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Abstract

A vertex coloring of a plane graphG is a facial rainbow coloring if any two
vertices of G connected by a facial path have distinct colors. The facial
rainbow number of a graph G, denoted vrb(G), is the minimum number
of colors that are necessary in any facial rainbow coloring. In the present
note we investigate the facial rainbow coloring of trees. It is proved that
for any nontrivial tree T the inequalities L + 1 ≤ vrb(T ) ≤ ⌈

5
3
(L + 1)

⌉
hold, where L is the length of a longest facial path in T . The upper
bound is improved to L+6 if T does not contain any internal vertices of
degree 2.

1 Introduction

All graphs considered in this note are simple connected plane graphs provided that
it is not stated otherwise. We use a standard graph theory terminology according to
West [26]. However, we recall some important notions below.

A plane graph is a drawing of a planar graph in the Euclidean plane such that
two edges may intersect only at endvertices. Let G be a connected plane graph with
vertex set V (G), edge set E(G), and face set F (G). The boundary of a face α is the
boundary in the usual topological sense. It is a collection of all edges and vertices
contained in the closure of α that can be organized into a closed walk in G traversing
along a simple closed curve lying just inside the face α. This closed walk is unique
up to the choice of the initial vertex and direction, and is called the boundary walk
of the face α (see [15], p. 101).

Let α be a k-gonal face of G having a boundary walk v0v1 . . . vk−1vk, where vk = v0
with vi ∈ V (G), ei ∈ E(G), and ei = vivi+1 for every i = 0, 1, . . . , k−1. A facial path
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of α is any path of the form vmvm+1 . . . vn−1vn (subscripts are calculated modulo k)
which is a part of the boundary walk of α.

The size of a face α ∈ F (G) is the length of its boundary walk.

Two vertices (two edges or two faces) are adjacent if they are connected by an edge
(have a common endvertex or their boundaries have a common edge, respectively).
A vertex and an edge are incident if the vertex is an endvertex of the edge. A vertex
(or an edge) and a face are incident if the vertex (or the edge) lies on the boundary
of the face.

Let deg(v), δ(G),Δ(G),Δ∗(G), diam(G), and L(G) denote the degree of a vertex
v, the minimum degree, the maximum degree, the maximum face size, diameter, and
the length of a longest facial path of G, respectively. For a path P let |P | denote the
length of P .

2 Cyclic and rainbow colorings

A cyclic coloring of a 2-connected plane graph G is a coloring of its vertices such
that any two distinct vertices incident with the same face receive distinct colors. The
cyclic chromatic number of a 2-connected plane graph G, denoted by χc(G), is the
smallest number of colors used in a cyclic coloring of G. This graph invariant was
introduced by Ore and Plummer [21]. Clearly, χc(G) is trivially bounded from below
by the size Δ∗(G) of a largest face of G.

Ore and Plummer [21] proved the first upper bound 2Δ∗ for χc(G). Borodin [6]
slightly improved this bound to 2Δ∗ − 3 for Δ∗ ≥ 8. Significant progress has been
made recently. Borodin, Sanders, and Zhao [9] managed to prove the upper bound of⌈
9
5
Δ∗⌉ and the currently best known general upper bound

⌈
5
3
Δ∗⌉ is due to Sanders

and Zhao [25].

Better results are known for graphs with small maximum face sizes, i.e., for small
values of Δ∗. The case of cyclic colorings of plane triangulations, i.e., Δ∗ = 3, is
equivalent to the famous Four Color Theorem which was proved by Appel and Haken
in [2], [3] and [4] (see also [24] for a refinement of its proof). Hence χc(G) ≤ 4 for
Δ∗ = 3.

The case of Δ∗ = 4 is Ringel’s problem [23]. The problem was solved and it
was shown that χc(G) ≤ 6 by Borodin [8] (see [6] for a simpler proof). The case
χc(G) ≤ 9 for Δ∗ = 6 was proved by Hebdige and Král’ [17]. These bounds of χc(G)
for Δ∗ = 3, Δ∗ = 4, and Δ∗ = 6 are the only ones which are currently known
to be tight. The upper bounds 8 for Δ∗ = 5, [9], 11 for Δ∗ = 7, [16], and 13 for
Δ∗ = 8, [26], were also proved.

