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Abstract

A sum graph G is a graph with an injective mapping of the vertex set
of G onto a set of positive integers S in such a way that two vertices
of G are adjacent if and only if the sum of their labels is an element
of S. In an exclusive sum graph the integers of S that are the sum
of two other integers of S form a set of integers that label a collection
of isolated vertices associated with the graph G. A graph bears a k-
exclusive sum labelling (abbreviated k-ESL), if the set of isolated vertices
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is of cardinality k, an optimal exclusive sum labelling if k is as small as
possible, and Δ-optimal if k equals the maximum degree of the graph.

In this paper, observing that the property of having a k-ESL is hered-
itary, we provide a characterisation of graphs that have a k-exclusive sum
labelling, for any k ≥ 1, in terms of describing a universal graph for the
property.

1 Introduction

All graphs considered here are simple and undirected unless otherwise stated. All
graphs are also connected except for the isolated vertices necessary to maintain the
labelling. We will define terms specific to this article; for all other terms used the
reader is referred to [3].

1.1 Sum Graphs

A sum graph G is a graph with an injective mapping of the vertex set of G onto a
set of positive integers S in such a way that two vertices of G are adjacent if and
only if the sum of their labels is an element of S. More formally, for a sum labelling
L : V (G) → S, we have u, v ∈ V (G), uv ∈ E(G), if and only if there is a w ∈ V (G)
such that L(u) + L(v) = L(w). In this case the vertex w is said to be a working
vertex whose work is to witness the edge uv.

Sum graphs were introduced by Harary in [5] as a terse way of storing and com-
municating graphs. One of the first properties noticed of sum graphs was that they
must be disconnected. The vertex with the largest label must be an isolate. Any
graph can be sum labelled by including sufficiently many isolated vertices with the
graph. The sum number of a graph G, σ(G) is the smallest cardinality of a set of
isolates that must be included with G in order for it to have a sum labelling.

A sum graph with all working vertices being confined to the set of isolates was
postulated in [8] and given the name exclusive sum graph. More precisely, for a given
positive integer k, a k-exclusive sum labelling (abbreviated k-ESL) of a graph G is
a sum labelling L of the graph G ∪ Kk such that, for u, v ∈ V (G ∪ Kk), we have
uv ∈ E(G ∪Kk) if and only if L(u) + L(v) = L(w) for some w ∈ Kk (and, similarly
as above, we say that the isolate w witnesses the edge uv). Note that there is a
slight formal difference here: unlike in sum graphs, when saying that a graph G is
an exclusive sum graph, we do not consider the isolates to be vertices of G, and,
consequently, an exclusive sum graph does not have to be disconnected. We will use
Ek to represent the class of all graphs having a k-ESL.

Thus, a (given) k-ESL assigns to every edge of G an isolate by which it is wit-
nessed. This assignment can be also thought of as an edge colouring of G, in which
the colour of an edge equals the label of the isolate by which it is witnessed. Since
all labels of vertices have to be distinct, no two edges adjacent to the same vertex
can have the same colour and, consequently, this assignment determines a proper
edge colouring of G. Moreover, also conversely, once the assignment of labels to the
edges of G (i.e., the edge colouring of G) is given, then the labelling L of the vertices
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of G is uniquely determined, up to an additive constant (provided G is connected;
otherwise this is true in each component of G).

However, note that not every proper k-edge-colouring of G determines a k-ESL
of G: for example, the graph K2,2,2 (see Fig. 7) is 4-edge-colourable while it can be
shown [6] that any of its exclusive sum labellings requires at least 7 isolates.

Obviously, if G has a k-ESL, then G has a k′-ESL for every k′ ≥ k (i.e., adding
extra isolates does not change the k-ESL property). The exclusive sum number of
a graph G, ε(G) is the smallest k for which G has a k-ESL, i.e., the cardinality of
the smallest set of isolates that must be included with G in order for it to have
an exclusive sum labelling. Clearly σ(G) ≤ ε(G) and, by the above observations
on edge-colourings, χ′(G) ≤ ε(G), where χ′(G) is the edge chromatic number (also
called the chromatic index) of G.

