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Abstract

A total Roman dominating function on a graph G is a function f :
V (G) → {0, 1, 2} satisfying the following conditions: (i) every vertex u
for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2,
and (ii) the subgraph of G induced by the set of all vertices of positive
weight has no isolated vertices. The weight of a total Roman dominat-
ing function f is the value f(V (G)) = Σu∈V (G)f(u). The total Roman
domination number γtR(G) is the minimum weight of a total Roman
dominating function of G. In [Ahangar, Henning, Samodivkin and Yero,
Appl. Anal. Discrete Math. 10 (2016), 501–517], it was recently shown
that for any graph G without isolated vertices, γtR(G) ≤ 2γt(G) where
γt(G) is the total domination number of G, and they posed the problem
of characterizing the graphs G with γtR(G) = 2γt(G). In this paper we
provide a constructive characterization of trees T with γtR(T ) = 2γt(T ).

∗ Corresponding author
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1 Introduction

Throughout this paper, G is a simple graph with no isolated vertices, with vertex set
V (G) and edge set E(G) (briefly, V,E). The order |V | of G is denoted by n = n(G).
For every vertex v ∈ V (G), the open neighborhood of v is the set NG(v) = N(v) =
{u ∈ V (G) | uv ∈ E(G)} and its closed neighborhood is the set NG[v] = N [v] =
N(v) ∪ {v}. The degree of a vertex v ∈ V is d(v) = |N(v)|. The open neighborhood
of a set S ⊆ V is the set N(S) = ∪v∈SN(v). A leaf of G is a vertex with degree
one in G, a support vertex is a vertex adjacent to a leaf, a strong support vertex
is a support vertex adjacent to at least two leaves, and an end support vertex is a
support vertex all of whose neighbors with the exception of at most one are leaves,
and an end strong support vertex is a strong support vertex all of whose neighbors
with the exception of at most one are leaves. For every vertex v ∈ V (G), the set of
all leaves adjacent to v is denoted by Lv. The double star DSq,p, where q ≥ p ≥ 1,
is the graph consisting of the union of two stars K1,q and K1,p together with an edge
joining their centers. A subdivision of an edge uv is obtained by replacing the edge
uv with a path uwv, where w is a new vertex. The subdivision graph S(G) is the
graph obtained from G by subdividing each edge of G. The subdivision star S(K1,t)
for t ≥ 2, is called a healthy spider. We denote by Pn the path on n vertices. The
distance dG(u, v) between two vertices u and v in a connected graph G is the length
of a shortest u − v path in G. The diameter of a graph G, denoted by diam(G), is
the greatest distance between two vertices of G. For a vertex v in a rooted tree T , let
C(v) denote the set of children of v; moreover, D(v) denotes the set of descendants
of v, and D[v] = D(v) ∪ {v}. Also, the depth of v, depth(v), is the largest distance
from v to a vertex in D(v). The maximal subtree at v is the subtree of T induced by
D[v], and is denoted by Tv.

A subset S of vertices of G is a total dominating set if N(S) = V . The total
domination number γt(G) is the minimum cardinality of a total dominating set of
G. A total dominating set with cardinality γt(G) is called a γt(G)-set. The total
domination number was introduced by Cockayne, Dawes and Hedetniemi [9] and is
now well-studied in graph theory. The literature on this subject has been surveyed
and detailed in the book by Henning and Yeo [15].

A function f : V (G) → {0, 1, 2} is a Roman dominating function (RDF) on G if
every vertex u ∈ V for which f(u) = 0 is adjacent to at least one vertex v for which
f(v) = 2. The weight of an RDF is the value ω(f) = f(V (G)) =

∑
u∈V (G) f(u). The

Roman domination number γR(G) is the minimum weight of an RDF on G. Roman
domination was introduced by Cockayne et al. in [10] and was inspired by the work
of ReVelle and Rosing [17] and Stewart [18]. It is worth mentioning that since 2004,
a hundred papers have been published on this topic, where several new variations
were introduced: weak Roman domination [14]; Roman {2}-domination [8]; maximal
Roman domination [1]; mixed Roman domination [2]; double Roman domination [6];
and recently, total Roman domination was introduced by Liu and Chang [16].