The best known lower bound
⌊
3
2
Δ∗⌋ for cyclic colorings is also conjectured to be

the best possible upper bound. The conjecture is by Borodin [8]. For discussion on
this see [20] by Jensen and Toft.

Conjecture 2.1 ([8]). Every 2-connected plane graph has a cyclic coloring with at
most

⌈
3
2
Δ∗⌉ colors.
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Amini, Esperet, and van den Heuvel [1] proved that for every ε > 0 there exists
Δε such that every 2-connected plane graph of maximum face size Δ∗ ≥ Δε admits
a cylic coloring with at most (3

2
+ ε)Δ∗ colors.

Restricting attention to 3-connected plane graphs, Plummer and Toft [22] proved
that χc(G) ≤ Δ∗ + 9 and proposed the following conjecture.

Conjecture 2.2 ([22]). Every 3-connected plane graph has a cyclic coloring with at
most Δ∗ + 2 colors.

This conjecture is true for 3-connected plane graphs with Δ∗ ≥ 16. Horňák and
Jendrol’ [18] proved it for Δ∗ ≥ 24, Horňák and Zlámalová [19] for Δ∗ ≥ 18 and
Dvořák et al. [12] for 16 ≤ Δ∗ ≤ 18. Borodin [6] proved this conjecture for Δ∗ = 4,
and Appel and Haken [2] for Δ∗ = 3. Enomoto, Horňák, and Jendrol’ [14] obtained
for Δ∗ ≥ 60 even stronger results, namely χc ≤ Δ∗ + 1. Azarija et al. [5] proved the
same bound for plane graphs in which all faces of size four or more are vertex-disjoint.

Conjecture 2.3 ([27]). Every 3-connected plane graph with Δ∗ �= 4 has a cyclic
coloring with at most Δ∗ + 1 colors.

The best known general upper bound is due to Enomoto and Horňák [13] who
proved that χc(G) ≤ Δ∗ + 5 for every 3-connected plane graph G.

For more discussion about the problem see surveys in [7] or [8].

In this paper we introduce the notion of a facial rainbow coloring. A facial rainbow
coloring of a connected plane graph G is a coloring of its vertices such that any two
distinct vertices connected by a facial path receive distinct colors. The facial rainbow
number of G, denoted by vrb(G), is the smallest number of colors used in a facial
rainbow coloring of G.

Observe that the notion of the facial rainbow coloring extends the notion of the
cyclic coloring also for all connected plane graphs. Therefore from now we will use
this more general, newer, and more appropriate notion.

Motivated by the above mentioned papers and the paper by Brešar et al. [10], in
this note, we investigate the facial rainbow coloring of trees with plane embeddings.
Note that, in this paper, we identify a tree T with some plane embedding of T .

For other topics concerning facially restricted types of colorings of plane graphs
see a recent survey [11] by Czap and Jendrol’.

3 Trees and their embeddings in the plane

Let graph G be a plane graph. The value of vrb(G) depends on the embedding of
the graph G in the plane. Let L(G) denote the length of a longest facial path in
G. Then vrb(G) ≥ L(G) + 1. A caterpillar is a tree having the property that after
deleting all leaves from it, the resulting graph is a path.

Let Ht be a caterpillar with 2t leaves all of whose internal vertices are of degree
4. The graph Ht can be embedded into the plane in several ways. Let H∗

t be such
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an embedding for which the longest facial path has a length of L = t. Let H̃t be the
another embedding with the longest facial path of length L = 3. It is easy to show
that vrb(H̃t) = 4 and vrb(H∗

t ) = t + 1 while diam(H̃t) = diam(H∗
t ) = diam(T ) = t.

Let T be a tree having Δ(T ) ≥ 3. Then it has l leaves, l ≥ Δ(T ) ≥ 3. Those vertices
of T which are not leaves are called internal vertices. Let v1, v2, . . . , vl be leaves of T
in an order given by the (unique) boundary walk of T . Denote by Pi,i+1 the unique
vi − vi+1-path in T , where subscripts are calculated modulo l. A facial path is called
the maximal facial one if it is not a proper subgraph of a longer facial path. A facial
path is called a maximum facial path of T if it is maximal and is the longest one
among all maximal facial paths of T . The length of a longest maximum facial path
is denoted by L(T ).