Exclusive sum numbers are known for various families of graphs such as: complete
graphs, ε(Kn) = 2n − 3, n > 3 [2]; cocktail party graphs, ε(H2,n) = 2n − 5 [6]; and
odd wheels, ε(Wn) = n, n odd [7].

Since, for an exclusive sum graph G, labels of the isolates determine a proper
edge-colouring of G, the fewest number of isolates required for a graph G to bear an
exclusive sum labelling is χ′(G) and, consequently, by Vizing’s theorem, the max-
imum degree of G,Δ(G). Exclusive sum graphs with Δ isolates are referred to
as Δ-optimal exclusive sum graphs. Such graphs include caterpillars, shrubs (trees
with diameter 4), stars and double stars [10]. By the above observations on edge-
colourings, every such graph must satisfy χ′(G) = Δ(G), i.e., must be of chromatic
class 1. Ryan [9] has produced a survey of exclusive graph labellings while Gallian [4]
devotes a section to exclusive sum labellings in his well-known dynamic survey.

The problem with applying an exclusive sum labelling (and indeed a sum la-
belling) is twofold. First the labelling must witness every edge but also no two
non-adjacent vertices should have labels that sum to another label. To do so would
have the effect of inducing an edge in the graph that belongs in the complement of
the graph. For example, let us label C4 with 2, 4, 5, 7 (cyclic). Then the isolates
required would be 6, 9, 12. However the label 7 induces an edge between vertices
labelled 2 and 5 resulting in a graph that is no longer isomorphic to C4. We call such
edges false edges.

We say that a graph property P is hereditary if, whenever a graph G has P,
so does its every induced subgraph. Similarly, a class C of graphs is hereditary if,
when G ∈ C, all induced subgraphs of G are also in C. (For example, every induced
subgraph of a line graph is also a line graph, hence the class of all line graphs is
hereditary). Note that if F is a given (finite or infinite) family of graphs, then
the class of all F -free graphs (i.e., graphs that do not contain an induced subgraph
isomorphic to any graph from F), is a hereditary class.

Now, it is immediate to observe that, for a given k, if L is a k-ESL of a graph
G and G′ is an induced subgraph of G, then the restriction of L to V (G′) ∪Kk is a
k-ESL of G′. Thus, the property of “having a k-ESL” is a hereditary property, and
the class Ek of all graphs having a k-ESL is a hereditary class.

There are two ways of characterising hereditary classes of graphs.
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• It is a well-known fact that for any hereditary class C there is a family F of
graphs (called “forbidden induced subgraphs”) such that G ∈ C if and only
if G is F -free. Note that such F always exists (the graphs in F are just
those elements of C that are minimal under the partial order defined by the
relation of being an induced subgraph). A well-known example is the Beineke’s
characterisation of line graphs in terms of 9 forbidden induced subgraphs [1].

• Sometimes, it is possible to characterise C in terms of a universal graph, i.e.,
a graph G such that G ∈ C if and only if G is an induced subgraph of G.
Note that, unlike with the forbidden subgraphs, there are hereditary classes
for which a universal graph does not exist.

In this paper, we will address the question of characterising the class Ek of all
graphs having a k-ESL in either of the above ways. While a forbidden subgraph
characterisation seems to be complicated (note that even for k = 2, the family F for
E2 contains all cycles and the claw (K1,3) since neither of these graphs has a 2-ESL,
hence F is infinite), we will succeed in finding a universal graph for a generalised
version of the problem. Describing the families of forbidden subgraphs for Ek, k ≥ 3,
remains an open problem.

1.2 Hyperdiamond

A hyperdiamond is a generalisation of the honeycomb grid and is defined by the
following construction.

1. H1 is one edge (i.e., K2).

2. Take a doubly infinite sequence of copies of Hi:
. . . , H−2

i , H−1
i , H0

i , H
1
i , H

2
i , . . .

