Total Roman domination number of trees

J. Amjadi* S. Nazari-Moghaddam
S.M. Sheikholeslami
Department of Mathematics
Azarbaijan Shahid Madani University
Tabriz
I.R. Iran
j-amjadi@azaruniv.edu s.nazari@azaruniv.edu
s.m.sheikholeslami@azaruniv.edu
L. Volkmann
Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen
Germany
volkm@math2.rwth-aachen.de

Abstract

A total Roman dominating function on a graph G is a function f : $V(G) \rightarrow\{0,1,2\}$ satisfying the following conditions: (i) every vertex u for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$, and (ii) the subgraph of G induced by the set of all vertices of positive weight has no isolated vertices. The weight of a total Roman dominating function f is the value $f(V(G))=\Sigma_{u \in V(G)} f(u)$. The total Roman domination number $\gamma_{t R}(G)$ is the minimum weight of a total Roman dominating function of G. In [Ahangar, Henning, Samodivkin and Yero, Appl. Anal. Discrete Math. 10 (2016), 501-517], it was recently shown that for any graph G without isolated vertices, $\gamma_{t R}(G) \leq 2 \gamma_{t}(G)$ where $\gamma_{t}(G)$ is the total domination number of G, and they posed the problem of characterizing the graphs G with $\gamma_{t R}(G)=2 \gamma_{t}(G)$. In this paper we provide a constructive characterization of trees T with $\gamma_{t R}(T)=2 \gamma_{t}(T)$.

[^0]
1 Introduction

Throughout this paper, G is a simple graph with no isolated vertices, with vertex set $V(G)$ and edge set $E(G)$ (briefly, $V, E)$. The order $|V|$ of G is denoted by $n=n(G)$. For every vertex $v \in V(G)$, the open neighborhood of v is the set $N_{G}(v)=N(v)=$ $\{u \in V(G) \mid u v \in E(G)\}$ and its closed neighborhood is the set $N_{G}[v]=N[v]=$ $N(v) \cup\{v\}$. The degree of a vertex $v \in V$ is $d(v)=|N(v)|$. The open neighborhood of a set $S \subseteq V$ is the set $N(S)=\cup_{v \in S} N(v)$. A leaf of G is a vertex with degree one in G, a support vertex is a vertex adjacent to a leaf, a strong support vertex is a support vertex adjacent to at least two leaves, and an end support vertex is a support vertex all of whose neighbors with the exception of at most one are leaves, and an end strong support vertex is a strong support vertex all of whose neighbors with the exception of at most one are leaves. For every vertex $v \in V(G)$, the set of all leaves adjacent to v is denoted by L_{v}. The double star $D S_{q, p}$, where $q \geq p \geq 1$, is the graph consisting of the union of two stars $K_{1, q}$ and $K_{1, p}$ together with an edge joining their centers. A subdivision of an edge $u v$ is obtained by replacing the edge $u v$ with a path $u w v$, where w is a new vertex. The subdivision graph $S(G)$ is the graph obtained from G by subdividing each edge of G. The subdivision star $S\left(K_{1, t}\right)$ for $t \geq 2$, is called a healthy spider. We denote by P_{n} the path on n vertices. The distance $d_{G}(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest $u-v$ path in G. The diameter of a graph G, denoted by $\operatorname{diam}(G)$, is the greatest distance between two vertices of G. For a vertex v in a rooted tree T, let $C(v)$ denote the set of children of v; moreover, $D(v)$ denotes the set of descendants of v, and $D[v]=D(v) \cup\{v\}$. Also, the depth of v, depth (v), is the largest distance from v to a vertex in $D(v)$. The maximal subtree at v is the subtree of T induced by $D[v]$, and is denoted by T_{v}.

A subset S of vertices of G is a total dominating set if $N(S)=V$. The total domination number $\gamma_{t}(G)$ is the minimum cardinality of a total dominating set of G. A total dominating set with cardinality $\gamma_{t}(G)$ is called a $\gamma_{t}(G)$-set. The total domination number was introduced by Cockayne, Dawes and Hedetniemi [9] and is now well-studied in graph theory. The literature on this subject has been surveyed and detailed in the book by Henning and Yeo [15].

A function $f: V(G) \rightarrow\{0,1,2\}$ is a Roman dominating function (RDF) on G if every vertex $u \in V$ for which $f(u)=0$ is adjacent to at least one vertex v for which $f(v)=2$. The weight of an RDF is the value $\omega(f)=f(V(G))=\sum_{u \in V(G)} f(u)$. The Roman domination number $\gamma_{R}(G)$ is the minimum weight of an RDF on G. Roman domination was introduced by Cockayne et al. in [10] and was inspired by the work of ReVelle and Rosing [17] and Stewart [18]. It is worth mentioning that since 2004, a hundred papers have been published on this topic, where several new variations were introduced: weak Roman domination [14]; Roman \{2\}-domination [8]; maximal Roman domination [1]; mixed Roman domination [2]; double Roman domination [6]; and recently, total Roman domination was introduced by Liu and Chang [16].

For a Roman dominating function f, let $V_{i}=\{v \in V \mid f(v)=i\}$ for $i=0,1,2$. Since these three sets determine f, we can equivalently write $f=\left(V_{0}, V_{1}, V_{2}\right)$ (or
$f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ to refer to $\left.f\right)$. We note that $\omega(f)=\left|V_{1}\right|+2\left|V_{2}\right|$.
A total Roman dominating function of a graph G with no isolated vertex, abbreviated TRDF, is a Roman dominating function f on G with the additional property that the subgraph of G induced by the set of all vertices of positive weight under f has no isolated vertex. The total Roman domination number $\gamma_{t R}(G)$ is the minimum weight of a TRDF on G. A TRDF with minimum weight $\gamma_{t R}(G)$ is called a $\gamma_{t R}(G)$ function. The concept of total Roman domination in graphs was introduced by Liu and Chang [16] and has been studied in [3, 4, 5]. The authors in [3] observed that for any graph G with no isolated vertex,

$$
\begin{equation*}
\gamma_{t R}(G) \leq 2 \gamma_{t}(G) \tag{1}
\end{equation*}
$$

and they posed the following problem.
Problem: Characterize the graphs G satisfying $\gamma_{t R}(G)=2 \gamma_{t}(G)$.
A graph G for which $\gamma_{t R}(G)=2 \gamma_{t}(G)$ is defined in [3] to be a total Roman graph. The authors in [3] presented the following trivial necessary and sufficient condition for a graph to be a total Roman graph.

Proposition A. Let G be a graph with no isolated vertices. Then G is a total Roman graph if and only if there exists a $\gamma_{t R}(G)$-function $f=\left(V_{0}^{f}, V_{1}^{f}, V_{2}^{f}\right)$ such that $V_{1}^{f}=\emptyset$.

Finding a nontrivial necessary and sufficient condition for a graph to be a total Roman graph, or characterizing the total Roman graphs, remains an open problem. Let T_{1} be a tree obtained from a star $K_{1, r}(r \geq 2)$ by adding at least two pendant edges at every vertex of the star, and let T_{2} be a tree obtained from a star $K_{1, r}(r \geq 2)$ by adding at least two pendant edges at every vertex of the star except its center. Clearly, T_{1} is a total Roman graph and T_{2} is not a total Roman graph, while both of T_{1}, T_{2} have a unique $\gamma_{t R}$-function. Thus, characterizing the total Roman graphs G, even when G has a unique $\gamma_{t R}$-function, is not easy.

In this paper, we provide a constructive characterization of trees T with $\gamma_{t R}(T)=$ $2 \gamma_{t}(T)$ which settles the above problem for trees.

We make use of the following results in this paper.
Observation 1. If T is a star of order at least two, then $\gamma_{t R}(T)<2 \gamma_{t}(T)$.
Observation 2. Let v be a strong support vertex in a graph G. Then there exists a $\gamma_{t R}(G)$-function f such that $f(v)=2$.