It is easy to see that the set of all maximal facial paths is exactly the following
one: {Pi,i+1 : i = 1, . . . , l, subscripts modulo l}. Then L(T ) = L = max{∣∣Pi,i+1

∣∣ :
i = 1, . . . , l, subscripts modulo l}.

4 Facial rainbow number and diameter

For a given nontrivial tree T , let l denote the number of its leaves. Denote by Sl,r the
generalized star with a central vertex v0 of degree l and l paths of length r starting
at v0. It is easy to see that Sl,r has rl + 1 vertices, diameter 2r and facial rainbow
number 2r + 1 if l is even, or 3r + 1 if l is odd.

Theorem 4.1. Let T be a tree of diameter diam(T ). Then

vrb(T ) ≤ 1 +

⌊
3

2
diam(T )

⌋
.

Moreover, the bound is tight.

Proof. The proof is by induction on the number of the leaves l.

If l = 2, then T is a path on diam(T ) + 1 vertices. The theorem is true. Let
l ≥ 3 and let v1, v2, . . . , vl be consecutive leaves in an order given by the (unique up
to the orientation and initial vertex) boundary walk. Consider the leaves v1, v2 and
v3. Let Pi,j be a vi−vj-path, 1 ≤ i < j ≤ 3. Let x be the (unique) common vertex of
these three paths. Let Qi be the vi − x-path. Put ai = |Qi|, the length of Qi. Then
ai + aj = |Pi,j| ≤ diam(T ), 1 ≤ i < j ≤ 3. This gives a1 + a2 + a3 ≤ 3

2
diam(T ).

Now delete the vertices of Q2 from T except the vertex x. The resulting tree T ∗ has
l − 1 leaves and diam(T ∗) ≤ diam(T ). By the induction hypothesis, T ∗ has a facial
rainbow coloring with at most 1+

⌊
3
2
diam(T )

⌋
colors. This coloring can be extended

from T ∗ to T by coloring a2 uncolored vertices of Q2. This is always possible because
we have at least a2 available colors for coloring these vertices.

To see that the bound 1+
⌊
3
2
diam(T )

⌋
is tight, consider the graph Sl,r for l odd,

l ≥ 3.
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Theorem 4.2. Let T be a tree of diameter diam(T ) and without internal vertices of
odd degree. Then

vrb(T ) ≤ 1 + diam(T ) .

Moreover, this bound is tight.

Proof. It is easy to see that our tree T has an even number l = 2t of leaves. The
proof is by induction according to t.

If t = 1, then T is a path and the theorem trivially holds.

Let t ≥ 2 and let v1, v2, . . . , v2t be the leaves of T in an order given by the
boundary walk. Consider the leaves v1, v2, v3, and v4. Let Pi,j be a vi − vj-path,
1 ≤ i < j ≤ 4. Let x be the common vertex of all of these paths. Let Qi be a vi −x-
path, i = 1, 2, 3, 4, having length |Qi| = ai. Then the path Pi,j is a concatenation
of the paths Qi and Qj and |Qi| + |Qj | = ai + aj = |Pi,j| ≤ diam(T ). This yields
a1 + a2 + a3 + a4 ≤ 2 diam(T ). Moreover, at most one of a1, a2, a3, and a4 is bigger
than 1

2
diam(T ).

Now delete from T the vertices of the path P2,3 except the vertex x. The resulting
tree T ∗ has l − 2 = 2(t− 1) leaves and diam(T ∗) ≤ diam(T ). Hence T ∗ has a facial
rainbow coloring with 1+diam(T ) colors. This coloring can be extended to a coloring
of T by coloring a2 + a3 uncolored vertices of the path P2,3. This is always possible
because for the coloring of the vertices of Q2 (Q3) we can also use the colors already
used in the coloring of the vertices of Q4 (Q1, respectively), and furthermore, we
know a1 + a2 + a3 + a4 ≤ 2 diam(T ).