3. Colour the vertices with 2 colours (black and white) so that corresponding
vertices in Hj

i and Hj+1
i have different colours.

4. For every j, join every black vertex in Hj
i to its corresponding (white) vertex

in Hj+1
i with a copy of H1, and denote the resulting graph as Hi+1.

So H1 is a single edge, H2 is an infinite path, H3 is the infinite honeycomb grid, H4

is the infinite diamond (sometimes also called the “diamond structure”). Figure 1
shows the infinite honeycomb grid H3 being constructed from copies of the path H2,
and the infinite diamond structure being constructed from copies of H3.

By the above construction of Hk, we immediately observe that, for i = 1, the
sequence given in Step 2 is an infinite matching, denoted M1, and for each i =
2, . . . , k, in Step 4, a perfect matching, denoted Mi, is added to join the copies of
Hi−1. Thus, for any k ≥ 2, the matchings M1, . . . ,Mk define a decomposition of
E(Hk) into k perfect matchings. This decomposition will be called the canonical
decomposition of Hk. Obviously, removing any one of the matchings M1, . . . ,Mk

from the Hk will leave an infinite number of copies of Hk−1.
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3
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Figure 1: The honeycomb grid H3 and the diamond structure H4

Note that, from a purely geometrical point of view, H3 is 2-dimensional (being in
the plane), and H4 is 3-dimensional (being a crystallographic structure). However,
for our purposes, we will consider k (i.e., the number of perfect matchings in a
canonical decomposition) to be the dimension of Hk.

All graphs considered herein, except the hyperdiamonds, will be finite.

In this article we provide a characterisation of graphs having a k-ESL. In Sec-
tion 2, we investigate exclusive sum graphs for k ≤ 3, while in Section 3 we extend
this result to all k ≥ 1. A surprising feature of these results is the central role of a
universal graph played by the hyperdiamond structure.

2 Graphs having a 3-ESL

First we consider the (easy) cases of graphs having 1-ESL and 2-ESL. Since the
maximum degree of the graph sets the lower bound for the exclusive sum number,
the only graph with a 1-ESL is K2, and a graph has a 2-ESL if and only if it is a path
of length at least two [8]. Thus, the first nontrivial case is that of having a 3-ESL.

Let ue and ve represent end vertices of an edge e of G, witnessed by an isolate
we. Define the function f on the edges of G as the sum of labels of end points of
an edge minus the edge colour (i.e., the label of the witnessing isolate), formally
f(e) = L(ue)+L(ve)−L(we) = L(ue)+L(ve)−χ(e). In an exclusively labelled sum
graph,

f(e) = 0, for every e ∈ E(G). (1)

To simplify the notation, for the rest of the paper, if no confusion can arise, we
will identify a vertex with its label, i.e., we will simply write f(e) = ue + ve − we.

Sum labellings and exclusive sum labellings are not necessarily unique. For clarity
we will employ the following definitions.

Definition 2.1 A particular labelling is an exclusive sum labelling in which all labels
are distinct positive integers.
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Figure 2a) shows an example of a particular labelling.

Definition 2.2 A general labelling is an exclusive sum labelling in which the ver-
tices are labelled with parameters indicating a relationship between labels such that
equation (1) holds for all edges.

Figure 2b) gives an example of a general labelling for the graph of Figure 2a).
Setting x = 1, a = 6, b = 10, c = 14 gives the particular labelling as shown in
Figure 2a). Another particular labelling can result from setting x = 3, a = 11, b =
22, c = 30. Other particular labellings can be obtained from appropriate settings of
any three of x, a, b, c and solving (a− x) + (b− x)− c = 0.

Definition 2.3 A generic labelling is a general labelling such that equation (1) is
satisfied for all choices of parameters x, a, b, . . .. In the case where the labelling
requires k isolates, we may use the term generic k-labelling.

•
5

•
9

• 1

•13...............................................................................................................................................................................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........