Proof. Let v be a strong support vertex and v_{1}, v_{2} be leaves adjacent to v. Assume that f is a $\gamma_{t R}(G)$-function. To totally Roman dominate v_{1} we must have $f(v) \geq 1$. If $f(v)=2$, then we are done. Let $f(v)=1$. Then to Roman dominate v_{1}, v_{2} we must have $f\left(v_{1}\right)=f\left(v_{2}\right)=1$. Then the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g(v)=2, g\left(v_{1}\right)=1, g\left(v_{2}\right)=0$ and $g(x)=f(x)$ otherwise, is a $\gamma_{t R}(G)$-function with the desired property.

Observation 3. Let G be a connected graph different from a star, let v be an end strong support vertex in G, and let w be the neighbor of v which is not a leaf. Then there exists a $\gamma_{t R}(G)$-function f such that $f(v)=2$ and $f(w)=1$.

Proof. Since v is a strong support vertex, we deduce from Observation 2 that there exists a $\gamma_{t R}(G)$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ such that $f(v)=2$. Since the induced subgraph $G\left[V_{1} \cup V_{2}\right]$ has no isolated vertices, we have $\left(V_{1} \cup V_{2}\right) \cap N(v) \neq \emptyset$. If $w \in\left(V_{1} \cup V_{2}\right) \cap N(v)$, then we are done. Assume that $w \notin\left(V_{1} \cup V_{2}\right) \cap N(v)$. Then $\left(V_{1} \cup V_{2}\right) \cap L_{v} \neq \emptyset$. Let $z \in\left(V_{1} \cup V_{2}\right) \cap L_{v}$. Clearly $z \in V_{1}$ and the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g(z)=0, g(w)=1$ and $g(x)=f(x)$ otherwise, is a $\gamma_{t R}(G)$-function with the desired property.

Observation 4. If u_{1}, u_{2} are two adjacent support vertices in a graph G, then there exists a $\gamma_{t R}(G)$-function f such that $f\left(u_{1}\right)=f\left(u_{2}\right)=2$.

Proof. Let u_{1}, u_{2} be two adjacent support vertices and let v_{i} be a leaf adjacent to u_{i} for $i=1,2$. Assume that f is a $\gamma_{t R}(G)$-function. As above, we have $f\left(u_{i}\right)+f\left(v_{i}\right) \geq 2$ for $i=1,2$. Then the function $g: V(G) \rightarrow\{0,1,2\}$ defined by $g\left(u_{1}\right)=g\left(u_{2}\right)=$ $2, g\left(v_{1}\right)=g\left(v_{2}\right)=0$ and $g(x)=f(x)$ otherwise, is a $\gamma_{t R}(G)$-function with the desired property.

Observation 5. Let H be a subgraph of a graph G such that G and H have no isolated vertices. If $\gamma_{t R}(H)=2 \gamma_{t}(H), \gamma_{t}(G) \leq \gamma_{t}(H)+s$ and $\gamma_{t R}(G) \geq \gamma_{t R}(H)+2 s$ for some non-negative integer s, then $\gamma_{t R}(G)=2 \gamma_{t}(G)$.

Proof. Since $\gamma_{t R}(G) \leq 2 \gamma_{t}(G)$, we deduce from the assumptions that

$$
\gamma_{t R}(G) \geq \gamma_{t R}(H)+2 s=2 \gamma_{t}(H)+2 s \geq 2 \gamma_{t}(G)
$$

and this leads to the result.
Observation 6. Let H be a subgraph of a graph G such that G and H have no isolated vertices. If $\gamma_{t R}(G)=2 \gamma_{t}(G), \gamma_{t}(G) \geq \gamma_{t}(H)+s$ and $\gamma_{t R}(G) \leq \gamma_{t R}(H)+2 s$ for some non-negative integer s, then $\gamma_{t R}(H)=2 \gamma_{t}(H)$.

Proof. By the assumptions and the fact $\gamma_{t R}(H) \leq 2 \gamma_{t}(H)$, we have

$$
\gamma_{t R}(G) \leq \gamma_{t R}(H)+2 s \leq 2 \gamma_{t}(H)+2 s \leq 2 \gamma_{t}(G)=\gamma_{t R}(G)
$$

and this leads to the result.

2 A characterization of trees T with $\gamma_{t R}(T)=2 \gamma_{t}(T)$

In this section, we give a constructive characterization of all trees T satisfying $\gamma_{t R}(T)=2 \gamma_{t}(T)$. We start with three definitions.

Definition 1. Let v be a vertex of a tree T. A function $f: V(T) \rightarrow\{0,1,2\}$ is said to be an almost total Roman dominating function (almost TRDF) with respect to v, if the following two conditions are fulfilled: (i) every vertex $x \in V(T)-\{v\}$ for which $f(x)=0$ is adjacent to at least one vertex $y \in V(T)$ for which $f(y)=2$ and (ii) every vertex $x \in V(T)-\{v\}$ for which $f(x) \geq 1$ is adjacent to at least one vertex $y \in V(T)$ for which $f(y) \geq 1$. Let

$$
\gamma_{t R}(T, v)=\min \{\omega(f) \mid f \text { is an almost TRDF with respect to } v\} .
$$

Definition 2. Let v be a vertex of a tree T. A nearly total Roman dominating function (nearly TRDF) with respect to v, is an almost total Roman dominating function f with an additional property that $f(v) \geq 1$ or $f(v)+f(u) \geq 2$ for some $u \in N(v)$. Let

$$
\gamma_{t R}(T ; v)=\min \{\omega(f) \mid f \text { is a nearly TRDF with respect to } v\} .
$$

Since any total Roman dominating function on T is an almost TRDF and a nearly TRDF with respect to each vertex of $T, \gamma_{t R}(T, v)$ and $\gamma_{t R}(T ; v)$ are well defined and $\gamma_{t R}(T, v) \leq \gamma_{t R}(T)$ and $\gamma_{t R}(T ; v) \leq \gamma_{t R}(T)$ for each $v \in V(T)$. Now let

$$
W_{T}^{1}=\left\{v \in V(T) \mid \gamma_{t R}(T, v)=\gamma_{t R}(T)\right\}
$$

and

$$
W_{T}^{2}=\left\{v \in V(T) \mid \gamma_{t R}(T ; v)=\gamma_{t R}(T)\right\} .
$$

Definition 3. For a tree T and each vertex $v \in V(T)$, we say v has property P in T if for any $\gamma_{t R}(T)$-function f we have $f(v) \neq 2$. Define

$$
W_{T}^{3}=\{v \mid v \text { has property } P \text { in } T\} .
$$

In order to presenting our constructive characterization, we define a family of trees as follows. Let \mathcal{T} be the family of trees T that can be obtained from a sequence $T_{1}, T_{2}, \ldots, T_{k}$ of trees for some $k \geq 1$, where T_{1} is P_{4} and $T=T_{k}$. If $k \geq 2, T_{i+1}$ can be obtained from T_{i} by one of the following operations.

Operation \mathcal{O}_{1} : If $x \in V\left(T_{i}\right)$ is a support vertex and there is a $\gamma_{t R}(T)$-function f with $f(x)=2$, then \mathcal{O}_{1} adds a vertex y and an edge $x y$ to obtain T_{i+1}.

Operation \mathcal{O}_{2} : If $x \in V\left(T_{i}\right)$ has degree at least two and x is adjacent to an end strong support vertex, then \mathcal{O}_{2} adds a path $y z$ and joins x to y to obtain T_{i+1}.

Operation \mathcal{O}_{3} : If $x \in V\left(T_{i}\right)$ is a support vertex and x is at distance 2 from some leaves, then \mathcal{O}_{3} adds a path $y z$ and joins x to y to obtain T_{i+1}.

