(9,10),(3,5,4,2)}.

Example 4.15 (Ko, P): P = {(1,2,9,10,8,6),(1,3,2,8,9,5),(1,4,2,7,5,8),
(1,7,4,6,3,9),(2,5,3,4,9,6),(4,5,6,7,3,8)}; L = {(1,10), (2, 10),(3,10), (4, 10),
(5,10),(6,10),(7,10),(7,8),(7,9)}.

5,7,9),(1,6,2,3,4,7),

Example 4.16 (K0, P): P = {(1,2,10,9,8,4),(1,3,8,
={(1,5),(2,5),(3,5),(4,5),

(1,8,7,2,4,10),(2,8,10,7,3,9),(3,6,4,9,5,10)}; L
(5,6),(6,7),(6,8),(6,9),(6,10)}.

Example 4.17 (K, P): P = {(1,2,9,8,10,6),(1,3,2,8,6,9),(1,4,6,3,9,5),
(1,7,2,6,5,8),(2,4,7,3,10,5),(3,5,7,9,4,8)}; L = {(1,10),(2,10),(9,10),
(4,10), (4,5), (3,4), (7,10),(7,8),(6,7)}.

Example 4.18 (Ko, P): P = {(1,2,3,10,4,9),(1,3,9,6,7,8),(1,4,8,5,3,7),
(1,5,2,8,3,6),(4,6,10,2,9,7),(2,6,8,9,5,7)}; L = {(1,10),(7,10),(8,10),(9,10),
(5,10), (5,6), (4,5),(2,4), (3, 4)}.

Example 4.19 (Ko, P): P ={(1,5,6,7,10,9),(1,7,4,8,5,10),(2,8,1,6,9,7),
(2,3,4,6,8,9),(8,10,3,9,5,7),(5,3,6,10,2,4)}; L = {(1,2),(1,3),(1,4),(2,5),(2,6),
(3,7),(3,8), (4,9), (4,10)}.

Example 4.20 (Kyo,P): P = {(1,3,2,10,8,9),(1,4,5,10,9,7),(1,5,2,7,8,6),
(2,8,1,10,6,4),(5,6,2,9,4, 8),(3,9,5,7,4,10)}; L = {(1,2),(3,4),(3,5),(3,6), (3, 7,
(3,8),(6,7),(6,9),(7,10)}. :

Example 4.21 (Ky0, P): P = {(1,4,6,10,9,7),(1,5,7,10,4,9),(1,6,9,5,10,2),
(1,8,2,6,3,10),(2,4,7,3,8,5),(2,9,3,4,8,1)}; L = {(1,3),(2,3),(3,5), (4,5),(5,6),
(6,7),(6,8),(8,9),(8,10)}. , «

Example 4.22 (Kyo, P): P ={(1,3,6,7,8,10),(1,4,6,10,7,5),(1,6,8,5,4,9),
(1,7,2,9,3,8),(2,8,4,7,3,10),(2,6,9,5,10,4)}; L = {(1,2), (5,6), (3,4)(7,9),(8,9),.
(9,10,(2,3,5)}. , ;

Example 4.23 (Kis, P): P = {(1,3,5,10,16,15),(1,4,6,13,14,11),
(1,5,7,12,15,10), (1,16,12,10,9,14),(2,3,6,9,11,13), (2,4, 7,10,13,9),
(2,5,13,7,11,10),(1,6,2,7,3,8), (1,7,8,11,6,12),(3,13,1,9,7,14),(2,11,3,10,6, 14),
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(3,15,2,16,8,12),(4,9,16,7,15,11), (4,10, 14,8,13, 15), (4, 13, 16, 11,5, 14),
(8,2,12,5,9, 15, (16.3.9, 12,4, 5),(5,15,6,16,4,8)}; L = {(1, 2),(3,4), (5,6),(6,7),
(6,8),(8,9),(8,10), (11,12),(12,13), (12, 14), (14, 15), (14, 16)}.

Example 4.24 (K, P): P ={(1,3,5,8,9,16),(1,4,5,7,8,10),(2,3,14,4,9,15),
(1,5,16,15,6,11), (1,6,10,11,12,13), (1,7, 12, 14,11, 8), (1,15, 12, 16, 10, 14),
(29,1, 121013)(24612814)(37912413)(3813 11,15, 10),
(2,7,16,8,15,5),(2,6,9,13,7,11),(3,16,2,10,4,11), (3,12,2. 8, 4, 15),
(5,10,7,14,16,11), (6,13, 5, 14,9,3), (4,7, 15, 14,6,16)}; L = {(1,2),(3,4),(5,6),
(5,9),(5,12),(6,7),(6,8), (9, 10),(9,11),(13,14), (13, 15), (13, 16)}.