•14
•10
• 6

a)

•
a-x

•
b-x

• x

•c-x...............................................................................................................................................................................................................................................................................................................................................................................
........
........
........
........
........
........
........
........
........
........
........
........
........
........

• c
• b
• a

b)

Figure 2: Particular and general labellings

Figure 3a) gives an example of a generic labelling. Apart from x (which is arbi-
trarily chosen) each of the vertices is chosen so that the incident edge weight satisfies
equation (1). First place a − x, b − x, c − x, then c − b + x and c − a + x; finally,
b− c+ a− x is chosen so that the right edge has weight b. The final edge must now
satisfy equation (1), i.e., (c − b + x) + (b − c + a − x) − a = 0, which is identically
true. For a generic labelling, the only restriction on the choice of parameters x, a, b, c
is that the vertex labels must be distinct, positive integers.
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(1,0,0,0)

(-1,0,1,0)

(1,0,-1,1)

(-1,1,1,-1)
(-1,1,0,0)

(1,-1,0,1)(1,-1,-1,2)

b

b

c

c

a a

c

c

b)

Figure 3: A generic labelling and the corresponding canonical labelling

As another example, we show that C4, the cycle of length 4, has no generic 3-
labelling. Thus, suppose the opposite, and let C4 = uvwzu. By symmetry, we can
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choose L(u) = x, χ(u, v) = a and χ(u, z) = b. This gives L(v) = −x + a and
L(z) = −x + b. Now, since necessarily χ(v, w) �= χ(u, v), for χ(v, w) we have either
χ(v, w) = b or χ(v, w) = c. In the first case we get L(w) = x − a + b, implying
f(wz) = L(w) + L(z) − χ(wz) = −a + 2b − χ(wz) and, since χ(wz) ∈ {a, c}, none
of these possibilities gives f(wz) = 0 for all values of x, a, b, c. In the second case
similarly L(w) = x − a + c, and, since χ(wz) = a, we have f(wz) = L(w) + L(z) −
χ(wz) = −2a+ b+ c �= 0. Thus, C4 has no generic 3-labelling.

The following concept will be needed throughout the rest of the paper and there-
fore we define it for arbitrary k ≥ 1.

Definition 2.4 We define a specific type of generic labelling, φ on Hk, called a
canonical labelling. Let M1,M2, . . . ,Mk be the canonical decomposition of Hk into k
perfect matchings. We define a labelling φ on V (Hk) by the following construction:

(i) select (arbitrarily) an origin and label it L(u) := x,

(ii) label the isolates with a1, a2, . . . , ak, respectively,

(iii) colour every edge e ∈ E(Mi) with colour χ(e) = ai, i = 1, 2, . . . , k, (or,
equivalently, assign to the edges of Mi the isolate labelled ai as a witness,
i = 1, 2, . . . , k),

(iv) for every edge uv ∈ E(Hk) such that L(u) is already defined while L(v) is not,
set L(v) := χ(uv)− L(u).

Then each vertex u ∈ V (Hk) is labelled with an expression

ψ ∗ x+ α1 ∗ a1 + α2 ∗ a2 + . . .+ αk ∗ ak,

where ψ ∈ {−1, 1}, and we set φ(u) = (ψ, α1, α2, . . . , αk). When we need to specify
the dimension, we may speak of a canonical k-labelling so that, when dealing with
graphs in E3 we may refer to a canonical 3-labelling.

In terms of the canonical labelling φ on H3, the origin and its three adjacent
vertices are labelled (1, 0, 0, 0), (−1, 1, 0, 0), (−1, 0, 1, 0), (−1, 0, 0, 1). Of course, the
canonical labelling of H3 can be restricted to any finite induced subgraph G of H3,
and it immediately gives a generic 3-labelling of G, see Fig. 3b).

If G is a graph embedded in H3 and u, v ∈ V (G), then define the grid distance
dH(u, v) as the distance between u and v in H3. Note that dH(u, v) can be different
from dG(u, v) and depends on the embedding. In Figure 4 dG(u, v) = 12 while
dH(u, v) = 2.