Operation \mathcal{O}_{4} : If $x \in W_{T_{i}}^{1}$ and x is at distance 1 or 2 from a support vertex, then \mathcal{O}_{4} adds a path P_{4} and joins x to a support vertex of it to obtain T_{i+1}.

Operation \mathcal{O}_{5} : If $x \in W_{T_{i}}^{2} \cap W_{T_{i}}^{3}$, then \mathcal{O}_{5} adds a double star $D S_{q, 1}(q=1,2)$ and joins x to the leaf adjacent to the support vertex of degree 2 in $D S_{q, 1}$ to obtain T_{i+1}.

Operation \mathcal{O}_{6} : If $x \in W_{T_{i}}^{2} \cap W_{T_{i}}^{3}$, then \mathcal{O}_{6} adds the graph F_{t} (see Figure 1) and the edge $x z$ to obtain T_{i+1}.

Operation \mathcal{O}_{7} : If $x \in V\left(T_{i}\right)$, then \mathcal{O}_{7} adds a double star $D S_{2,1}$ and joins x to a leaf adjacent to the support vertex of degree 3 to obtain T_{i+1}.

Figure 1: The graph F_{t} used in Operation \mathcal{O}_{6}

The proof of the first lemma is trivial and is therefore omitted.
Lemma 2.1. If T_{i} is a tree with $\gamma_{t R}\left(T_{i}\right)=2 \gamma_{t}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{1}, then $\gamma_{t R}\left(T_{i+1}\right)=2 \gamma_{t}\left(T_{i+1}\right)$.

Since $\gamma_{t R}\left(D S_{q, p}\right)=2 \gamma_{t}\left(D S_{q, p}\right)$ and $D S_{q, p}(q \geq 2)$ is obtained from P_{4} only by Operation \mathcal{O}_{1}, it follows that this operation is necessary to construct the family \mathcal{T}.

Lemma 2.2. If T_{i} is a tree with $\gamma_{t R}\left(T_{i}\right)=2 \gamma_{t}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{2}, then $\gamma_{t R}\left(T_{i+1}\right)=2 \gamma_{t}\left(T_{i+1}\right)$.

Proof. Let $w \in V\left(T_{i}\right)$ be an end strong support vertex adjacent to x and let the Operation \mathcal{O}_{2} add a path $y z$ and join x to y. Clearly, any total dominating set of T_{i} containing no leaf can be extended to a total dominating set of T_{i+1} by adding y. So $\gamma_{t}\left(T_{i+1}\right) \leq \gamma_{t}\left(T_{i}\right)+1$.

Now let f be a $\gamma_{t R}\left(T_{i+1}\right)$-function such that $f(x)$ is as large as possible. Clearly, $f(y) \geq 1$ and $f(y)+f(z) \geq 2$. By Observation 3, we may assume that $f(w)=2$ and $f(x) \geq 1$. Thus the function f, restricted to T_{i}, is a total Roman dominating function of T_{i} of weight $\gamma_{t R}\left(T_{i+1}\right)-2$ and hence

$$
\gamma_{t R}\left(T_{i+1}\right)=\omega(f) \geq 2+\omega\left(\left.f\right|_{T_{i}}\right) \geq 2+\gamma_{t R}\left(T_{i}\right)
$$

It follows from Observation 5 that $\gamma_{t R}\left(T_{i+1}\right)=2 \gamma_{t}\left(T_{i+1}\right)$.
Lemma 2.3. If T_{i} is a tree with $\gamma_{t R}\left(T_{i}\right)=2 \gamma_{t}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{3}, then $\gamma_{t R}\left(T_{i+1}\right)=2 \gamma_{t}\left(T_{i+1}\right)$.

Proof. Let \mathcal{O}_{3} add a path $y z$ and the edge $x y$. Since x is a support vertex, adding y to any total dominating set of T_{i} yields a total dominating set for T_{i+1} and this implies that $\gamma_{t}\left(T_{i+1}\right) \leq \gamma_{t}\left(T_{i}\right)+1$.

Now let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{t R}\left(T_{i+1}\right)$-function. Obviously $f(y)+f(z) \geq 2$ and $x, y, w \in V_{1} \cup V_{2}$ where $w \in N_{T_{i}}(x)$ is a support vertex (note that x is at distance 2
from some leaves and so x is adjacent to a support vertex). Therefore the function f, restricted to T_{i}, is a total Roman dominating function of T_{i} and so

$$
\gamma_{t R}\left(T_{i+1}\right)=\omega(f) \geq 2+\omega\left(\left.f\right|_{T_{i}}\right) \geq 2+\gamma_{t R}\left(T_{i}\right)
$$

Now the result follows by Observation 5.
Since $\gamma_{t R}\left(F_{t}\right)=2 \gamma_{t}\left(F_{t}\right)$ and $F_{t}(t \geq 2)$ is obtained from P_{4} only by using Operation $\mathcal{O}_{3}, t-1$ times, we conclude that the Operation \mathcal{O}_{3} is necessary to construct the family \mathcal{T}.

Lemma 2.4. If T_{i} is a tree with $\gamma_{t R}\left(T_{i}\right)=2 \gamma_{t}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{4}, then $\gamma_{t R}\left(T_{i+1}\right)=2 \gamma_{t}\left(T_{i+1}\right)$.

Proof. Let \mathcal{O}_{4} add a path $P_{4}: y_{1} y_{2} y_{3} y_{4}$ and join x to y_{3}. Clearly, any total dominating set of T_{i} can be extended to a total dominating set of T_{i+1} by adding y_{2}, y_{3}, yielding $\gamma_{t}\left(T_{i+1}\right) \leq \gamma_{t}\left(T_{i}\right)+2$.

Assume now that $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a $\gamma_{t R}\left(T_{i+1}\right)$-function. By Observation 4, we may assume that $y_{2}, y_{3} \in V_{2}$. Then the function f, restricted to T_{i}, is an almost total Roman dominating function of T_{i} and since $x \in W_{T_{i}}^{1}$ we have $\omega\left(\left.f\right|_{T_{i}}\right) \geq \gamma_{t R}\left(T_{i}\right)$. Hence

$$
\gamma_{t R}\left(T_{i+1}\right)=\omega(f) \geq 4+\omega\left(\left.f\right|_{T_{i}}\right) \geq 4+\gamma_{t R}\left(T_{i}\right)
$$

It follows from Observation 5 that $\gamma_{t R}\left(T_{i+1}\right)=2 \gamma_{t}\left(T_{i+1}\right)$.
Let T be a tree obtained from three copies of P_{4} by adding a new vertex and joining it to exactly one support vertex of each copy of P_{4}. Clearly, $\gamma_{t R}(T)=2 \gamma_{t}(T)$ and T is obtained from P_{4} by applying Operations \mathcal{O}_{7} and \mathcal{O}_{4} respectively. On the other hand, T cannot be obtained by other operations, and so Operation \mathcal{O}_{4} is necessary to construct the family \mathcal{T}.

Lemma 2.5. If T_{i} is a tree with $\gamma_{t R}\left(T_{i}\right)=2 \gamma_{t}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{5}, then $\gamma_{t R}\left(T_{i+1}\right)=2 \gamma_{t}\left(T_{i+1}\right)$.

Proof. Let \mathcal{O}_{5} add a double star $D S_{q, 1}$ with central vertices a, b where $\operatorname{deg}(a)=2$ and join x to the leaf c adjacent to a. By adding a, b to any total dominating set of T_{i} we obtain a total dominating set of T_{i+1}, implying that $\gamma_{t}\left(T_{i+1}\right) \leq \gamma_{t}\left(T_{i}\right)+2$.

