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The maximum forcing number of a polyomino∗
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Abstract

In this paper, we show that a polyomino with perfect matchings has a
unique perfect matching when removing the set of squares from its max-
imum Clar cover. Thus the maximum forcing number of the polyomino
equals its Clar number and can be computed in polynomial time.
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1 Introduction

Let G be a graph that has a perfect matching. A forcing set for a perfect matching
M of G is a subset S of M , such that S is contained in no other perfect matchings of
G. The cardinality of a smallest forcing set of M is called the forcing number of M ,
and is denoted by f(G;M). The minimum and maximum of f(G;M) over all perfect
matchings M of G is denoted by f(G) and F (G), respectively. Given a matching M
in a graph G, an M-alternating path (cycle) is a path (cycle) in G whose edges are
alternately in M and outside of M . Let e be an edge of G. If e is contained in all
perfect matchings of G, or is not contained in any perfect matchings of G, then e is
called a fixed bond. If e is contained in a perfect matching of G, then e is called a
double bond.

A square graph is the cycle graph C4, called square for short. A polyomino is
a finite connected plane graph which has no cut vertex and every interior face is a
square graph. A connected bipartite graph is called elementary (or normal) if every
edge is contained in some perfect matchings. Let G be a plane bipartite graph, a
face of G is called resonant if its boundary is an alternating cycle with respect to a
perfect matching of G.

The Clar number was originally defined for hexagonal systems [1]. Later, Abeledo
and Atkinson [1] generalized the concept of Clar number for bipartite and 2-connected
plane graphs. For a planar embedding of a 2-connected bipartite planar G, a Clar
cover of G is a spanning subgraph C such that each component is either a face or
an edge, the maximum number of faces in Clar covers of G is called Clar number of
G, and denoted by C(G). We call a Clar cover with the maximum number of faces
a maximum Clar cover.

The idea of forcing number was inspired by practical chemistry problems. This
concept was first proposed by Harary et al. in [4]. The same idea appeared in earlier
papers by Randić and Klein [5, 7] in terms of the innate degree of freedom of a
Kekulé structure. An open problem has been proposed.

Open Problem. Given a graph G, what is the computational complexity of finding
the maximum forcing number of G?

Recently, Xu, Bian and Zhang [8] showed that when G is an elementary hexagonal
system, the maximum forcing number of G can be computed in polynomial time. In
this paper, we showed the following.

Theorem 1. If G is a polyomino with perfect matchings, then F (G) = C(G) and
F (G) can be computed in polynomial time.

2 The maximum forcing number of an elementary poly-
omino

In [3], Hansen and Zheng formulate the computation of Clar numbers as an integer
programming problem. Later, Abeledo and Atkinson [1] proved the following result.
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Theorem 2. If G is a 2-connected bipartite planar graph with n vertices and m
edges, then the Clar number of G can be computed in polynomial time by solving a
linear program with 2m− n + 2 variables and n constraints.

Xu, Bian and Zhang [8] proved that the maximum forcing number of an elemen-
tary hexagonal system equals its Clar number. And using Theorem 2, they showed
that the maximum forcing number of an elementary hexagonal system can be com-
puted in polynomial time. They also proposed the following conjecture.

Conjecture. If G is an elementary polyomino, then the maximum forcing number
of G can be computed in polynomial time.

We now prove that the conjecture is true. We will first prove the following
theorem.

Theorem 3. Let G be a polyomino with perfect matchings. Let K be a maximum
Clar cover of G with C(G) squares, and let K ′ be the set of squares in K. Then
G−K ′ has a unique perfect matching.

Proof. Suppose that G − K ′ has more than one perfect matching. The union of
any two of the perfect matchings of G−K ′ will give us a set of alternating cycles in
the graph G. Let C be an alternating cycle in G−K ′. Let G∗ denote the subgraph
of G such that the outer boundary of G∗ is the alternating cycle C. Let K ′|G∗ denote
the set of squares of K ′ in G∗. It is clear that C is a nice cycle of G (i.e., G − C
has a perfect matching) and G∗ −K ′|G∗ has a perfect matching which is denoted by
M(G∗).

Now let us look at the graph G∗; we label the vertices of the graph G∗ row by
row, from top to bottom. The leftmost vertex in the top row is labelled as v1,1, and
the vertices in the same row will be labelled as v1,i. The second row of vertices are
labelled as v2,i and i could be 0 or a negative value if the vertex is on the left of the
vertex v2,1. The face with vertex vi,j on its left top is labelled as fi,j (see Fig. 1 for
an example).

v3,2

v1,2

v2,0

v1,1

f1,1 f1,2 f1,3

v1,3 v1,4

v2,−1

v2,1 v2,2

v3,−1 v3,0 v3,1

Figure 1: The labelling of a polyomino

By two parallel edges of a polyomino we mean two opposite edges of a face, either
vi,jvi,j+1 and vi+1,jvi+1,j+1 or vi,jvi+1,j and vi+1,jvi+1,j+1.