The following fact is straightforward.

Observation 2.5 Consider G embedded in H3 with origin u (i.e., φ(u) = (1, 0, 0, 0)).
Then for v ∈ V (G) with φ(v) = (±1, α, β, γ) we have dH(u, v) = |α|+ |β|+ |γ|.
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Figure 4: The path P13 embedded in H3

For example, in the graph in Fig. 3, for the left-bottom vertex v with φ(v) =
(1,−1,−1, 2), we have α = −1, β = −1 and γ = 2, hence dH(u, v) = 1 + 1 + 2 = 4.

The main result of this section is the following theorem.

Theorem 2.6 A graph G has a generic 3-labelling if and only if G is an induced
subgraph of H3.

Proof
(⇐) A generic 3-labelling of G is obtained as a restriction of a canonical labelling

of the H3 to V (G).

(⇒) We prove the following slightly stronger statement.

If G has a generic 3-labelling ϕ, then G can be embedded in H3 (as an induced
subgraph) in such a way that ϕ is a restriction of a canonical labelling of H3.

To anchor the induction, observe that it is easily seen that the theorem is true
e.g. for graphs of order at most 3.

Assume that the statement does not hold and let G be the smallest order exclusive
sum graph for which the theorem does not hold. That is, G is a smallest graph that
has a generic 3-labelling but which is not embeddable in H3 as an induced subgraph.
Then for any vertex z ∈ V (G), G − z is embeddable in H3. Choose z to be of
degree 1 or 2. This is always possible since we are considering finite graphs (if G was
3-regular, then G− z would be an induced subgraph of H3 with 3 vertices of degree
2 and no vertex of degree 1, which is not possible).

For d(z) = 1, remove z and the graph G− z is embeddable. If we replace z then,
since G has a generic exclusive sum labelling, z cannot induce any false edges and
so G must have been embeddable.

For d(z) = 2, let u, v be the neighbours of z. By assumption, G−z is embeddable
in such a way that ϕ is a restriction of a canonical labelling of H3. Suppose, without
loss of generality that edge zu has colour a and zv has colour b (in the generic labelling
of G) and that the canonical labelling of H3 has u as origin (φ(u) = (1, 0, 0, 0)). Then
we have φ(z) = (−1, 1, 0, 0), that is, a− x, and φ(v) = (1,−1, 1, 0), that is, b−
a + x. But in G− z, φ is a canonical labelling so, by Observation 2.5, dH(u, v) = 2.
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Let y be the common neighbour of u, v in H3. Then y �= z for otherwise G is
already embedded in H3. If y ∈ V (G), then y ∈ V (G− z) and since G− z is induced
in H3, both yu, yv ∈ E(G − z). In this case C = zvyuz is a C4 in G which is
impossible since C4 has no generic 3-labelling. Hence y �∈ V (G) and so y = z and G
is embedded in H3.

It remains to show that, after the embedding, ϕ is a restriction of a canonical
labelling of H3. This is true for ϕ on G− z, so let φ be the canonical labelling of H3

such that φ(w) = ϕ(w), for every w ∈ G − z. We need to show that ϕ(z) = φ(y).
Recall that we have ϕ(u) = φ(u) (= x) and ϕ(v) = φ(v). Let ak and bk be the
colours (in φ) of the edges uy and vy, respectively. Then from the path uzv we have
ϕ(v) = b− a + x while from the path uyv we have ϕk(v) = bk − ak + x. Since both
ϕ and φ are generic, they must be the same function, from which b = bk and a = ak,
so ϕ(z) = b− x = bk − x = φ(z). �

For a graph to have an exclusive sum labelling, the vertices must be labelled with
distinct positive integers. Therefore any generic (or even general) labelling must have
a solution in the positive integers. To this end we will employ the following theorem
from [9].