For a Roman dominating function f , let Vi = {v ∈ V | f(v) = i} for i = 0, 1, 2.
Since these three sets determine f , we can equivalently write f = (V0, V1, V2) (or
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f = (V f
0 , V

f
1 , V

f
2 ) to refer to f). We note that ω(f) = |V1|+ 2|V2|.

A total Roman dominating function of a graph G with no isolated vertex, abbre-
viated TRDF, is a Roman dominating function f on G with the additional property
that the subgraph of G induced by the set of all vertices of positive weight under f
has no isolated vertex. The total Roman domination number γtR(G) is the minimum
weight of a TRDF on G. A TRDF with minimum weight γtR(G) is called a γtR(G)-
function. The concept of total Roman domination in graphs was introduced by Liu
and Chang [16] and has been studied in [3, 4, 5]. The authors in [3] observed that
for any graph G with no isolated vertex,

γtR(G) ≤ 2γt(G), (1)

and they posed the following problem.

Problem: Characterize the graphs G satisfying γtR(G) = 2γt(G).

A graph G for which γtR(G) = 2γt(G) is defined in [3] to be a total Roman graph.
The authors in [3] presented the following trivial necessary and sufficient condition
for a graph to be a total Roman graph.

Proposition A. Let G be a graph with no isolated vertices. Then G is a total
Roman graph if and only if there exists a γtR(G)-function f = (V f

0 , V
f
1 , V

f
2 ) such

that V f
1 = ∅.

Finding a nontrivial necessary and sufficient condition for a graph to be a total
Roman graph, or characterizing the total Roman graphs, remains an open problem.
Let T1 be a tree obtained from a star K1,r (r ≥ 2) by adding at least two pendant
edges at every vertex of the star, and let T2 be a tree obtained from a starK1,r (r ≥ 2)
by adding at least two pendant edges at every vertex of the star except its center.
Clearly, T1 is a total Roman graph and T2 is not a total Roman graph, while both of
T1, T2 have a unique γtR-function. Thus, characterizing the total Roman graphs G,
even when G has a unique γtR-function, is not easy.

In this paper, we provide a constructive characterization of trees T with γtR(T ) =
2γt(T ) which settles the above problem for trees.

We make use of the following results in this paper.

Observation 1. If T is a star of order at least two, then γtR(T ) < 2γt(T ).

Observation 2. Let v be a strong support vertex in a graph G. Then there exists a
γtR(G)-function f such that f(v) = 2.

Proof. Let v be a strong support vertex and v1, v2 be leaves adjacent to v. Assume
that f is a γtR(G)-function. To totally Roman dominate v1 we must have f(v) ≥ 1.
If f(v) = 2, then we are done. Let f(v) = 1. Then to Roman dominate v1, v2 we
must have f(v1) = f(v2) = 1. Then the function g : V (G) → {0, 1, 2} defined by
g(v) = 2, g(v1) = 1, g(v2) = 0 and g(x) = f(x) otherwise, is a γtR(G)-function with
the desired property.
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Observation 3. Let G be a connected graph different from a star, let v be an end
strong support vertex in G, and let w be the neighbor of v which is not a leaf. Then
there exists a γtR(G)-function f such that f(v) = 2 and f(w) = 1.

Proof. Since v is a strong support vertex, we deduce from Observation 2 that there
exists a γtR(G)-function f = (V0, V1, V2) such that f(v) = 2. Since the induced
subgraph G[V1 ∪ V2] has no isolated vertices, we have (V1 ∪ V2) ∩ N(v) �= ∅. If
w ∈ (V1 ∪ V2) ∩ N(v), then we are done. Assume that w �∈ (V1 ∪ V2) ∩ N(v). Then
(V1 ∪ V2) ∩ Lv �= ∅. Let z ∈ (V1 ∪ V2) ∩ Lv. Clearly z ∈ V1 and the function
g : V (G) → {0, 1, 2} defined by g(z) = 0, g(w) = 1 and g(x) = f(x) otherwise, is a
γtR(G)-function with the desired property.

