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Abstract

In this paper, we show that a polyomino with perfect matchings has a
unique perfect matching when removing the set of squares from its max-
imum Clar cover. Thus the maximum forcing number of the polyomino
equals its Clar number and can be computed in polynomial time.
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1 Introduction

Let G be a graph that has a perfect matching. A forcing set for a perfect matching
M of G is a subset S of M, such that S is contained in no other perfect matchings of
G. The cardinality of a smallest forcing set of M is called the forcing number of M,
and is denoted by f(G; M). The minimum and maximum of f(G; M) over all perfect
matchings M of G is denoted by f(G) and F(G), respectively. Given a matching M
in a graph G, an M -alternating path (cycle) is a path (cycle) in G whose edges are
alternately in M and outside of M. Let e be an edge of G. If e is contained in all
perfect matchings of GG, or is not contained in any perfect matchings of GG, then e is
called a fixed bond. If e is contained in a perfect matching of GG, then e is called a
double bond.

A square graph is the cycle graph CYy, called square for short. A polyomino is
a finite connected plane graph which has no cut vertex and every interior face is a
square graph. A connected bipartite graph is called elementary (or normal) if every
edge is contained in some perfect matchings. Let G be a plane bipartite graph, a
face of G is called resonant if its boundary is an alternating cycle with respect to a
perfect matching of G.

The Clar number was originally defined for hexagonal systems [1]. Later, Abeledo
and Atkinson [1] generalized the concept of Clar number for bipartite and 2-connected
plane graphs. For a planar embedding of a 2-connected bipartite planar G, a Clar
cover of GG is a spanning subgraph C' such that each component is either a face or
an edge, the maximum number of faces in Clar covers of G is called Clar number of
G, and denoted by C(G). We call a Clar cover with the maximum number of faces
a maximum Clar cover.

The idea of forcing number was inspired by practical chemistry problems. This
concept was first proposed by Harary et al. in [4]. The same idea appeared in earlier
papers by Randi¢ and Klein [5, 7] in terms of the innate degree of freedom of a
Kekulé structure. An open problem has been proposed.

Open Problem. Given a graph GG, what is the computational complexity of finding
the maximum forcing number of G?

Recently, Xu, Bian and Zhang [8] showed that when G is an elementary hexagonal
system, the maximum forcing number of G can be computed in polynomial time. In
this paper, we showed the following.

Theorem 1. If G is a polyomino with perfect matchings, then F(G) = C(G) and
F(G) can be computed in polynomial time.

2 The maximum forcing number of an elementary poly-
omino

In [3], Hansen and Zheng formulate the computation of Clar numbers as an integer
programming problem. Later, Abeledo and Atkinson [1] proved the following result.
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Theorem 2. If G is a 2-connected bipartite planar graph with n vertices and m
edges, then the Clar number of G' can be computed in polynomial time by solving a
linear program with 2m — n + 2 variables and n constraints.

Xu, Bian and Zhang [8] proved that the maximum forcing number of an elemen-
tary hexagonal system equals its Clar number. And using Theorem 2, they showed
that the maximum forcing number of an elementary hexagonal system can be com-
puted in polynomial time. They also proposed the following conjecture.

Conjecture. If GG is an elementary polyomino, then the maximum forcing number
of G can be computed in polynomial time.

We now prove that the conjecture is true. We will first prove the following
theorem.

Theorem 3. Let G be a polyomino with perfect matchings. Let K be a maximum
Clar cover of G with C(G) squares, and let K' be the set of squares in K. Then
G — K' has a unique perfect matching.

PROOF. Suppose that G — K’ has more than one perfect matching. The union of
any two of the perfect matchings of G — K’ will give us a set of alternating cycles in
the graph G. Let C' be an alternating cycle in G — K’. Let G* denote the subgraph
of G such that the outer boundary of G* is the alternating cycle C. Let K’|g« denote
the set of squares of K’ in G*. It is clear that C' is a nice cycle of G (i.e., G — C
has a perfect matching) and G* — K'|g+ has a perfect matching which is denoted by
M(G*).

Now let us look at the graph G*; we label the vertices of the graph G* row by
row, from top to bottom. The leftmost vertex in the top row is labelled as vy ;, and
the vertices in the same row will be labelled as vy ;. The second row of vertices are
labelled as vy ; and 7 could be 0 or a negative value if the vertex is on the left of the
vertex vy 1. The face with vertex v;; on its left top is labelled as f;; (see Fig. 1 for
an example).