To see that the bound 1 + diam(T ) is tight, consider the graph Sl,r with l even,
l ≥ 2.

5 Facial rainbow numbers and longest facial paths

As we can see on the example of the graph H̃t, the difference between the diame-
ter diam(H̃t) and the facial rainbow number vrb(H̃t) of it can be arbitrarily large.
Therefore, another parameter can be chosen for estimating the facial rainbow num-
bers. In this section we will consider the relation between the facial rainbow number
vrb(T ) of a given tree T and the length L(T ) of a longest facial path of T . Our first
result is the following.

Theorem 5.1. Let T be a tree with Δ(T ) ≥ 3 and let L be the length of a longest
facial path in T . Then L+ 1 ≤ vrb(T ) ≤ ⌈

5
3
(L+ 1)

⌉
.

Proof. Let v1, v2, . . . , vl be leaves of T in an order given by the boundary walk of T .
We associate a plane graph S(T ) with the tree T of Δ(T ) ≥ 3. The plane graph S(T )
is constructed from T in the following way. First we insert new edges vivi+1 for every
i = 1, . . . , l; subscripts are calculated modulo l. The resulted graph H(T ) has l + 1
faces: α1, . . . , αl and β, where αi is bounded by the path Pi,i+1 and the edge vivi+1.
The remaining l-gonal face β is bounded by the inserted edges vivi+1; i = 1, . . . , l,
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subscripts modulo l. The graph S(T ) is obtained from the graph H(T ) by inserting
l−3 diagonals into β to get l−2 triangular faces instead of β. Note that if all internal
vertices of T are of degree at least three, then the graph S(T ) is a 3-connected plane
graph. The maximum face size Δ∗(S(T )) = L + 1. By a theorem of Sanders and
Zhao [25] it has a facial rainbow coloring with at most

⌈
5
3
Δ∗(S(T ))

⌉
=

⌈
5
3
(L + 1)

⌉
colors. If we delete all inserted edges from S(T ) we obtain the tree T having a facial
rainbow coloring with at most the stated number of colors.

By the graph Sl,r, r odd, we know that there are trees that need at least
⌊
3
2
L
⌋
+1

colors in any facial rainbow coloring. We strongly believe that the following weaker
version of Conjecture 2.1 (see [8]) holds.

Conjecture 5.2. If T is a tree with a longest facial path of length L, then

vrb(T ) ≤
⌈
3

2
(L+ 1)

⌉
.

Theorem 5.3. Let T be a tree without any internal vertices of degree 2 and let L be
the length of a longest facial path in T . Then

(i) vrb(T ) ≤ L+ 2 if L ≥ 59 or L = 2

(ii) vrb(T ) ≤ L+ 3 if L ≥ 15 or L ∈ {3, 4}
(iii) vrb(T ) ≤ L+ 4 if L ∈ {5, 6}
(iv) vrb(T ) ≤ L+ 5 if L = 7, and

(v) vrb(T ) ≤ L+ 6 in all other cases.

Proof. We proceed analogously as in the proof of Theorem 5.1. Now the graph S(T )
is 3-connected. Next we apply the result of Enomoto, Horňák, and Jendrol’ [14] if
L ≥ 59, Horňák and Zlámalová [19] if L ≥ 17, Dvořák et al. [12] if L ≥ 15, the
Four Color Theorem if L = 2, Borodin [6] if L = 3 or Enomoto and Horňák [13]
in all other cases. The rest of the proof is analogous to the proof of the previous
theorem.

6 Two more problems

As we could see, a tree T can have several nonisomorphic embeddings in the plane.
So we can define two parameters for a given tree:

vrb+(T ) = max
{
vrb(T ∗) : T ∗ is an embedding of T in the plane

}

and
vrb−(T ) = min

{
vrb(T ∗) : T ∗ is an embedding of T in the plane

}
.

Because no facial path in T can be longer than diam(T ), from Theorems 4.1 and
4.2 we immediately have the following:
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Theorem 6.1. For every tree T the following hold:

(i) vrb+(T ) ≤ 1 +
⌊
3
2
diam(T )

⌋
(ii) vrb+(T ) ≤ 1 + diam(T ), if T does not contain any internal vertices of odd

degree.

