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Abstract

The beta-number of a graph G is the smallest positive integer n for which
there exists an injective function f : V (G) → {0, 1, . . . , n} such that each
uv ∈ E (G) is labeled |f (u)− f (v)| and the resulting set of edge labels
is {c, c+ 1, . . . , c+ |E (G)| − 1} for some positive integer c. The beta-
number ofG is +∞, otherwise. If c = 1, then the resulting beta-number is
called the strong beta-number of G. In this paper, we determine formulas
for the (strong) beta-numbers of the joins of certain graphs and either
the empty graph of order n or the star with n + 1 vertices. The work of
this paper extends the known classes of graceful graphs.

1 Introduction

All graphs considered in this paper are finite and undirected without loops or multiple
edges. The vertex set of a graph G is denoted by V (G), while the edge set is
denoted by E (G). The graph with n vertices and no edges is referred to as the
empty graph of order n. Let G and H be vertex-disjoint graphs. Then the union of
G and H , denoted by G ∪H , is the graph having V (G ∪H) = V (G) ∪ V (H) and
E (G ∪H) = E (G)∪E (H). If G and H are vertex-disjoint graphs, then the join of
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G and H , written G+H , is that graph consisting of the union G∪H , together with
all edges of the type uv, where u ∈ V (G) and v ∈ V (H).

For integers a and b with a ≤ b, the set {x ∈ Z : a ≤ x ≤ b} will be denoted by
writing [a, b], where Z denotes the set of integers.

Among all labelings of graphs, graceful labelings are probably the best known
and most studied. Graceful labelings originated with a paper published in 1967 by
Rosa [10] who used the term β-valuations. For a graph G of size q, an injective
function f : V (G) → [0, q] is called a β-valuation if each uv ∈ E(G) is labeled
|f(u) − f(v)| and the resulting edge labels are distinct. Golomb [4] subsequently
called these labelings graceful and this is now the popular term. A graceful graph is
a graph that admits a graceful labeling. Graceful labelings have been the focus of
many papers. For recent contributions to this subject and other types of labelings,
the authors refer the reader to the survey by Gallian [3].

The authors initiated the study of the beta-number and strong beta-number in
[7]. The beta-number, denoted by β (G), of a graph G with q edges is the smallest
positive integer n for which there exists an injective function f : V (G) → [0, n] such
that each uv ∈ E (G) is labeled |f (u)− f (v)| and the resulting set of edge labels is
[c, c+ q − 1] for some positive integer c. The beta-number of G is +∞, otherwise.
If c = 1, then the resulting beta-number is called the strong beta-number of G and
is denoted by βs (G). These parameters can be regarded as measures of how close a
graph is to being graceful. It is an immediate consequence of the definitions of two
parameters that if G is a graceful graph, then β (G) = βs (G).

The following lemma found in [7] indicates how the two parameters discussed
above are related.

Lemma 1 For every graph G of order p and size q,

max {p− 1, q} ≤ β (G) ≤ βs (G) .

Let G be a graph of order p and size q. It is clear that if βs (G) = p − 1, then
q ≤ p − 1. It is also true that if βs (G) = q, then G is graceful, which implies
that q ≥ p − 1. From these observations, we have the following two immediate
consequences of Lemma 1, which concern with the graphs that are sparse and dense,
respectively.

Lemma 2 If G is a graph of order p and size q with βs (G) = p− 1, then q ≤ p− 1
and β (G) = p− 1.

Lemma 3 If G is a graph of order p and size q with βs (G) = q, then q ≥ p− 1 and
β (G) = q.

Consider a graph G of order p and size q with q = p− 1. If β (G) = p− 1, then
there exists an injective function f : V (G) → [0, p− 1] such that each uv ∈ E (G)
is labeled |f (u)− f (v)| and the resulting set of edge labels is [c, c+ q − 1] for some
positive integer c. It follows that

c+ q − 1 ≤ max {|f (u)− f (v)| : uv ∈ E (G)}
= p− 1 = q.
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This together with c ≥ 1 implies that c = 1 so that βs (G) = p − 1. It is also
immediate from Lemma 1 that if βs (G) = p− 1, then β (G) = p− 1. Therefore, we
have the following result.

Lemma 4 Let G be a graph of order p and size q with q = p−1. Then β (G) = p−1
if and only if βs (G) = p− 1.

In this paper, we provide lower and upper bounds for β (G+H) if G is a graph
satisfying the condition β (G) = |V (G)|−1, and H is isomorphic to the empty graph
of order n. This leads us to formulas for β (G+H) and βs (G+H) if G is a graph
with the property that βs (G) = |V (G)|−1, and H is isomorphic to the empty graph
of order n. We also determine formulas for β (G+H) and βs (G+H) if G is a graph
with the same property as the previous one, and H is isomorphic to the star with
n + 1 vertices. As corollaries of these results, we obtain some classes of graceful
graphs. Thus, the work of this paper extends the known classes of graceful graphs.

There are other graph labeling parameters that measure how close a graph is
to being graceful. For further knowledge on the (strong) beta-number of graphs
and related concepts, the authors suggest that the reader consults the results in
[2, 4, 6, 8, 9, 11].