Observation 4. If u1, u2 are two adjacent support vertices in a graph G, then there
exists a γtR(G)-function f such that f(u1) = f(u2) = 2.

Proof. Let u1, u2 be two adjacent support vertices and let vi be a leaf adjacent to ui

for i = 1, 2. Assume that f is a γtR(G)-function. As above, we have f(ui)+f(vi) ≥ 2
for i = 1, 2. Then the function g : V (G) → {0, 1, 2} defined by g(u1) = g(u2) =
2, g(v1) = g(v2) = 0 and g(x) = f(x) otherwise, is a γtR(G)-function with the desired
property.

Observation 5. Let H be a subgraph of a graph G such that G and H have no
isolated vertices. If γtR(H) = 2γt(H), γt(G) ≤ γt(H) + s and γtR(G) ≥ γtR(H) + 2s
for some non-negative integer s, then γtR(G) = 2γt(G).

Proof. Since γtR(G) ≤ 2γt(G), we deduce from the assumptions that

γtR(G) ≥ γtR(H) + 2s = 2γt(H) + 2s ≥ 2γt(G)

and this leads to the result.

Observation 6. Let H be a subgraph of a graph G such that G and H have no
isolated vertices. If γtR(G) = 2γt(G), γt(G) ≥ γt(H) + s and γtR(G) ≤ γtR(H) + 2s
for some non-negative integer s, then γtR(H) = 2γt(H).

Proof. By the assumptions and the fact γtR(H) ≤ 2γt(H), we have

γtR(G) ≤ γtR(H) + 2s ≤ 2γt(H) + 2s ≤ 2γt(G) = γtR(G)

and this leads to the result.

2 A characterization of trees T with γtR(T ) = 2γt(T )

In this section, we give a constructive characterization of all trees T satisfying
γtR(T ) = 2γt(T ). We start with three definitions.
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Definition 1. Let v be a vertex of a tree T . A function f : V (T ) → {0, 1, 2} is said to
be an almost total Roman dominating function (almost TRDF) with respect to v, if
the following two conditions are fulfilled: (i) every vertex x ∈ V (T )− {v} for which
f(x) = 0 is adjacent to at least one vertex y ∈ V (T ) for which f(y) = 2 and (ii)
every vertex x ∈ V (T ) − {v} for which f(x) ≥ 1 is adjacent to at least one vertex
y ∈ V (T ) for which f(y) ≥ 1. Let

γtR(T, v) = min{ω(f) | f is an almost TRDF with respect to v}.

Definition 2. Let v be a vertex of a tree T . A nearly total Roman dominating function
(nearly TRDF) with respect to v, is an almost total Roman dominating function f
with an additional property that f(v) ≥ 1 or f(v) + f(u) ≥ 2 for some u ∈ N(v).
Let

γtR(T ; v) = min{ω(f) | f is a nearly TRDF with respect to v}.

Since any total Roman dominating function on T is an almost TRDF and a nearly
TRDF with respect to each vertex of T , γtR(T, v) and γtR(T ; v) are well defined and
γtR(T, v) ≤ γtR(T ) and γtR(T ; v) ≤ γtR(T ) for each v ∈ V (T ). Now let

W 1
T = {v ∈ V (T )|γtR(T, v) = γtR(T )}

and
W 2

T = {v ∈ V (T )|γtR(T ; v) = γtR(T )}.
Definition 3. For a tree T and each vertex v ∈ V (T ), we say v has property P in T
if for any γtR(T )-function f we have f(v) �= 2. Define

W 3
T = {v|v has property P in T}.

In order to presenting our constructive characterization, we define a family of
trees as follows. Let T be the family of trees T that can be obtained from a sequence
T1, T2, . . . , Tk of trees for some k ≥ 1, where T1 is P4 and T = Tk. If k ≥ 2, Ti+1 can
be obtained from Ti by one of the following operations.

Operation O1: If x ∈ V (Ti) is a support vertex and there is a γtR(T )-function f
with f(x) = 2, then O1 adds a vertex y and an edge xy to obtain Ti+1.