V1,1 V1,2 V1,3 V1,4

f1,1 f1,2 f1,3
Va,—1 V20

I V2.1 V2.2

U3, —1 U3, V31 V32

Figure 1: The labelling of a polyomino

By two parallel edges of a polyomino we mean two opposite edges of a face, either
Ui,jVijp1 AN Vi1 Ui jn OF Vg jVigy; and Uiy jUig ji1-
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Observation 1. In M (G"), if there are two parallel edges, then K is not a maximum
Clar cover.

Clearly, the square surrounded by these two parallel edges can be added to K’
and then K is not a maximum Clar cover.

Along the same line of reasoning, we obtained the following two observations.

Observation 2. If there are two parallel edges on the boundary of G*, then K is
not a maximum Clar cover.

Suppose that the face f;; is surrounded by these two parallel edges. Clearly, if
fi; is a pending face, then the corresponding square can be included in the K', a
contradiction. In other cases, removing the square that corresponding to face f; ;
does not disturb M (G*). Furthermore, the cycle C' has been disconnected into two
odd length paths with a unique perfect matching. Thus, we could include the square
corresponding to face f; ; to increase K’, a contradiction.

Observation 3. If there is an edge in M (G*) parallel to the boundary of G*, then
K is not a maximum Clar cover.

Now we shall prove that either there exists a pair of parallel edges in M(G*) or
we could replace some squares of K’ by a larger set, which leads to a contradiction.

Look at the consecutive faces fi1, fi2,... fi; in the first row of G*. Because of
Observation 2, we know that ¢ > 1. Now we look at the faces fa1, fao,... f2;. Let
us first see that these faces all belong to G*. If one of the faces f5;, where 1 < j <74,
is not part of G*, then G* has two parallel edges on the boundary of G*. Based on
Observation 2, we know it is not possible (see Fig. 2 for an example).

Figure 2: An illustration of the perfect matching in G*

Now, we know that fo1, fa2,... fo; are faces of G*. Firstly, it is clear that none
of the edges vy 1v22, V22v23, ..., V2,102, are in M(G*) because of Observation 3.
This implies that the edges v 203 2, V2,3V3 3, U2 ,;V3,; are either in the perfect matching
M(G*) or in K[,.. And furthermore, due to Observation 2, there are no parallel
edges in M (G*).

If ¢ is odd, then we know that faces fa, fou, ..., f2,—1 should be in K., other-
wise, remove those faces in K’ of the form f5; where 1 < ¢ < i —1 and then take
fo.2y foa, -, fai—1 with the remaining squares of K’ to get a Clar cover of G with a
larger number of squares, which is a contradiction.

, .
Now we have f9, fou,..., foi-1 € K., and we replace fa9, fou,..., fo,—1 with
the faces fi1, fi3,..., fi; which gives us a Clar cover with one more square than K
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(see Fig. 3 for an example), a contradiction.

V11

fin fiz2 fia fii

V2.1
j I for | fas | fan ] fei I

Figure 3: An illustration of the perfect matching in G*

Now we look at the case when ¢ is even, where the previous suggested approach
does not work since it will not give us a new Clar cover with more squares. However,
we could assume that edge voov32 is in M(G*) and faces fa3, fas, ..., foi—1 are in
C’, otherwise we could make a rearrangement for that configuration to happen. If
the edge vy 1v3 ;1 is on the boundary of G*, then by Observation 3, we know that K
is not a maximum Clar cover of G. Now, we could assume that there are other faces
on the left of f5;.

We know that the edge v3 v4; is either in M(G*) or K. or else belongs to the
boundary of G*. First we see it is not possible for vs;v4; to be on the boundary,
since this implies that the edges vsgv21 and vsgvs; are on the cycle C', based on
Observation 2. This is a contradiction. Thus we know that vs1v4; must belong to
M(G*) or Ki..

Assume that the left most vertex on the second row of G* is v, _;, i.e., there does
not exist a vertex vy _; where t > j. We could assume that foq, fo,—1,..., fo—; all
belong to G*; otherwise, we relabel the graph and take the left-most vy _; as vy ;.

Now we also know that all faces fs50, f3,-1,..., f3,—; belong to G*; otherwise,
based on Observation 2, we could show that one of the faces fo_;, where 1 <t < j,
could be included in K(,.. See Fig. 4 for details.

V1,1

o o
fi1

V21 V22

For ||
@

V39

V31

V41
Figure 4: An illustration of the perfect matching in G*
As in previous cases, we know that the edges v3 4,0, Vs, —1V4,—1, - .., U3 —j4104,—j11

are either in the perfect matching M (G*) or in K.. If j is odd, then the faces
13,05 f3,-2, -+, f3,—j41 must be in C"

G*-
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If j is odd, we could then replace the faces f50, f3,—2,..., f3,—j+1 by fa1, fo—1,-- -,
fa,—j, and clearly we have a larger Clar cover of G (see Fig. 5 for an example). Clearly
the leftover graph has a perfect matching, i.e., a path of odd length has been removed
from the boundary and no internal matchings have been disturbed.