YUQING LIN ET AL. /AUSTRALAS. J. COMBIN. 69 (3) (2017), 306–314 309

Observation 1. In M(G∗), if there are two parallel edges, then K is not a maximum
Clar cover.

Clearly, the square surrounded by these two parallel edges can be added to K ′

and then K is not a maximum Clar cover.

Along the same line of reasoning, we obtained the following two observations.

Observation 2. If there are two parallel edges on the boundary of G∗, then K is
not a maximum Clar cover.

Suppose that the face fi,j is surrounded by these two parallel edges. Clearly, if
fi,j is a pending face, then the corresponding square can be included in the K ′, a
contradiction. In other cases, removing the square that corresponding to face fi,j
does not disturb M(G∗). Furthermore, the cycle C has been disconnected into two
odd length paths with a unique perfect matching. Thus, we could include the square
corresponding to face fi,j to increase K ′, a contradiction.

Observation 3. If there is an edge in M(G∗) parallel to the boundary of G∗, then
K is not a maximum Clar cover.

Now we shall prove that either there exists a pair of parallel edges in M(G∗) or
we could replace some squares of K ′ by a larger set, which leads to a contradiction.

Look at the consecutive faces f1,1, f1,2, . . . f1,i in the first row of G∗. Because of
Observation 2, we know that i > 1. Now we look at the faces f2,1, f2,2, . . . f2,i. Let
us first see that these faces all belong to G∗. If one of the faces f2,j, where 1 ≤ j ≤ i,
is not part of G∗, then G∗ has two parallel edges on the boundary of G∗. Based on
Observation 2, we know it is not possible (see Fig. 2 for an example).

f1,i−1 f1,i+1f1,i

Figure 2: An illustration of the perfect matching in G∗

Now, we know that f2,1, f2,2, . . . f2,i are faces of G∗. Firstly, it is clear that none
of the edges v2,1v2,2, v2,2v2,3, . . . , v2,i−1v2,i are in M(G∗) because of Observation 3.
This implies that the edges v2,2v3,2, v2,3v3,3, v2,iv3,i are either in the perfect matching
M(G∗) or in K ′G∗ . And furthermore, due to Observation 2, there are no parallel
edges in M(G∗).

If i is odd, then we know that faces f2,2, f2,4, . . . , f2,i−1 should be in K ′G∗ , other-
wise, remove those faces in K ′ of the form f2,t where 1 ≤ t ≤ i − 1 and then take
f2,2, f2,4, . . . , f2,i−1 with the remaining squares of K ′ to get a Clar cover of G with a
larger number of squares, which is a contradiction.

Now we have f2,2, f2,4, . . . , f2,i−1 ∈ K ′G∗ , and we replace f2,2, f2,4, . . . , f2,i−1 with
the faces f1,1, f1,3, . . . , f1,i which gives us a Clar cover with one more square than K
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(see Fig. 3 for an example), a contradiction.

f2,1

f1,1 f1,2 f1,3 f1,i
v2,1

f2,3 f4,1 f2,i−1

v1,1

Figure 3: An illustration of the perfect matching in G∗

Now we look at the case when i is even, where the previous suggested approach
does not work since it will not give us a new Clar cover with more squares. However,
we could assume that edge v2,2v3,2 is in M(G∗) and faces f2,3, f2,5, . . . , f2,i−1 are in
C ′, otherwise we could make a rearrangement for that configuration to happen. If
the edge v2,1v3,1 is on the boundary of G∗, then by Observation 3, we know that K
is not a maximum Clar cover of G. Now, we could assume that there are other faces
on the left of f2,1.

We know that the edge v3,1v4,1 is either in M(G∗) or K ′G∗ or else belongs to the
boundary of G∗. First we see it is not possible for v3,1v4,1 to be on the boundary,
since this implies that the edges v2,0v2,1 and v3,0v3,1 are on the cycle C, based on
Observation 2. This is a contradiction. Thus we know that v3,1v4,1 must belong to
M(G∗) or K ′G∗ .

Assume that the left most vertex on the second row of G∗ is v2,−j, i.e., there does
not exist a vertex v2,−t where t > j. We could assume that f2,0, f2,−1, . . . , f2,−j all
belong to G∗; otherwise, we relabel the graph and take the left-most v2,−j as v1,1.