Now let f be a $\gamma_{t R}\left(T_{i+1}\right)$-function such that $f(b)$ is as large as possible. Then clearly $f(b)=2, f(a)+f(b) \geq 3$ and $f(a)+f(b)+f(c) \geq 4$. If $f(c) \leq 1$, then the function f, restricted to T_{i} is a nearly total Roman dominating function of T_{i}, and if $f(c)=2$, then the function $g: V\left(T_{i}\right) \rightarrow\{0,1,2\}$ defined by $g(x)=1$ and $g(u)=f(u)$ for $u \in V\left(T_{i}\right)-\{x\}$, is a nearly total Roman dominating function of T_{i}. Since $x \in W_{T_{i}}^{2}$, we have $\omega\left(\left.f\right|_{T_{i}}\right) \geq \gamma_{t R}\left(T_{i}\right)$. Thus

$$
\gamma_{t R}\left(T_{i+1}\right)=\omega(f) \geq 4+\omega\left(\left.f\right|_{T_{i}}\right) \geq 4+\gamma_{t R}\left(T_{i}\right)
$$

and the result follows by Observation 5.

Since $\gamma_{t R}\left(P_{8}\right)=2 \gamma_{t}\left(P_{8}\right)$ and P_{8} is obtained from P_{4} only by applying Operation \mathcal{O}_{5}, we deduce that the operation \mathcal{O}_{5} is necessary to construct the family \mathcal{T}.

Lemma 2.6. If T_{i} is a tree with $\gamma_{t R}\left(T_{i}\right)=2 \gamma_{t}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{6}, then $\gamma_{t R}\left(T_{i+1}\right)=2 \gamma_{t}\left(T_{i+1}\right)$.

Proof. Clearly, any total dominating set of T_{i} can be extended to a total dominating set of T_{i+1} by adding $N[y]-\{z\}$ yielding $\gamma_{t}\left(T_{i+1}\right) \leq \gamma_{t}\left(T_{i}\right)+\operatorname{deg}(y)$.

Let f be a $\gamma_{t R}\left(T_{i+1}\right)$-function. To totally Roman dominate z_{i}, we must have $f\left(y_{i}\right)+f\left(z_{i}\right) \geq 2$ for $i=1, \ldots, t$. If $f(y)=2$ and $f(z)=0$, then the function f restricted to T_{i} is a nearly total Roman dominating function of T_{i} and since $x \in W_{T_{i}}^{2}$ we obtain $\gamma_{t R}\left(T_{i+1}\right)=\omega(f) \geq 2 \operatorname{deg}(y)+\omega\left(\left.f\right|_{T_{i}}\right) \geq 2 \operatorname{deg}(y)+\gamma_{t R}\left(T_{i}\right)$. If $f(y)=2$ and $f(z) \geq 1$, then the function $g: V\left(T_{i}\right) \rightarrow\{0,1,2\}$ defined by $g(x)=\min \{f(x)+1,2\}$ and $g(u)=f(u)$ for $u \in V\left(T_{i}\right)-\{x\}$ is a nearly total Roman dominating function of T_{i} and as above we have $\gamma_{t R}\left(T_{i+1}\right) \geq 2 \operatorname{deg}(y)+\gamma_{t R}\left(T_{i}\right)$. Let $f(y)=1$. If $f(z) \geq 1$, then as above we have $\gamma_{t R}\left(T_{i+1}\right) \geq 2 \operatorname{deg}(y)+\gamma_{t R}\left(T_{i}\right)$. If $f(z)=0$, then $\left.f\right|_{T_{i}}$ is a TRDF of T_{i} with $f(x)=2$ and we conclude from $x \in W_{T_{i}}^{3}$ that $\omega\left(\left.f\right|_{T_{i}}\right)>\gamma_{t R}\left(T_{i}\right)$. Hence

$$
\gamma_{t R}\left(T_{i+1}\right)=\omega(f) \geq 2 \operatorname{deg}(y)-1+\omega\left(\left.f\right|_{T_{i}}\right) \geq 2 \operatorname{deg}(y)+\gamma_{t R}\left(T_{i}\right)
$$

Assume finally that $f(y)=0$. To totally Roman dominate y, y must have a neighbor with label 2. If $f(z)=2$, then the function f restricted to T_{i} is a nearly total Roman dominating function of T_{i} and since $x \in W_{T_{i}}^{2}$ we have $\gamma_{t R}\left(T_{i+1}\right)=\omega(f) \geq$ $2 \operatorname{deg}(y)+\omega\left(\left.f\right|_{T_{i}}\right) \geq 2 \operatorname{deg}(y)+\gamma_{t R}\left(T_{i}\right)$. If $f(z) \leq 1$, then $f\left(y_{i}\right)=2$ for some $1 \leq i \leq t$. If $f(z)=1$, then as above we obtain $\gamma_{t R}\left(T_{i+1}\right) \geq 2 \operatorname{deg}(y)+\gamma_{t R}\left(T_{i}\right)$. If $f(z)=0$, then to dominate z we must have $f(x)=2$ and hence $\left.f\right|_{T_{i}}$ is a TRDF of T_{i} with $f(x)=2$. We deduce from $x \in W_{T_{i}}^{3}$ that $\omega\left(\left.f\right|_{T_{i}}\right)>\gamma_{t R}\left(T_{i}\right)$ and so $\gamma_{t R}\left(T_{i+1}\right)=\omega(f) \geq 2 \operatorname{deg}(y)-1+\omega\left(\left.f\right|_{T_{i}}\right) \geq 2 \operatorname{deg}(y)+\gamma_{t R}\left(T_{i}\right)$. It follows from Observation 5 that $\gamma_{t R}\left(T_{i+1}\right)=2 \gamma_{t}\left(T_{i+1}\right)$.

Let T be the tree obtained from two copies of F_{2} by joining the leaves adjacent to the centers of F_{2}. Obviously, $\gamma_{t R}(T)=2 \gamma_{t}(T)$ and T is obtained from P_{4} by applying Operations \mathcal{O}_{3} and \mathcal{O}_{6} respectively. On the other hand, T cannot be obtained by other operations and so Operation \mathcal{O}_{6} is necessary to construct the family \mathcal{T}.

Lemma 2.7. If T_{i} is a tree with $\gamma_{t R}\left(T_{i}\right)=2 \gamma_{t}\left(T_{i}\right)$ and T_{i+1} is a tree obtained from T_{i} by Operation \mathcal{O}_{7}, then $\gamma_{t R}\left(T_{i+1}\right)=2 \gamma_{t}\left(T_{i+1}\right)$.

Proof. Let \mathcal{O}_{7} add a double star $D S_{2,1}$ with central vertices a, b where $\operatorname{deg}(a)=3$ and let \mathcal{O}_{7} join x to a leaf z adjacent to a. By adding a, b to any total dominating set of T_{i} we obtain a total dominating set of T_{i+1} and so $\gamma_{t}\left(T_{i+1}\right) \leq \gamma_{t}\left(T_{i}\right)+2$.

Suppose now that f is a $\gamma_{t R}\left(T_{i+1}\right)$-function such that $f(z)$ is as small as possible. We may assume, without loss of generality, that $f(a)=f(b)=2$. We claim that $f(z)=0$. Assume, to the contrary, that $f(z) \geq 1$. If $f(z)=2$, then it is easy to see that $f(x)=0$. If $f(w) \geq 1$ for a vertex $w \in N_{T_{i}}(x)$, then define $g: V\left(T_{i+1}\right) \rightarrow$
$\{0,1,2\}$ by $g(z)=0, g(x)=1$ and $g(u)=f(u)$ otherwise. Then g is also a total Roman dominating set of T_{i+1} of weight $\omega(f)-1$, a contradiction. If $f(w)=0$ for all $w \in N_{T_{i}}(x)$, then define $g: V\left(T_{i+1}\right) \rightarrow\{0,1,2\}$ by $g(z)=0, g(x)=g(w)=1$ for some $w \in N_{T_{i}}(x)$ and $g(u)=f(u)$ otherwise. Then g is a $\gamma_{t R}\left(T_{i+1}\right)$-function contradicting the choice of f.