Theorem 2.7 If L is an exclusive sum graph labelling of a graph H in G = H ∪Kr

then so is the labelling L′(u) = k1L(u) + k2 for u ∈ H and L′(u) = k1L(u) + 2k2 for
u ∈ Kr, where k2 is any integer which results only in positive values in L′ and k1 is
any positive integer that does not divide 6k2.

Since the generic labelling may involve negative coefficients of a, b, c, the above
theorem allows us, by judicious choice of k1 and k2, to make sure all vertices have
positive integer labels.

Theorem 2.8 Any graph bearing a generic 3-labelling has also a 3-ESL, i.e., is an
exclusive sum graph with 3 isolates.

Proof For proof it is sufficient to show that in a generic 3-labelling there exists a
choice of exclusive sum isolates, a, b, c, such that all vertices are labelled with distinct
positive integers.

First we make sure that all labels are distinct. To each vertex in a graph G we
assign its generic label, which is a linear function of isolates a, b, c. If ϕ is the generic
labelling, then we can describe the label of a vertex u as ϕu(a, b, c). In order to
ensure that all labels are distinct, we need to avoid the following:

ϕu(a, b, c) = ϕv(a, b, c), u, v ∈ V (G). (2)

Each equation (2) gives a linear equation in a, b, c which can be interpreted geomet-
rically as a plane in Euclidean 3-space with orthogonal axes, a, b, c. For a graph on n
vertices, this gives

(
n
2

)
equations, i.e.,

(
n
2

)
planes in Euclidean 3-space. Additionally

to this, the conditions a �= b, a �= c and b �= c, that have to be also satisfied, give
additional three planes in E3.
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Thus we have finitely many linear equations (O(n2) equations in three variables
for a graph on n vertices embeddable in H3) and we need to find a, b, c so that none
of these equations is satisfied. Equivalently, we have a finite number of planes in E3

and we must find a point (a, b, c) in the first octant with integer coordinates that is
not incident with any of them. Of course this is always possible. Therefore we have
distinct, positive integers a, b, c and distinct integer vertex labels.

We now need to ensure that the labels of all vertices are positive. Theorem 2.7
allows us to choose k1 and k2 in a linear transformation so that the labels of all vertices
are increased sufficiently that all labels are positive. We now have an exclusive sum
labelling with 3 isolates. �

3 Graphs having a k-ESL

In Section 2, we considered graphs in E3. We now extend these results to Ek.
The main result in this section is given in the following theorem.

Theorem 3.1 A graph G has a generic k-labelling if and only if G is an induced
subgraph of Hk.

Proof By construction, the infinite hyperdiamondHk has k isolates and each vertex
in the hyperdiamond is labelled by a function φ which is a k+1-tuple (the k isolates
plus the origin). Call these isolates a1, . . . , ak.

(⇐) The generic labelling of G is given as a restriction of a canonical labelling of
the Hk.

(⇒) Proof will be by induction on k (and therefore, the dimension of the hyper-
diamond). Assume, by the inductive step, that the theorem is true for all hyperdia-
monds up to dimension k. Consider a graph bearing a generic labelling that requires
k+1 isolates a1, a2, . . . , ak+1, ai �= aj , to support an exclusive sum labelling but that
cannot be embedded in Hk+1, and choose such a graph with minimal number of ver-
tices. This means that, by the minimality assumption, embedding the graph induces
one or more false edges, that is, edges that are not elements of the hyperdiamond
structure. Take one of these unwanted edges and, if this edge is witnessed by an
isolate ai, then remove from the hyperdiamond all edges witnessed by some isolate
aj �= ai (recall that these edges form a matching). Then, if the false edge remains,
we have a hyperdiamond in k dimensions and a graph with a generic exclusive sum
labelling requiring ak isolates that cannot be embedded, contradicting the induction
hypothesis. However aj is chosen arbitrarily, so removing any matching associated
with an isolate must remove the false edge associated with ai. This is impossible, so
graphs with a generic labelling requiring k+1 isolates can be embedded in Hk+1. �

Recall that for a graph to have an exclusive sum labelling, the vertices must
be labelled with distinct positive integers. Therefore any generic (or even general)
labelling must have a solution in the positive integers.
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Theorem 3.2 Any graph bearing a generic k-labelling has also a k-ESL, i.e., is an
exclusive sum graph with k isolates.