2 Results on (Strong) Beta-Numbers

We begin this section with the following result, which supplies lower and upper
bounds for the beta-number of the joins of a graph G with β (G) = |V (G)| − 1 and
the empty graph of order n.

Theorem 1 If G is a graph of order p and size q with β (G) = p − 1, then there
exists some positive integer c such that

q + np ≤ β (G+ nK1) ≤ c+ q + np− 1

for every positive integer n.

Proof: Let G be a graph that satisfies our hypothesis. Then there exists an injective
function f : V (G) → [0, p− 1] such that each uv ∈ E (G) is labeled |f (u)− f (v)|
and the resulting set of edge labels is [c, c+ q − 1] for some positive integer c. Let n
be a positive integer, and define the graph H ∼= G+ nK1 with

V (H) = V (G) ∪ {wi : i ∈ [1, n]}

and
E (H) = E (G) ∪ {vwi : v ∈ V (G) and i ∈ [1, n]} .

Now, consider the function g : V (H) → [0, c+ q + np− 1] such that

g (v) =

{
f (v) if v ∈ V (G),
c+ q + ip− 1 if v = wi and i ∈ [1, n].
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Notice that {g (v) : v ∈ V (G)} = [0, p− 1] and

{g (wi) : i ∈ [1, n]} = {c + q + ip− 1 : i ∈ [1, n]} .

This shows that g is an injective function. Notice also that

{|g (u)− g (v)| : uv ∈ E (G)} = [c, c+ q − 1] ,

and

{|g (v)− g (wi)| : v ∈ V (G) and i ∈ [1, n]} = [c+ q, c+ q + np− 1] ,

which is a set of np consecutive integers. Consequently,

{|g (u)− g (v)| : uv ∈ E (H)} = [c, c+ |E (H)| − 1] ,

which implies that β (H) ≤ c + q + np − 1. Finally, notice that H is connected; so
|E (H)| ≥ |V (H)| − 1. It is now immediate from Lemma 1 that β (H) ≥ |E (H)| =
q + np. �

For a graph G with βs (G) = |V (G)| − 1, we have the following result, which
shows that the lower bound given in Theorem 1 is sharp.

Theorem 2 If G is a graph of order p and size q with βs (G) = p− 1, then

β (G+ nK1) = βs (G+ nK1) = q + np

for every positive integer n.

Proof: Let n be a positive integer, and assume that G is a graph of order p
and size q with βs (G) = p − 1. In light of Lemma 3, it suffices to establish that
βs (G+ nK1) = q+np. Since G satisfies the condition βs (G) = p−1, it follows from
Lemma 2 that β (G) = p− 1. Thus, by Theorem 1 and Lemma 1, we obtain

βs (G+ nK1) ≥ β (G+ nK1) ≥ q + np.

On the other hand, if c = 1, then β (G) = βs (G) by the definitions of the two
parameters. This together with our assumption implies that β (G) = p − 1. Thus,
applying Theorem 2 with c = 1, we have

βs (G+ nK1) = β (G+ nK1) ≤ q + np.

�

The preceding result is of particular interest, since there are infinitely many
graphs G for which βs (G) = |V (G)| − 1 (see Table 1 which summarizes what has
been known about such graphs). In this table, the star with n + 1 vertices and the
path with n vertices are denoted by Sn and Pn, respectively.



R. ICHISHIMA ET AL. /AUSTRALAS. J. COMBIN. 69 (3) (2017), 402–409 406

Table 1: Summary of strong beta-numbers of graphs

G βs (G) notes
Sm ∪ Sn m+ n+ 1 if mn is even [7]

Pm ∪ Sn m+ n if m = 2 and n is even,
or m ≥ 3 and n ≥ 1 [7]

mP2 2m− 1 if m ≡ 0 or 1 (mod 4) [5]

4Sn 4n+ 3 if n ≥ 1 [5]

Pm ∪ Pn m+ n− 1 if 2 ≤ m ≤ n
and (m,n) 
= (2, 2) [8]

Sl ∪ Sm ∪ Sn l +m+ n + 2 if lmn is even [6]

Sk ∪ Sl ∪ Sm ∪ Sn k + l +m+ n + 3 for all positive integers k, l, m
and n [6]

The converse of Theorem 2 is not true. To see this, consider the result found by
Acharya [1] that if G is a connected graph with a graceful labeling, then G+ nK1 is
graceful for every positive integer n. It is clear that K1,1 is a connected graph with
a graceful labeling. Thus, applying the mentioned result with G ∼= K1,1 successively,
we conclude that the graphs

K1,1,m
∼= K1,1 +mK1 and K1,1,m,n

∼= K1,1,m + nK1

are graceful for all positive integers m and n. Consequently,

β (K1,1,m,n) = βs (K1,1,m,n) = |E (K1,1,m)|+ n |V (K1,1,m)| .

However, it follows from Lemma 2 that βs (K1,1,m) 
= |V (K1,1,m)| − 1, since

|E (K1,1,m)| = 2m+ 1 > m+ 1 = |V (K1,1,m)| − 1.