Example 4.25 (K5, P) P = {(1,3,5,9,16,15),(1,4,2,16,12,14),
(1,5,10,11,15,13),(1,6,2,15,4,7),(3,6,7,8,11,12),(3,7,9, 15,12, 10),
(4,5,11,7,12,6),(2,7,16,13,14,5), (2,9, 1,16,6, 11),(2, 10,1, 11, 14, 8),
(2,3,8,10,13,12),(3,13,2,14,6,15),(3,14,7,13,8,16), (4,11, 3,9, 6, 13),
(10,16,11,13,5,15),(8,1,12,5,16,4), (8, 15,7,10,4,12), (4, 14,10, 6,8,9)};

L =1{(1,2),(3,4),(5,6),(5,7),(5,8),(9,10), (9 11) (9 12), (9, 13) (9, 14), (14, 15),

b

(14,16)}.

Example 4.26 (Kig, P): P = {(1,3,7,8, ,14),(1, 4,2,5,16,13),(1,5,11,4, 14,12),
(1,6,9,10,11,16),(1,7,2, 16, 14, 10),(2,8, 1,9, 5 ,6),(3,5,12,15,11,9),
(2,3,6,4,10,13), (2, 11,1,15,3,12) (2,9 ,1 ,4,15),(10,2, 14, 5,13,3),
(7.11,3,14,9,12),(16,3,8,13,14,7), (4, 5, 15, 10, 6 8),(6 7,4,9,16,12),
(7,15,8,14,6,13),(16,8,10,12,11,6),(10,7,9,13,4,16)}; L = {(1,2),(3,4), (5, 6),
(5.7, (5,8), (5 9), (5,10), (11, 13), (12,13), (13 15) (14,15 ,(15,16)}.

Example 4.27 (K5, P): P = {(1,9,2,3,12,16),(1,10,16, 14,6, 15),
(1,11,14,15,12,13),(1,12,11,9,8,14),(2,4,3, 16, 5,8), (2,5, 4, 16,6, 10),
(2,6,9,16,8,15),(2,7,9,15,10,13),(2,11,6,13,8,12), (3, 14,2, 16, 7,13),
(3,11,16,13,15,5),(3,6,7,8,4,10), (4,7,3,8,6,12), (4,15,3,9, 12, 14),
(4,6,5,14,7,11),(9,4,13,5,10,14),(5,12,7,10,8,11), (5,7, 15, 11,13,9)}: L = {(1,2)
(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(9, 10), (10, 11), (10, 12), (13, 14), (15,16)}.

(1,7
Example 4.28 (K, ) P={1
(1, 10,2,5,13,15),(1, 16, 3,5,8, 14),
(2,8,16,9,11,15), (2, 6,11, 10, 14, 9)
(4,9,6,14,7,13), (5,10,6, 13,8, 15),
) (
10

3

2,3,4,8),(2,4,5,6,7,16),(1,9,10,12, 16,13),
11,3,15,14,12),(3,6, 16,14, 11, 8),
11,12,15,9,13),(4,6,8,12,2, 14),
2,6,15,4,16),(3,7,4,11,5,14),
0,16,11,13,12)}; L = {(1,3),(1,4), (1,5),
(7, 11) (13 14),(15,16)}.

.7,
(1,
7( 3
(5,1
(3,9,5,7,15,10),(8,9,12,3,13,10 41
(1,6),(1,2),(12,7),(7,8),(7,9) (7,
Example 4.29 (K, P): P = {( , 2,4,

1
(1,6,2,5,15,12),(1,7,2,15,11,16), (1
(3,5,9,12,13,8),(3,6,4,11,13,10), (3,

bl

7,9,10),(1,4,5,6,8,9), (1,5, 12,16,9,15)
8,2,12,14,13),(2,11,1, 14,9,13),
9,2,10,8,12),(3,16,2,14,8,11),
(6,15,3,7,10,14),(4,14,3,13,16,10),(4,9,6,10,15,8),(4,12,7,14,5,13),
(5,16,4,15,7,11),(6,13,7,16,14,11),(5,10,12,6, 16,8)}; L = {(1,3),(2,3), (3,4),
(5,7),(6 ) 15

,7),(7,8),(9,11),(10,11),(11,12),(13,15), (14, 15),(15,16)}.
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Example 4.30 (K6, P): P = {(1,11,3,15,7,14),(1,7,8,10, 11,12),
(1,8,2,9,11,16),(1,9,3,4,5,15), (1, 10,12, 14,15,13),(2,3,10, 7,11, 14),
(2,5,3,6,4,10),(2,4,7,6,8,12),(2,6,9,12,7,13),(2,7,16,14,8, 15),
(3,7,5,16,10,13),(3,8,16,9, 15, 12),(5,8,11,15,10,14), (4,11, 6,13,5,12),
(4,13,9,14,6,15), (4,16,12,6,5,9),(6,10,5,11,2, 16),

(4) 14,3, 16,13, 8)}r L= {(17 2)1 (17 3)‘7 (1>4)) (17 5)7 (17 6)) (7) 9)7 (87 9)7 (97 10)7 (117 13);
(12,13), (13,14), (15,16)}.