7}171

B |
7}271

.'11272
Jos | fo—2 | fom1 | oo | fon ‘ rrrrrrrrrrr E
o
T fo-2 f3.0 a1 Y32

’1147 _9 ’1147 1 ’1}470

7}2",3

<
Ny

1

Figure 5: An illustration for getting a larger Clar cover

If j is even, then we could assume that the edge vs _j11v4 ;41 is in the perfect
matching M (G*). If vs _;vs_; is on the boundary of G*, then based on Observation
2, we know K’(G*) is not maximum (see Fig. 6 for an example). Now the leftover
case is that there are more faces on the left of f3 _;. Suppose that the left-most face
in the third row is f3 _;.

’1}171

o L
1 fll """""""
V2,4 V2.1 ’ V2.2
k) . . k)
Pt | fos | fos [ foca [ foo | fon || o
L L
‘ U3,—-3 V3,1 V3,2
L L
V4,3 V4,2 V4,1 V4,0

Figure 6: An illustration that vz _;vs _; has to be in M (G*)

In this case, we know that edge vy _;v5 _; is either in M (G*) or in K., and along
the same line of reasoning as for the second row of G*, we could show that either we
could get a larger Clar cover of G or vy 44105 441 is in the perfect matching M (G*).
The same argument terminates when the row containing the left-most bottom face
is encountered, i.e. the row contains the face f, _, and there are no faces with f, _,,
where w > y. See Fig. 7 for details. In this case, we find a larger Clar cover which
has more squares than C(G), a contradiction. Consequently G — C’ has a unique
perfect matching. O

The following theorem was proved in [6] and [§].

Theorem 4. If G is a planar bipartite graph and M is a perfect matching in G,
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Vo _j
o—o
U3,—t ® PA V3, —j+1
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I I .U4 —j+1
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Figure 7: An illustration of termination case

then the forcing number of M equals the mazximum number of disjoint M -alternating
cycles.

Combining Theorems 3 and 4, it is clear that F(G) > C(G). The following
corollary was proved in [12].

Corollary 5. Let G be a plane elementary bipartite graph with a perfect matching
M and let C be an M-alternating cycle. Then there exists an M-resonant face in
the wnterior of C'.

Similar to the proof of Theorem 9 in [8], taking each M-resonant face as a com-
ponent of a Clar cover, the above corollary implies that the number of M-alternating
cycles is no less than the Clar number, This implies that F/(G) < C(G). Now we can
conclude with the following.

Theorem 6. If G is an elementary polyomino, then F(G) = C(G).

Based on Theorem 2, we have the following theorem.

Theorem 7. If G is an elementary polyomino, then the maximum forcing number
of G can be computed in polynomial time.

3 The maximum forcing number of a non-elementary poly-
omino

In this section we will consider the case of non-elementary polyominos. To find
the Clar number and maximum forcing number of a non-elementary polyomino, we
will consider decomposing a non-elementary polyomino into a number of elementary
components.

In [9], Zhang et al. developed an O(n?) algorithm to decompose a hexagonal sys-
tem into a number of regions consisting of fixed bonds and elementary components.
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Later, Zhang [10, 11] developed a more efficient algorithm for the decomposition
for more general cases; they showed that there is an algorithm of time complex-
ity O(|E| + |V|) to determine all elementary components and the fixed bonds of a
bipartite graph G. The result is the following.

Theorem 8 ([10]). Let G be a bipartite graph with a perfect matching M. There is
an algorithm of O(|E| + |V|) complexity to decompose G into a number of regions
consisting of fized bonds and a number of elementary components.

Since a non-elementary polyomino with a perfect matching can be composed into
a number of elementary components and fixed bonds, and the maximum forcing
number of the non-elementary polyomino equals the sum of the maximum forcing
number of those elementary components, it follows that the Clar number of the origi-
nal non-elementary polyomino equals the sum of the Clar number of those elementary
components. Thus we have the following result.

Theorem 9. If G is a non-elementary polyomino with perfect matchings, then

F(G) = C(G).

Since the complexity of decomposing a non-elementary polyomino with perfect
matchings into a number of elementary components and fixed bonds is O(|V]), and
by Theorem 6, the maximum forcing number of every elementary component can
be computed in polynomial time, it follows that the maximum forcing number of a
non-elementary polyomino with perfect matchings can be computed in polynomial
time. Thus we obtain the following result.

Theorem 10. If G is a non-elementary polyomino with perfect matchings, then the
mazimum forcing number of G can be computed in polynomial time.

Combining Theorems 7 and 10, we obtain the result stated in Theorem 1.
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