If T is a graceful tree of order p, then T has size p−1 and satisfies the hypothesis
of Theorem 2. Therefore, we have the following result.

Corollary 1 If T is a graceful tree of order p, then

β (T + nK1) = βs (T + nK1) = (n + 1) p− 1

for every positive integer n.
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The above result is relatively important, since various classes of trees have been
proved to admit graceful labelings (see [3] for a detailed list of results).

For a graph G with |E (G)| = |V (G)| − 1, we have another result on the (strong)
beta-numbers involving the join of graphs.

Theorem 3 Let G be a graph of order p and size q with q = p−1. If βs (G) = p−1,
then

β (G+ Sn) = βs (G + Sn) = (n+ 2) p+ n− 1

for every positive integer n.

Proof: By assumption, there exists an injective function f : V (G) → [0, p− 1]
such that each uv ∈ E (G) is labeled |f (u)− f (v)| and the resulting set of edge
labels is [1, p− 1]. Let n be a positive integer, and define the graph H ∼= G + Sn

with
V (H) = V (G) ∪ {x} ∪ {yi : i ∈ [1, n]}

and

E (H) = E (G) ∪ {xyi : i ∈ [1, n]}
∪ {vx : v ∈ V (G)} ∪ {vyi : v ∈ V (G) and i ∈ [1, n]} .

Then |V (H)| = p + n + 1 and |E (H)| = (n + 2) p + n − 1. In light of Lemma 3, it
suffices to prove the theorem for βs (H). The lower bound follows from Lemma 1,
since H is connected, that is, |E (H)| ≥ |V (H)| − 1.

To show the upper bound, consider the function g : V (H) → [0, (n+ 2) p + n− 1]
such that

g (v) =

⎧⎨
⎩

f (v) if v ∈ V (G),
(n + 2) p+ n− 1 if v = x,
(i+ 1) p+ i− 1 if v = yi and i ∈ [1, n].

This leads us to conclude that βs (G+ Sn) ≤ (n+ 2) p + n − 1. To see this, notice
that

{g (v) : v ∈ V (G)} = [0, p− 1] ,

{g (yi) : i ∈ [1, n]} = {(i+ 1) p+ i− 1 : i ∈ [1, n]} ,
and g (x) = (n+ 2) p + n − 1. This verifies that g is an injective function. Notice
also that

{|g (u)− g (v)| : uv ∈ E (G)} = [1, p− 1] ,

{|g (x)− g (yi)| : i ∈ [1, n]} = {i (p+ 1)− 1 : i ∈ [1, n]} ,
{|g (v)− g (yi)| : v ∈ V (G) and i ∈ [1, n]} =

⋃n

i=1
[i (p+ 1) , i (p+ 1) + p− 1)] ,

{|g (x)− g (v)| : v ∈ V (G)} = [n (p+ 1) + p, n (p+ 1) + 2p− 1] .

Consequently,
{|g (u)− g (v)| : uv ∈ E (H)} = [1, |E (H)|] ,

which implies that βs (H) ≤ (n+ 2) p+ n− 1. �
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In light of Lemma 4, the preceding result has an immediate consequence.

Corollary 2 Let G be a graph of order p and size q with q = p−1. If β (G) = p−1,
then

β (G+ Sn) = βs (G + Sn) = (n+ 2) p+ n− 1

for every positive integer n.

Recall that if G is a graph with βs (G) = |E (G)|, then G is graceful. Combining
this with Theorem 2, we have the following result.

Corollary 3 If G is a graph of order p with βs (G) = p−1, then G+nK1 is graceful
for every positive integer n.

Restating Corollary 1 and Theorem 3 for graceful graphs, we have the following
two results.

Corollary 4 If T is a graceful tree, then T + nK1 is graceful for every positive
integer n.

Corollary 5 If G is a graceful graph of order p and size q with q = p − 1, then
G + Sn is graceful for every positive integer n.

From the above result, we particularly have the following corollary.

Corollary 6 If T is a graceful tree, then T + Sn is graceful for every positive inte-
ger n.

It is interesting to note that the above four corollaries considerably extend the
known classes of graceful graphs. It is also worth to mention that the truth of
the logically equivalent contrapositive of either Corollary 4 or Corollary 6 implies
the falsehood of the well-known conjecture by Kotzig (see Rosa [10]) that every
nontrivial tree is graceful. This may provide a viable approach to show that not all
trees are graceful.

3 Conclusions

In this paper, we present some results on β (G+H) and βs (G +H) when G is a
graph such that βs (G) = |V (G)| − 1 ≥ |E (G)|, and H is isomorphic to either
nK1 or Sn. In light of Lemma 1, it seems natural to explore bounds and formulas
for β (G +H) and βs (G+H) when G is a graph such that βs (G) = |E (G)| >
|V (G)| − 1, and H is some class of graphs. Thus, we propose the following two
problems.

Problem 1 For some classes of graphs H, find bounds for β (G+H) and βs (G+H)
when G is a graph such that βs (G) = |E (G)| > |V (G)| − 1.

Problem 2 For some classes of graphs H, find formulas for β (G+H) and βs(G+H)
when G is a graph such that βs (G) = |E (G)| > |V (G)| − 1.
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