5 Maximum Packings

We will construct maximum packings according to the leave.

n=0,2,6, or 8 (mod 12). In this case the leave is a 1-factor. The casesn =6
and n = 8 are handled in Examples 4.1 and 4.2. So we can assume n > 12. The
following construction will allow us to take care of the remaining cases.

The n + 6 Construction. Let (K,, P1) be a maximum packing of even order n
based on X with leave L; and (Ks, P;) the maximum packing of order 6 in Example
4.1 based on Y with leave L,. Let (X,Y, B) be a BHS of order (|X|,|Y]). (See [4].)
Then (Knte, AUP U B) is a maximum packing of order n + 6 based on X Y with
leave Ly U L. ‘ : : 0

Theorem 5.1 If n = 0,2,6, or 8 (mod 12) the leave of a mazimum packing is a
1-factor and such a mazimum packing exists for all admissible n > 6.

Proof: Starting with the examples of orders 6 and 8, the n+6 Construction produces
a maximum packing of every order n = 0,2,6, or 8 (mod 12) > 12. 0
g

n =3 or 7 (mod 12). In this case the leave is a 3-cycle. The cases for n = 7 and
15 are handled in Examples 4.3 and 4.4, respectively. We use the following obvious
modification of the n + 12 Construction.

The n-+12 MP Construction. Let (K,, P) be a maximum packing of odd order
n based on X J{co} with leave L and (K13, H) the hexagon system of order 13 in
Example 1.1 based on Y |J{co}. Let (X,Y,B) be a BHS of order (|X|,|Y]). Then
(Kni12, P U HU B) is a maximum packing of order n + 12 based on X UY U {oo}
with leave L. 0

Theorem 5.2 Ifn =3 or 7 (mod 12) the leave of a mazimum packing is a 3-cycle
and such @ mazimum packing exists for admissible n > 7.

Proof: Beginning with the examples of orders 7 and 15, the n+12 M P Construction
yields a maximum packing of every order n =3 or 7 (mod 12) > 7. 0
O

n =5 (mod 12). For this case the leave is a 4-cycle. The case for n = 17 is given
in Example 4.5.
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Theorem 5.3 If n =5 (mod 12)‘ > 17 the leave of a mazimum packing is a 4-cycle
and such a mazimum packing ezists for admissible n.> 17,

Proof: Beglnnlng with the example of order 17 then+12 MP Constructlon yields
a maximum packing of every order n = 5 (mod 12) > 17. _ 0
O

n =11 (mod 12). In this case the leave is a 7-cycle or a not necessarily disjoint
3-cycle and 4-cycle. The 4 possible leaves are given in Examples 4.6, 4.7, 4.8, and
4.9.

Theorem 5.4 If n = 11 (mod 12) a mazimum packing has lea,ve a T-cycle or a not
necessarily disjoint 3-cycle and 4-cycle.

Proof: Starting with any one of the maximum packings in Examples 4.6, 4.7, 4.8,
and 4.9 then+12 MP Constructlon yields a maximum packmg of every order n=11
( mod 12). ' v , 5]

‘ O

n =4 or 10 (mod 12). In this case the leave is a spanning subgraph of odd
degree with (n + 8)/2 edges. If n = 10 the only leaves are those in Examples 4.10
- 4.22. If n = 16 the leave is either one of the leaves from Examples 4.23 - 4.30 or
one of the leaves from Examples 4.10 — 4.22 plus a disjoint 1-factor (the leave from
(Ke, P)). For n > 22 the leave is one of those in Examples 4.10 — 4.30 plus a disjoint
1-factor.

Theorem 5.5 Ifn = 4 or 10 (mod 12) a mazimum packing has one of the leaves
wn Ezamples .10 - 4.80 plus a disjoint 1-factor, and all 21 1 eaves are possible for
alln'= 4 or 10 (mod 12) > 16. For n = 10, the only possible leaves are those in
Ezamples .10 - 4.22.

Proof: Beginning with the packings in Examples 4.10 — 4.30, the n+6 Construction
yields all maximum packings of every order n = 4 or 10 (mod 12) > 22. 0
' 0
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6 Summary

We summarize the results in the following easy-to-read table.

Number of Hexagons

K. in a Maximum Packing Leave
all n(n —1)/12 0

n=1or 9 (mod 12)
all

n=0,2,6, or 8 (mod 12) n(n — 2)/12 1-factor

> 6
all

n =3 or 7 (mod 12) (n?* —n—6)/12 3-cycle
all

n =5 (mod 12) > 17 (n? —n —8)/12 4-cycle

all
n = 11 (mod 12)

(n? —n—14)/12

4 leaves are possible:
a T-cycle or the union of a
(not necessarily disjoint)
3-cycle and 4-cycle

all
n =4 or 10 (mod 12)
> 10

n =10

n =4 or 10 (mod 12)
> 16

(n? — 2n — 8)/12

spanning subgraph of
odd degree with
(n + 8)/2 edges:

leaves in Examples
4.10 - 4.21

the 13 leaves for n = 10
plus a disjoint 1-factor
and the leaves in
Examples 4.23 - 4.30
plus a disjoint 1-factor
when n > 22
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