Let now $f(z)=1$. If $f(x)=2$, then it is easy to see that $f(w)=0$ for all $w \in N_{T_{i}}(x)$. Now define $g: V\left(T_{i+1}\right) \rightarrow\{0,1,2\}$ by $g(z)=0, g(w)=1$ for some $w \in$ $N_{T_{i}}(x)$ and $g(u)=f(u)$ otherwise. If $f(x)=1$, then it is easy to see that $f(w)=0$ for all $w \in N_{T_{i}}(x)$. Now define $g: V\left(T_{i+1}\right) \rightarrow\{0,1,2\}$ by $g(z)=0, g(w)=1$ for some $w \in N_{T_{i}}(x)$ and $g(u)=f(u)$ otherwise. If $f(x)=0$, then there exists a vertex $w \in$ $N_{T_{i}}(x)$ such that $f(w)=2$. Now define $g: V\left(T_{i+1}\right) \rightarrow\{0,1,2\}$ by $g(z)=0, g(x)=1$ and $g(u)=f(u)$ otherwise. Then g is a $\gamma_{t R}\left(T_{i+1}\right)$-function contradicting the choice of f. Thus $f(z)=0$. Then the function f, restricted to T_{i} is a total Roman dominating function of T_{i} and hence $\gamma_{t R}\left(T_{i+1}\right)=\omega(f) \geq 4+\omega\left(\left.f\right|_{T_{i}}\right) \geq 4+\gamma_{t R}\left(T_{i}\right)$, and the result follows from Observation 5.

Let T be a tree obtained from P_{10} by adding one pendant edges at every support vertex and leaf. Clearly, $\gamma_{t R}(T)=2 \gamma_{t}(T)$ and T is obtained from P_{4} by applying Operations $\mathcal{O}_{1}, \mathcal{O}_{5}$ and \mathcal{O}_{7} respectively. On the other hand, T cannot be obtained by other operations and so Operation \mathcal{O}_{7} is necessary to construct the family \mathcal{T}.
Theorem 2.1. If $T \in \mathcal{T}$, then $\gamma_{t R}(T)=2 \gamma_{t}(T)$.
Proof. If T is P_{4}, then obviously $\gamma_{t R}(T)=2 \gamma_{t}(T)$. Suppose now that $T \in \mathcal{T}$. Then there exists a sequence of trees $T_{1}, T_{2}, \ldots, T_{k}(k \geq 1)$ such that T_{1} is P_{4}, and if $k \geq 2$, then T_{i+1} can be obtained from T_{i} by one of the Operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{7}$ for $i=1,2, \ldots, k-1$. We apply induction on the number of operations used to construct T. If $k=1$, the result is trivial. Assume the result holds for each tree $T \in \mathcal{T}$ which can be obtained from a sequence of operations of length $k-1$ and let $T^{\prime}=T_{k-1}$. By the induction hypothesis, we have $\gamma_{t R}\left(T^{\prime}\right)=2 \gamma_{t}\left(T^{\prime}\right)$. Since $T=T_{k}$ is obtained by one of the Operations $\mathcal{O}_{1}, \mathcal{O}_{2}, \ldots, \mathcal{O}_{7}$ from T^{\prime}, we conclude from the above lemmas that $\gamma_{t R}(T)=2 \gamma_{t}(T)$.

Now we are ready to prove our main result.
Theorem 2.2. Let T be a tree of order $n \geq 4$. Then $\gamma_{t R}(T)=2 \gamma_{t}(T)$ if and only if $T \in \mathcal{T}$.

Proof. According to Theorem 2.1, we need only to prove necessity. Let T be a tree of order $n \geq 4$ with $\gamma_{t R}(T)=2 \gamma_{t}(T)$. The proof is by induction on n. If $n=4$, then the only tree T of order 4 with $\gamma_{t R}(T)=2 \gamma_{t}(T)$ is $P_{4} \in \mathcal{T}$. Let $n \geq 5$ and let the statement hold for all trees of order less than n. Assume that T is a tree of order n with $\gamma_{t R}(T)=2 \gamma_{t}(T)$. By Observation 1, we have $\operatorname{diam}(T) \geq 3$. If $\operatorname{diam}(T)=3$, then T is a double star and T can be obtained from P_{4} by applying Operation \mathcal{O}_{1} and so $T \in \mathcal{T}$. Hence let $\operatorname{diam}(T) \geq 4$.

Let $v_{1} v_{2} \ldots v_{k}(k \geq 5)$ be a diametral path in T such that $\operatorname{deg}_{T}\left(v_{2}\right)$ is as large as possible and root T at v_{k}. If $\operatorname{deg}_{T}\left(v_{2}\right) \geq 4$, then clearly $\gamma_{t R}\left(T-v_{1}\right)=2 \gamma_{t}\left(T-v_{1}\right)$. It follows from the induction hypothesis that $T-v_{1} \in \mathcal{T}$ and hence T can be obtained from $T-v_{1}$ by Operation \mathcal{O}_{1}, implying that $T \in \mathcal{T}$. Let $\operatorname{deg}_{T}\left(v_{2}\right) \leq 3$. We consider two cases.
Case 1. $\operatorname{deg}_{T}\left(v_{2}\right)=3$.
Assume that $L_{v_{2}}=\left\{v_{1}, w\right\}$.
Subcase 1.1. $\operatorname{deg}_{T}\left(v_{3}\right) \geq 3$.
First let v_{3} be adjacent to a support vertex $z \notin\left\{v_{2}, v_{4}\right\}$. Suppose $T^{\prime}=T-T_{z}$. For any $\gamma_{t}(T)$-set S containing no leaves we have $z, v_{2}, v_{3} \in S$ and so $S \backslash\{z\}$ is a total dominating set of T^{\prime} yielding $\gamma_{t}(T) \geq \gamma_{t}\left(T^{\prime}\right)+1$. Now let f be a $\gamma_{t R}\left(T^{\prime}\right)-$ function. Since v_{2} is an end strong support vertex and since f is a TRDF of T^{\prime}, we may assume that $f\left(v_{2}\right)=2$ and $f\left(v_{3}\right) \geq 1$. Clearly f can be extended to a TRDF of T by assigning the weight 2 to z and the weight 0 to the leaves adjacent to z and this implies that $\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+2$. It follows from Observation 6 that $\gamma_{t R}\left(T^{\prime}\right)=2 \gamma_{t}\left(T^{\prime}\right)$ and by the induction hypothesis we have $T^{\prime} \in \mathcal{T}$. Now T can be obtained from T^{\prime} by Operation \mathcal{O}_{2} if $\operatorname{deg}_{T}(z)=2$ and by Operations \mathcal{O}_{2} and \mathcal{O}_{1} when $\operatorname{deg}_{T}(z) \geq 3$. Hence $T \in \mathcal{T}$.

Now assume that each neighbor of v_{3} except v_{2}, v_{4}, is a leaf and let $T^{\prime}=T-v_{1}$. It is easy to see that $\gamma_{t}(T)=\gamma_{t}\left(T-v_{1}\right)$ and $\gamma_{t R}(T)=\gamma_{t R}\left(T-v_{1}\right)$. Hence $\gamma_{t R}\left(T-v_{1}\right)=$ $2 \gamma_{t}\left(T-v_{1}\right)$ and by the induction hypothesis we have $T^{\prime} \in \mathcal{T}$. Since v_{2}, v_{3} are support vertices in T^{\prime}, there exists a $\gamma_{t R}\left(T^{\prime}\right)$-function f such that $f\left(v_{2}\right)=f\left(v_{3}\right)=2$. Now T can be obtained from T^{\prime} by Operation \mathcal{O}_{1}.