Proof As in the case of H3, for proof it is sufficient to show that in a generic k-
labelling there exists a choice of labels for isolates a1, a2, . . . , ak such that all vertices
are labelled with distinct positive integers.

The proof follows the same reasoning as the case for H3 (Theorem 2.8). Here
vertices with non-distinct labels can be represented as a linear equation in the k
labels of the isolates. This can be viewed as (k − 1)-dimensional hyperplanes in
k-dimensional space. As before, we are considering only finitely many (O(n2)) linear
equations so visually only finitely many hyperplanes. We can easily choose a point
in the positive sector (2k-dant), so that it is not coincident with any hyperplane.
Now we have positive, distinct, integer isolates and distinct vertex labels and we can
again employ Theorem 2.7, if necessary, to ensure that all vertex labels are positive.
Thus we have an exclusive sum labelling. �

4 Non-embeddable exclusive sum graphs

In Sections 2 and 3, we have described, for k ≥ 1, all graphs having a generic
k-labelling, and we have shown that

• these graphs are exactly all induced subgraphs of the Hk, and
• each of these graphs also has a (particular) k-ESL.

However, there still remain graphs that have a (particular) k-ESL but not a generic
k-labelling. These, of course, do not embed into Hk. For example, Miller et al.
proved that all cycles can be labelled exclusively with no more than 3 isolates [8],
but clearly not all cycles can be embedded in the honeycomb grid H3.

However, all graphs that have a k-ESL have also a spanning subgraph which
has a generic k-labelling and hence can be embedded into Hk, and from which the
remaining edges can be determined by solving the corresponding linear equations.
See Figure 5 for an example of a chorded 5-cycle with a pendant edge.
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Figure 5: Non-embeddable graph and its spanning subgraph that lies in H3

This example motivates our next result which shows that there are no graphs
with a k-ESL but without a generic k-labelling among trees.
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Proposition 4.1 Let T be a tree and k ∈ N. Then T has a k-ESL if and only if T
has a generic k-labelling.

Proof
(⇐) Assume that T has a k-ESL. Each edge in T may be considered as coloured by
the label of its isolate. Choose one vertex in the tree to be the origin, O, and label
it (1,0,. . . ,0), where the 1 is the coefficient of some yet to be determined constant
and the k 0’s are the initial coefficients of the k isolates. For each remaining vertex
u ∈ T assign a generic label by following the colours of the edges from O, that is,
follow the path to u from O adding 1 to each coordinate associated with an edge
that is transversed on the path. The generic labels are unique since if a vertex bears
two different labels that would indicate that it was reached from O in two different
ways, resulting in a cycle, which is impossible in a tree.

The generic labelling cannot induce false edges in T since any induced edge must
be associated with an isolate and so be witnessed in the specific labelling.

(⇒) This is a direct application of Theorem 3.2. �

Since all connected graphs have a spanning tree, Proposition 4.1 implies that
any graph G with a particular k-ESL has a spanning subgraph F with a generic k-
labelling. This spanning subgraph may not necessarily be a tree and may not require
all k isolates for labelling. However, as the next theorem demonstrates, the k-ESL
of G can always be constructed by embedding F in Hk and solving the restriction
of the canonical labelling for the remaining edges in G, which appear as false edges
in Hk.

Consequently, our last result will show that graphs with k-ESL are exactly those
which can be obtained by taking an induced subgraph of Hk with the corresponding
restriction of the canonical labelling, and substituting appropriate specific values for
the parameters.

Theorem 4.2 Let G be a graph and L a k-ESL of G. Then there is a spanning
subgraph F ⊂ G having a generic k-labelling and such that F can be embedded in Hk

in such a way that L = φ(x, a1, a2, . . . , ak) for some values of x, a1, a2, . . . , ak, where
φ is the canonical labelling of Hk.