Problem 6.2. Determine vrb−(T ) for any tree T .

Next we consider this problem for caterpillars. As defined above, a caterpillar is
a tree whose internal vertices induce a path. Let T = K1,k, k ≥ 3, be a star. It is
easy to see that vrb−(K1,k) = 3 or 4 if k is even or odd, respectively.
In general we have the following.

Theorem 6.3. Let T be a caterpillar with at least two vertices of degree at least three
and let t be the order of a longest path induced by the vertices of degree 2 in T . Then

(i) vrb−(T ) = t+ 4, if T does not contain any vertex of degree 3 and

(ii) t + 4 ≤ vrb−(T ) ≤ 2t + 5, otherwise.

Moreover, the bounds t+ 4 and 2t+ 5 are tight.

Proof. Let B = (v1, ..., vk) be the backbone path induced by the internal vertices of
T . Clearly k ≥ 2. Denote by di = degT (vi) for any i = 1, ..., k. We consider three
cases.

Case 1. Let di ≥ 4 for any i = 1, ..., k. Then it is easy to see that there is an
embedding of T in the plane such that any facial path of this embedding consists
of at most four vertices. Let v0 be a leaf adjacent to v1 but not on the facial path
together with v2. We obtain the required 4-coloring by coloring v0 with color a, v1
with color b and then we continue using color a and b alternatively along the path
B. Let x be a leaf adjacent to v1 and on the same facial path as v0 is. Then the
required 4-coloring is completed by the alternative use of colors c and d on leaves
while going from x along the boundary walk of T in the direction avoiding the leaf
v0.

Case 2. Let di ≥ 3 for any i = 1, ..., k. Then we can easily find an embedding of
T in the plane such that any facial path of this embedding has at most five vertices.
We obtain the required 5-coloring by coloring a leaf v0 adjacent to v1 using color a,
then we continue color vertices v1, ..., vk with colors b, c, a, b, c,... Let x be a leaf
adjacent to v1 and on the same facial path as vertex v0. Then the required 5-coloring
is completed by alternative coloring of leaves of T with colors d and e, starting at
vertex x and following the boundary walk of T .

Case 3. Let di ≥ 2 for any i = 1, ..., k. Let T0 be a caterpillar homeomorphic with
T having no vertices of degree 2. (Recall that two graphs are homeomorphic if they
are obtainable from the same graph by subdividing edges with vertices of degree 2.)

Case 3.1. If T does not contain any vertices of degree 3, then T0 does not have such
a vertex. Then we color T0 as in Case 1. This coloring induces a partial coloring of T
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in which only vertices of degree 2 are not colored. The required coloring is finished
by coloring the vertices of any path induced by vertices of degree 2 of T with different
colors from the set {c1, ..., ct}.

Case 3.2. In this case we color the vertices of T0 as in Case 2. This coloring
induces a partial coloring of T which is completed analogously as in Case 3.1. using
alternatively disjoint color sets {c1, ..., ct} and {c′1, ..., c′t} for consecutive paths of
2-vertices.

To see the tightness of the lower bound t + 4 consider a caterpillar with the
backbone path B = (v1, ..., vt+2, vt+3) having deg(v1) = deg(vt+3) = 3 and deg(vi) =
2 for i = 2, ..., t+ 2.

The tightness of the upper bound 2t + 5 of the theorem can be easily seen from
the suitable embedding of the caterpillar with a backbone path B = (v1, ..., v2t+3)
having deg(v1) = deg(vt+2) = deg(v2t+3) = 3 and deg(vi) = 2 for i = 2, ..., 2t + 2,
i �= t+ 2.
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Note added in proof

Conjecture 5.2 has been recently proved in [A].

[A] S. Jendrol’ and and Lucia Kekeňáková, Facial rainbow coloring of plane graphs
(submitted).
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[16] F. Havet, J.-S. Sereni and R. Škrekovski, 3-facial coloring of plane graphs, SIAM
J. Discrete Math. 22 (2008), 231–247.

[17] M. Hebdige and D. Král’, Third case of the cyclic coloring conjecture,
http://arxiv.org/pdf/1501.06624.pdf
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