Subcase 1.2. $\operatorname{deg}_{T}\left(v_{3}\right)=2$.
If v_{4} is a support vertex, then let $T^{\prime}=T-\left\{v_{1}, w\right\}$. It is easy to see that $\gamma_{t}(T)=$ $\gamma_{t}\left(T^{\prime}\right)+1$ and $\gamma_{t R}(T)=\gamma_{t R}\left(T^{\prime}\right)+1$. Then $2 \gamma_{t}(T)=\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+1 \leq$ $2 \gamma_{t}\left(T^{\prime}\right)+1=2 \gamma_{t}(T)-1$ which is a contradiction. If v_{4} has a children $z \neq v_{3}$, with depth 1 or 2 , then let $T^{\prime}=T-T_{v_{3}}$. It is not hard to see that $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+2$ and $\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+3$. But then $2 \gamma_{t}(T)=\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+3 \leq 2 \gamma_{t}\left(T^{\prime}\right)+$ $3=2 \gamma_{t}(T)-1$, a contradiction again. Henceforth, we assume $\operatorname{deg}\left(v_{4}\right)=2$. Since $\gamma_{t R}(T)=2 \gamma_{t}(T)$, we have $\operatorname{diam}(T) \geq 5$. Let $T^{\prime}=T-T_{v_{4}}$. Clearly, any $\gamma_{t R}\left(T^{\prime}\right)-$ function can be extended to a TRDF of T by assigning the weight 2 to v_{2}, v_{3} and the weight 0 to v_{1}, v_{4}, w and so $\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+4$. On the other hand, let S be a $\gamma_{t}(T)$-set containing no leaves. Then $v_{2}, v_{3} \in S$ and the set $S^{\prime}=S-\left\{v_{2}, v_{3}\right\}$ if $v_{4} \notin S$, and $S^{\prime}=\left(S-\left\{v_{2}, v_{3}, v_{4}\right\}\right) \cup\left\{v_{6}\right\}$ if $v_{4} \in S$, is a total dominating set of T^{\prime} yielding $\gamma_{t}(T) \geq \gamma_{t}\left(T^{\prime}\right)+2$. By Observation 6 we have $\gamma_{t R}\left(T^{\prime}\right)=2 \gamma_{t}\left(T^{\prime}\right)$ and this implies that $\gamma_{t R}(T)=\gamma_{t R}\left(T^{\prime}\right)+4$ and $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+2$ by the assumption. By the induction hypothesis we have $T^{\prime} \in \mathcal{T}$. Now we show that $v_{5} \in W_{T^{\prime}}^{2} \cap W_{T^{\prime}}^{3}$. If $v_{5} \notin W_{T^{\prime}}^{2}$, then let g be a nearly TRDF of T^{\prime} of weight less than $\gamma_{t R}\left(T^{\prime}\right)$ and define $h: V(T) \rightarrow\{0,1,2\}$ by $h\left(v_{2}\right)=2, h\left(v_{3}\right)=h\left(v_{4}\right)=1, h(x)=g(x)$ for $x \in V\left(T^{\prime}\right)$ and $h(x)=0$ otherwise. If $v_{5} \notin W_{T^{\prime}}^{3}$, then let g be a TRDF of T^{\prime} with $g\left(v_{5}\right)=2$ and define $h: V(T) \rightarrow\{0,1,2\}$ by $h\left(v_{2}\right)=2, h\left(v_{3}\right)=1, h(x)=g(x)$ for $x \in V\left(T^{\prime}\right)$ and $h(x)=0$ otherwise. Clearly h is a TRDF of T with weight $\gamma_{t R}(T)-1$, a contradiction.

Thus $v_{5} \in W_{T^{\prime}}^{2} \cap W_{T^{\prime}}^{3}$ and so T can be obtained from T^{\prime} by Operation \mathcal{O}_{5}, implying $T \in \mathcal{T}$.

Case 2. $\operatorname{deg}\left(v_{2}\right)=2$.
By the choice of the diametral path, we may assume that all support vertices adjacent to v_{3} and v_{k-1} have degree 2 . We consider the following subcases.

Subcase 2.1. v_{3} is a support vertex and v_{3} has a support neighbor w other than v_{2}.
Let $T^{\prime}=T-\left\{v_{1}, v_{2}\right\}$. If S is a $\gamma_{t}(T)$-set containing no leaves, then $v_{2}, v_{3}, w \in S$ and so $S \backslash\left\{v_{2}\right\}$ is a total dominating set of T^{\prime}, implying that $\gamma_{t}(T) \geq \gamma_{t}\left(T^{\prime}\right)+1$. On the other hand, since any $\gamma_{t R}\left(T^{\prime}\right)$-function can be extended to a TRDF of T by assigning the weight 2 to v_{2} and the weight 0 to v_{1}, we have $\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+2$. By Observation 6 and the induction hypothesis, we obtain $T^{\prime} \in \mathcal{T}$. Now T can be obtained from T^{\prime} by Operation \mathcal{O}_{3}, and hence $T \in \mathcal{T}$.

Subcase 2.2. $\operatorname{deg}_{T}\left(v_{3}\right) \geq 3$ and all neighbors of v_{3} except v_{2}, v_{4} are leaves.
Let w be a leaf adjacent to v_{3}. If $\operatorname{deg}\left(v_{3}\right) \geq 4$, then let $T^{\prime}=T-w$. It is easy to see that $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)$ and $\gamma_{t R}(T)=\gamma_{t R}\left(T^{\prime}\right)$. Hence $\gamma_{t R}\left(T^{\prime}\right)=2 \gamma_{t}\left(T^{\prime}\right)$ and by the induction hypothesis we have $T^{\prime} \in \mathcal{T}$. Then T can be obtained from T^{\prime} by Operation \mathcal{O}_{1}. Assume that $\operatorname{deg}_{T}\left(v_{3}\right)=3$. We distinguish the following cases.
(a) v_{4} is a support vertex.

Let $T^{\prime}=T-\left\{v_{1}, v_{2}\right\}$. As above we can see that $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+1$ and $\gamma_{t R}(T)=\gamma_{t R}\left(T^{\prime}\right)+2$, yielding $\gamma_{t R}\left(T^{\prime}\right)=2 \gamma_{t}\left(T^{\prime}\right)$. By the induction hypothesis we have $T^{\prime} \in \mathcal{T}$ and now T can be obtained by Operation \mathcal{O}_{3}.
(b) $\operatorname{deg}\left(v_{4}\right)=2$.

By (a) we may assume that v_{4} is not a support vertex. Let $T^{\prime}=T-T_{v_{4}}$. As in the proof of subcase 1.2 , we can see that $T^{\prime} \in \mathcal{T}$. Then T can be obtained from T^{\prime} by Operation \mathcal{O}_{7}.
(c) $\operatorname{deg}\left(v_{4}\right) \geq 3$.

By (a) we may assume that v_{4} is not a support vertex. Thus v_{4} has a children z different from v_{2} with depth 1 or 2 . Let $T^{\prime}=T-T_{v_{3}}$. If S is a $\gamma_{t}(T)$-set containing no leaves, then clearly $v_{2}, v_{3}, z \in S$ and so $S-\left\{v_{2}, v_{3}\right\}$ is a total dominating set of T^{\prime}, yielding $\gamma_{t}(T) \geq \gamma_{t}\left(T^{\prime}\right)+2$. On the other hand, any $\gamma_{t R}\left(T^{\prime}\right)$-function can be extended to a TRDF of T by assigning 2 to v_{2}, v_{3} and the weight 0 to w, v_{1}, and hence $\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+4$. We deduce from Observation 6 that $\gamma_{t R}\left(T^{\prime}\right)=2 \gamma_{t}\left(T^{\prime}\right)$ and by the induction hypothesis we have $T^{\prime} \in \mathcal{T}$. If $v_{4} \notin W_{T^{\prime}}^{1}$, then let f be an almost TRDF of T^{\prime} with respect to v_{4} of weight at most $\gamma_{t R}\left(T^{\prime}\right)-1$ and extend f to a TRDF of T by assigning the weight 2 to v_{2}, v_{3} and the weight 0 to w, v_{1}; this implies that $\gamma_{t R}(T) \leq$ $\gamma_{t R}\left(T^{\prime}\right)+3=2 \gamma_{t}\left(T^{\prime}\right)+3 \leq 2 \gamma_{t}(T)-1$, a contradiction. Thus $v_{4} \in W_{T^{\prime}}^{1}$, and now T can be obtained from T^{\prime} by Operation \mathcal{O}_{4}, yielding $T \in \mathcal{T}$.