Now we also know that all faces f3,0, f3,−1, . . . , f3,−j belong to G∗; otherwise,
based on Observation 2, we could show that one of the faces f2,−t, where 1 < t < j,
could be included in K ′G∗ . See Fig. 4 for details.

v4,1

v2,1

v1,1

v3,1 v3,2

f2,1

f1,1
v2,2

Figure 4: An illustration of the perfect matching in G∗

As in previous cases, we know that the edges v3,0v4,0, v3,−1v4,−1, . . . , v3,−j+1v4,−j+1

are either in the perfect matching M(G∗) or in K ′G∗ . If j is odd, then the faces
f3,0, f3,−2, . . . , f3,−j+1 must be in C ′|G∗ .
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If j is odd, we could then replace the faces f3,0, f3,−2, . . . , f3,−j+1 by f2,1, f2,−1, . . . ,
f2,−j, and clearly we have a larger Clar cover of G (see Fig. 5 for an example). Clearly
the leftover graph has a perfect matching, i.e., a path of odd length has been removed
from the boundary and no internal matchings have been disturbed.

f2,−3

v2,1

v1,1

v3,2

f2,1

f1,1
v2,2

f2,−1f2,−2 f2,0

v2,−3

v3,1

v4,1v4,0v4,−1v4,−2

f3,−2 f3,0

Figure 5: An illustration for getting a larger Clar cover

If j is even, then we could assume that the edge v3,−j+1v4,−j+1 is in the perfect
matching M(G∗). If v3,−jv4,−j is on the boundary of G∗, then based on Observation
2, we know K ′(G∗) is not maximum (see Fig. 6 for an example). Now the leftover
case is that there are more faces on the left of f3,−j. Suppose that the left-most face
in the third row is f3,−t.

v3,−3

v2,1

v1,1

v3,1 v3,2

f2,1

f1,1
v2,2

f2,−1f2,−2

v4,−2v4,−3 v4,1

f2,0f2,−4

v2,−4

v4,0

f2,−3

Figure 6: An illustration that v3,−jv4,−j has to be in M(G∗)

In this case, we know that edge v4,−jv5,−j is either in M(G∗) or in K ′G∗ , and along
the same line of reasoning as for the second row of G∗, we could show that either we
could get a larger Clar cover of G or v4,−t+1v5,−t+1 is in the perfect matching M(G∗).
The same argument terminates when the row containing the left-most bottom face
is encountered, i.e. the row contains the face fx,−y and there are no faces with fx,−w
where w ≥ y. See Fig. 7 for details. In this case, we find a larger Clar cover which
has more squares than C(G), a contradiction. Consequently G − C ′ has a unique
perfect matching. 2

The following theorem was proved in [6] and [8].

Theorem 4. If G is a planar bipartite graph and M is a perfect matching in G,
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v5,−t+1

v4,−j+1

v3,−j+1
v3,−t

v2,−j

v4,−t+1

Figure 7: An illustration of termination case

then the forcing number of M equals the maximum number of disjoint M-alternating
cycles.

Combining Theorems 3 and 4, it is clear that F (G) ≥ C(G). The following
corollary was proved in [12].

Corollary 5. Let G be a plane elementary bipartite graph with a perfect matching
M and let C be an M-alternating cycle. Then there exists an M-resonant face in
the interior of C.

Similar to the proof of Theorem 9 in [8], taking each M -resonant face as a com-
ponent of a Clar cover, the above corollary implies that the number of M -alternating
cycles is no less than the Clar number, This implies that F (G) ≤ C(G). Now we can
conclude with the following.

Theorem 6. If G is an elementary polyomino, then F (G) = C(G).

Based on Theorem 2, we have the following theorem.

Theorem 7. If G is an elementary polyomino, then the maximum forcing number
of G can be computed in polynomial time.

3 The maximum forcing number of a non-elementary poly-
omino

In this section we will consider the case of non-elementary polyominos. To find
the Clar number and maximum forcing number of a non-elementary polyomino, we
will consider decomposing a non-elementary polyomino into a number of elementary
components.

In [9], Zhang et al. developed an O(n2) algorithm to decompose a hexagonal sys-
tem into a number of regions consisting of fixed bonds and elementary components.
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Later, Zhang [10, 11] developed a more efficient algorithm for the decomposition
for more general cases; they showed that there is an algorithm of time complex-
ity O(|E| + |V |) to determine all elementary components and the fixed bonds of a
bipartite graph G. The result is the following.

Theorem 8 ([10]). Let G be a bipartite graph with a perfect matching M . There is
an algorithm of O(|E| + |V |) complexity to decompose G into a number of regions
consisting of fixed bonds and a number of elementary components.

Since a non-elementary polyomino with a perfect matching can be composed into
a number of elementary components and fixed bonds, and the maximum forcing
number of the non-elementary polyomino equals the sum of the maximum forcing
number of those elementary components, it follows that the Clar number of the origi-
nal non-elementary polyomino equals the sum of the Clar number of those elementary
components. Thus we have the following result.

Theorem 9. If G is a non-elementary polyomino with perfect matchings, then
F (G) = C(G).

Since the complexity of decomposing a non-elementary polyomino with perfect
matchings into a number of elementary components and fixed bonds is O(|V |), and
by Theorem 6, the maximum forcing number of every elementary component can
be computed in polynomial time, it follows that the maximum forcing number of a
non-elementary polyomino with perfect matchings can be computed in polynomial
time. Thus we obtain the following result.

Theorem 10. If G is a non-elementary polyomino with perfect matchings, then the
maximum forcing number of G can be computed in polynomial time.

Combining Theorems 7 and 10, we obtain the result stated in Theorem 1.
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