Proof
Consider a graph G with a k-ESL L, let a1, . . . , ak be the isolates witnessing the
edges of G, and let T be a spanning tree of G. The labelling L obviously determines
an edge-colouring of G, hence also of T (where the colour of an edge is the witnessing
isolate ai). Choose an origin x and let ϕ be the generic labelling defined on the edges
of T by x and by the colours of the edges. Since T is not necessarily an induced
subgraph of G, it is possible that for some u, v ∈ V (G) with uv /∈ E(T ) we have
ϕ(u) + ϕ(v) = ai for some isolate ai; however, since ϕ is constructed from a k-ESL
L of G, in such case necessarily uv ∈ E(G). Let F be the graph obtained from T by
adding all such edges uv. Then F is a spanning subgraph of G and ϕ is a generic
k-labelling of F . Hence, by Theorem 3.1, F can be embedded in Hk such that ϕ is a
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restriction of a canonical labelling φ of Hk. Now, substituting in φ the specific values
a1, . . . , ak and L(x), we obtain that L = φ(x, a1, a2, . . . , ak). This can be done since
we know the graph is an element of Ek. �

For example, in Figure 5b) we need to solve for the 2 edges that are missing
from Figure 5a). The top edge must be coloured (0, 1, 0, 0) since the end vertices are
incident with each of the remaining colours while the bottom edge must be coloured
(0, 0, 0, 1) for the same reason. So we have (reverting to the x, a, b, c notation),

(x− a+ c) + (x− a+ b)− a = 0

2x− 3a+ b+ c = 0

and

(x− a+ b) + (−x+ b)− c = 0

−a + 2b− c = 0

The positive integer values given in Figure 5a) provide solutions for x, a, b, c and
thus a labelling for the (non-embeddable) graph.

Note A proper k-edge-colouring of a graph G that is not an induced subgraph
of Hk does not imply that G has a k-ESL. Figure 6 shows a graph that is 3-edge-
colourable but no arrangement of colours a, b, c will result in equations that can be
solved to provide distinct positive integer labels on the vertices. In this arrangement
colouring one of the edges coloured c with a new colour (i.e., introducing a new
isolate) d allows for a 4-ESL, a minimal (in terms of number of isolates) labelling.
This graph is also critical in the sense that removal of any vertex results in a graph
with a 3-ESL.
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Figure 6: Critical graph with 4-ESL

5 Conclusion

However, even having a maximal spanning subgraph embeddable in Hk is not enough
to ensure that the graph has a particular k-labelling. Each of the graphs in Figure 7,
although of differing orders, requires a minimum of 7 isolates to support an exclusive
sum labelling while they all possess spanning subgraphs that can be embedded in H3.

Possible labellings are
V (K5) - 1, 5, 9, 13, 17 with isolates 6, 10, 14, 18, 22, 26, 30
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Figure 7: Three graphs, each requiring 7 isolates for an exclusive sum labelling

V (W7) - centre 16 and (cyclic) 28, 25, 19, 22, 1, 37, 7 with isolates 17, 23, 35, 38,
41, 44, 53
V (K2,2,2) - (1, 5), (9, 21), (13, 17) with isolates 10, 14, 18, 22, 26, 34, 38.

The fact that the embedding dimension of a maximal spanning subgraph of a
graph G gives no information about the number of isolates required for G to support
an exclusive sum labelling then begs the following open question.

Open Question 1. How difficult is it to determine the exclusive sum number of a
graph without actually providing an exclusive sum labelling?

As mentioned at the conclusion of Subsection 1.2, a forbidden subgraph charac-
terisation for Ek appears to be difficult. We noted that, even for k = 2 the family of
forbidden subgraphs for E2 is infinite containing, as it does, all cycles as well as the
claw K1,3. While we suspect the family of forbidden subgraphs for Ek is infinite for
all k, we pose a perhaps more approachable problem.

Open Question 2. Describe the family of forbidden subgraphs for E3.
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