Subcase 2.3. $\operatorname{deg}_{T}\left(v_{3}\right) \geq 3$ and all children of v_{3} are support vertices of degree 2 . We distinguish three cases.
(i) v_{4} is a support vertex.

Suppose $T^{\prime}=T-v_{1}$. By adding v_{2} to any $\gamma_{t}\left(T^{\prime}\right)$-set we obtain a total dominating set of T and so $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+1$. On the other hand, if S is a $\gamma_{t}(T)$-set containing no leaves then $N\left[v_{3}\right] \subseteq S$ and clearly $S-\left\{v_{2}\right\}$ is a total dominating set of T^{\prime}, implying that $\gamma_{t}(T) \geq \gamma_{t}\left(T^{\prime}\right)+1$. Thus $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+1$. Now let f be a $\gamma_{t R}\left(T^{\prime}\right)$-function. Since v_{3} and its neighbors other than v_{2} in T^{\prime} are support vertices, we may assume that $f(x)=2$ for each $x \in N_{T^{\prime}}\left[v_{3}\right]-\left\{v_{2}\right\}$. Then the function $g: V(T) \rightarrow\{0,1,2\}$ defined by $g\left(v_{3}\right)=1, g\left(v_{2}\right)=2, g\left(v_{1}\right)=0$, and $g(u)=f(u)$ otherwise, is a TRDF of T with weight $\omega(f)+1$. Hence $\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+1 \leq 2 \gamma_{t}\left(T^{\prime}\right)+1=2 \gamma_{t}(T)-1$, a contradiction.
(ii) v_{4} has a child $z \neq v_{3}$ with depth 1 or 2 .

Assume that $T^{\prime}=T-T_{v_{3}}$. Any $\gamma_{t}\left(T^{\prime}\right)$-set S can be extended to a total dominating set of T by adding $C\left(v_{3}\right) \cup\left\{v_{3}\right\}$ and so $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+\left|C\left(v_{3}\right)\right|+1$. On the other hand, if S is a $\gamma_{t}(T)$-set containing no leaves, then $C\left(v_{3}\right) \cup$ $\left\{v_{3}, z\right\} \subseteq S$, and clearly $S-\left(C\left(v_{3}\right) \cup\left\{v_{3}\right\}\right)$ is a total dominating set of T^{\prime}, implying that $\gamma_{t}(T) \geq \gamma_{t}\left(T^{\prime}\right)+\left|C\left(v_{3}\right)\right|+1$. Thus $\gamma_{t}(T)=\gamma_{t}\left(T^{\prime}\right)+\left|C\left(v_{3}\right)\right|+1$. Clearly, any $\gamma_{t R}\left(T^{\prime}\right)$-function can be extended to a TRDF of T by assigning the weight 1 to v_{3}, the weight 2 to the children of v_{3} and the weight 0 to the leaves of $T_{v_{3}}$, and this implies that $\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+2\left|C\left(v_{3}\right)\right|+1 \leq$ $2 \gamma_{t}\left(T^{\prime}\right)+2\left|C\left(v_{3}\right)\right|+1=2 \gamma_{t}(T)-1$, a contradiction again.
(iii) $\operatorname{deg}\left(v_{4}\right)=2$.

If $\operatorname{diam}(T)=4$, then T is a healthy spider, and we have $\gamma_{t R}(T)=2 \operatorname{deg}\left(v_{3}\right)+1 \leq$ $2\left(\operatorname{deg}\left(v_{3}\right)+1\right)-1=2 \gamma_{t}(T)-1$, which is a contradiction. Let $\operatorname{diam}(T) \geq 5$ and let $T^{\prime}=T-T_{v_{4}}$. Assume that S is a $\gamma_{t}(T)$-set. Then clearly $N\left[v_{3}\right]-\left\{v_{4}\right\} \subseteq S$, and the set $S^{\prime}=S-N\left[v_{3}\right]$ if $v_{4} \notin S$ and $S^{\prime}=\left(S-N\left[v_{3}\right]\right) \cup\left\{v_{6}\right\}$ if $v_{4} \in S$, is a total dominating set of T^{\prime}, yielding $\gamma_{t}(T) \geq \gamma_{t}\left(T^{\prime}\right)+\operatorname{deg}\left(v_{3}\right)$. On the other hand, any $\gamma_{t R}\left(T^{\prime}\right)$-function can be extended to a TRDF of T by assigning the weight 2 to each vertex in $N\left[v_{3}\right]-\left\{v_{4}\right\}$ and the weight 0 to the remaining vertices, and this implies that $\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+2 \operatorname{deg}\left(v_{3}\right)$. It follows from Observation 6 and the induction hypothesis that $T^{\prime} \in \mathcal{T}$. If $v_{5} \notin W_{T^{\prime}}^{2}$, then let f be a nearly TRDF of T^{\prime} of weight at most $\gamma_{t R}\left(T^{\prime}\right)-1$ and define $g: V(T) \rightarrow\{0,1,2\}$ by $g(u)=f(u)$ for $u \in V\left(T^{\prime}\right), g(u)=1$ for $u \in V\left(T_{v_{4}}\right)$. If $v_{5} \notin W_{T^{\prime}}^{3}$, then let f be a $\gamma_{t R}\left(T^{\prime}\right)$-function with $f\left(v_{5}\right)=2$ and define $g: V(T) \rightarrow\{0,1,2\}$ by $g(u)=f(u)$ for $u \in V\left(T^{\prime}\right), g\left(v_{4}\right)=0$ and $g(u)=1$ for $u \in N\left[v_{3}\right]-\left\{v_{4}\right\}$ and $g(u)=0$ otherwise. In each case, g is a TRDF of T of weight at most $\gamma_{t R}\left(T^{\prime}\right)+2 \operatorname{deg}\left(v_{3}\right)-1$ that leads to a contradiction. Thus $v_{5} \in W_{T^{\prime}}^{2} \cap W_{T^{\prime}}^{3}$ and so T can be obtained from T^{\prime} by Operation \mathcal{O}_{6}, yielding $T \in \mathcal{T}$.

Subcase 2.4. $\operatorname{deg}\left(v_{3}\right)=2$.
We claim that $\operatorname{deg}\left(v_{4}\right)=2$. Assume, to the contrary, that $\operatorname{deg}\left(v_{4}\right) \geq 3$. First assume v_{4} is at distance 1 or 2 from a support vertex other than v_{2} and let $T^{\prime}=T-T_{v_{3}}$. Assume that S is a $\gamma_{t}(T)$-set containing no leaves. Then $v_{2}, v_{3} \in S$ and clearly $S-\left\{v_{2}, v_{3}\right\}$ is a total dominating set of T^{\prime}, implying that $\gamma_{t}\left(T^{\prime}\right) \leq \gamma_{t}(T)-2$. On
the other hand, any $\gamma_{t R}\left(T^{\prime}\right)$-function can be extended to a TRDF of T by assigning the weight 1 to v_{3}, v_{2}, v_{1} and this implies that $\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+3$. But then

$$
2 \gamma_{t}(T)=\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+3 \leq 2 \gamma_{t}\left(T^{\prime}\right)+3 \leq 2 \gamma_{t}(T)-1
$$

which is a contradiction. Now let v_{4} be a support vertex and let $T^{\prime}=T-v_{1}$. Suppose that S is a $\gamma_{t}(T)$-set containing no leaves. Then $v_{2}, v_{3}, v_{4} \in S$, and clearly $S-\left\{v_{2}\right\}$ is a total dominating set of T^{\prime} yielding $\gamma_{t}\left(T^{\prime}\right) \leq \gamma_{t}(T)-1$. On the other hand, let f be a $\gamma_{t R}\left(T^{\prime}\right)$-function. Since v_{3}, v_{4} in T^{\prime} are support vertices, we may assume that $f\left(v_{3}\right)=f\left(v_{4}\right)=2$. Define $g: V(T) \rightarrow\{0,1,2\}$ by $g(u)=f(u)$ for $u \in V\left(T^{\prime}\right)-\left\{v_{2}, v_{3}\right\}, g\left(v_{3}\right)=1, g\left(v_{2}\right)=2$ and $g\left(v_{1}\right)=0$. Clearly g is a TRDF of T of weight $\gamma_{t R}\left(T^{\prime}\right)+1$. It follows that

$$
2 \gamma_{t}(T)=\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+1 \leq 2 \gamma_{t}\left(T^{\prime}\right)+1 \leq 2 \gamma_{t}(T)-1
$$

a contradiction again. This proves our claim. That is, $\operatorname{deg}\left(v_{4}\right)=2$. Since $\gamma_{t R}(T)=$ $2 \gamma_{t}(T)$, we have $\operatorname{diam}(T) \geq 6$. Let $T^{\prime}=T-T_{v_{4}}$. Any total dominating set of T^{\prime} can be extended to a total dominating set of T by adding v_{2}, v_{3}, and so $\gamma_{t}(T) \leq \gamma_{t}\left(T^{\prime}\right)+2$. Let S be a total dominating set of T containing no leaves. Then $v_{2}, v_{3} \in S$ and the set $S^{\prime}=S \backslash\left\{v_{2}, v_{3}\right\}$ if $v_{4} \notin S$ and $S^{\prime}=\left(S \backslash\left\{v_{2}, v_{3}, v_{4}\right\}\right) \cup\left\{v_{6}\right\}$ if $v_{4} \in S$ is a total dominating set of T^{\prime}. Hence $\gamma_{t}(T)-2 \geq \gamma_{t}\left(T^{\prime}\right)$ and we have $\gamma_{t}\left(T^{\prime}\right)=\gamma_{t}(T)-2$. On the other hand, any $\gamma_{t R}\left(T^{\prime}\right)$-function can be extended to a TRDF of T by assigning the weight 2 to v_{2}, v_{3} and the weight 0 to v_{1}, v_{4}, yielding $\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+4$. Hence, $2 \gamma_{t}(T)=\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+4 \leq 2 \gamma_{t}\left(T^{\prime}\right)+4=2 \gamma_{t}(T)$, and this leads to

$$
\begin{equation*}
\gamma_{t R}(T)=\gamma_{t R}\left(T^{\prime}\right)+4 \tag{2}
\end{equation*}
$$

and $\gamma_{t R}\left(T^{\prime}\right)=2 \gamma_{t}\left(T^{\prime}\right)$. Therefore, by the induction hypothesis, we have $T^{\prime} \in \mathcal{T}$.
If $v_{5} \notin W_{T^{\prime}}^{2}$, then let f be a nearly TRDF with respect to v_{5} with $w(f) \leq \gamma_{t R}\left(T^{\prime}\right)-$ 1. If $f\left(v_{5}\right)=0$, then f is a TRDF of T^{\prime}, which is impossible. Hence $f\left(v_{5}\right) \geq 1$. Then f can be extended to a TRDF of T by assigning the weight 1 to $v_{4}, v_{3}, v_{2}, v_{1}$ and hence $\gamma_{t R}(T) \leq \gamma_{t R}\left(T^{\prime}\right)+3$, which is a contradiction with (2). If $v_{5} \notin W_{T^{\prime}}^{3}$, then let f be a $\gamma_{t R}\left(T^{\prime}\right)$-function with $f\left(v_{5}\right)=2$, and define $g: V(T) \rightarrow\{0,1,2\}$ by $g(u)=f(u)$ for $u \in V\left(T^{\prime}\right), g\left(v_{4}\right)=0, g\left(v_{3}\right)=g\left(v_{2}\right)=g\left(v_{1}\right)=1$. Clearly g is a TRDF of T of weight $\gamma_{t R}\left(T^{\prime}\right)+3$, contradicting (2). Thus $v_{5} \in W_{T^{\prime}}^{2} \cap W_{T^{\prime}}^{3}$ and so T can be obtained from T^{\prime} by Operation \mathcal{O}_{5}. This completes the proof.

It is shown in [10] that for every graph G, the Roman domination number of G is bounded above by twice its domination number. Graphs which have Roman domination number equal to twice their domination number are called Roman graphs. A characterization of Roman trees is given in [13]. If T is a tree obtained from a star $K_{1, r}(r \geq 2)$ by adding at least two pendant edges at every vertex of $K_{1, r}$, then clearly T is both Roman and total Roman. On the other hand, P_{4} is a total Roman tree which is not a Roman tree and P_{5} is a Roman tree which is not a total Roman tree. We conclude this paper with an open problem.
Problem. Characterize the trees T which are both Roman and total Roman.

References

[1] H. Abdollahzadeh Ahangar, A. Bahremandpour, S.M. Sheikholeslami, N.D. Soner, Z. Tahmasbzadehbaee and L. Volkmann, Maximal Roman domination numbers in graphs, Util. Math. 103 (2017), 245-258.
[2] H. Abdollahzadeh Ahangar, T.W. Haynes and J.C. Valenzuela-Tripodoro, Mixed Roman domination in graphs, Bull. Malays. Math. Sci. Soc. DOI 10.1007/s40840-015-0141-1.
[3] H. Abdollahzadeh Ahangar, M.A. Henning, V. Samodivkin and I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016), 501-517.
[4] J. Amjadi, S. Nazari-Moghaddam and S.M. Sheikholeslami, Global total Roman domination in graphs, Discrete Math. Algorithms Appl. 9 (2017), ID: 1750050 (13 pp.).
[5] J. Amjadi, S.M. Sheikholeslami and M. Soroudi, Nordhaus-Gaddum bounds for total Roman domination, J. Comb. Optim. DOI 10.1007/s10878-017-0158-5.
[6] R.A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016) 23-29.
[7] E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, Extremal problems for Roman domination, SIAM J. Discrete Math. 23 (2009), 1575-1586.
[8] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A. MacRae, Roman \{2\}domination, Discrete Appl. Math. 204 (2016), 22-28.
[9] E.J. Cockayne, R.M. Dawes, and S.T. Hedetniemi, Total domination in graphs, Networks 10 (1980), 211-219.
[10] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), 11-22.
[11] O. Favaron, H. Karami and S.M. Sheikholeslami, On the Roman domination number in graphs, Discrete Math. 309 (2009), 3447-3451.
[12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, Inc., New York, 1998.
[13] M.A. Henning, A characterization of Roman trees, Discuss. Math. Graph Theory 22 (2002), 325-334.
[14] M.A. Henning and S.T. Hedetniemi, Defending the roman empire - a new strategy, Discrete Math. 266 (2003), 239-251.
[15] M. A. Henning and A. Yeo, Total domination in graphs (Springer Monographs in Mathematics) 2013. ISBN: 978-1-4614-6524-9 (Print); 978-1-4614-6525-6 (Online).
[16] C.-H. Liu and G.J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013), 608-619.
[17] C.S. Revelle and K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), 585-594.
[18] I. Stewart, Defend the Roman Empire, Sci. Amer. 281 (1999), 136-139.
[19] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.

[^0]: * Corresponding author