Operation O2: If x ∈ V (Ti) has degree at least two and x is adjacent to an end
strong support vertex, then O2 adds a path yz and joins x to y to obtain Ti+1.

Operation O3: If x ∈ V (Ti) is a support vertex and x is at distance 2 from some
leaves, then O3 adds a path yz and joins x to y to obtain Ti+1.

Operation O4: If x ∈ W 1
Ti

and x is at distance 1 or 2 from a support vertex, then
O4 adds a path P4 and joins x to a support vertex of it to obtain Ti+1.

Operation O5: If x ∈ W 2
Ti
∩W 3

Ti
, then O5 adds a double star DSq,1 (q = 1, 2) and

joins x to the leaf adjacent to the support vertex of degree 2 in DSq,1 to obtain
Ti+1.
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Operation O6: If x ∈ W 2
Ti
∩W 3

Ti
, then O6 adds the graph Ft (see Figure 1) and

the edge xz to obtain Ti+1.

Operation O7: If x ∈ V (Ti), then O7 adds a double star DS2,1 and joins x to a
leaf adjacent to the support vertex of degree 3 to obtain Ti+1.

· · ·
· · ·

y

y1

z1

y2

z2

yt

zt

z

Figure 1: The graph Ft used in Operation O6

The proof of the first lemma is trivial and is therefore omitted.

Lemma 2.1. If Ti is a tree with γtR(Ti) = 2γt(Ti) and Ti+1 is a tree obtained from
Ti by Operation O1, then γtR(Ti+1) = 2γt(Ti+1).

Since γtR(DSq,p) = 2γt(DSq,p) and DSq,p (q ≥ 2) is obtained from P4 only by
Operation O1, it follows that this operation is necessary to construct the family T .

Lemma 2.2. If Ti is a tree with γtR(Ti) = 2γt(Ti) and Ti+1 is a tree obtained from
Ti by Operation O2, then γtR(Ti+1) = 2γt(Ti+1).

Proof. Let w ∈ V (Ti) be an end strong support vertex adjacent to x and let the
Operation O2 add a path yz and join x to y. Clearly, any total dominating set of Ti

containing no leaf can be extended to a total dominating set of Ti+1 by adding y. So
γt(Ti+1) ≤ γt(Ti) + 1.

Now let f be a γtR(Ti+1)-function such that f(x) is as large as possible. Clearly,
f(y) ≥ 1 and f(y) + f(z) ≥ 2. By Observation 3, we may assume that f(w) = 2
and f(x) ≥ 1. Thus the function f , restricted to Ti, is a total Roman dominating
function of Ti of weight γtR(Ti+1)− 2 and hence

γtR(Ti+1) = ω(f) ≥ 2 + ω(f |Ti
) ≥ 2 + γtR(Ti).

It follows from Observation 5 that γtR(Ti+1) = 2γt(Ti+1).

Lemma 2.3. If Ti is a tree with γtR(Ti) = 2γt(Ti) and Ti+1 is a tree obtained from
Ti by Operation O3, then γtR(Ti+1) = 2γt(Ti+1).

Proof. Let O3 add a path yz and the edge xy. Since x is a support vertex, adding
y to any total dominating set of Ti yields a total dominating set for Ti+1 and this
implies that γt(Ti+1) ≤ γt(Ti) + 1.

Now let f = (V0, V1, V2) be a γtR(Ti+1)-function. Obviously f(y) + f(z) ≥ 2 and
x, y, w ∈ V1 ∪ V2 where w ∈ NTi

(x) is a support vertex (note that x is at distance 2
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from some leaves and so x is adjacent to a support vertex). Therefore the function
f , restricted to Ti, is a total Roman dominating function of Ti and so

γtR(Ti+1) = ω(f) ≥ 2 + ω(f |Ti
) ≥ 2 + γtR(Ti).

Now the result follows by Observation 5.

Since γtR(Ft) = 2γt(Ft) and Ft (t ≥ 2) is obtained from P4 only by using Oper-
ation O3, t − 1 times, we conclude that the Operation O3 is necessary to construct
the family T .

Lemma 2.4. If Ti is a tree with γtR(Ti) = 2γt(Ti) and Ti+1 is a tree obtained from
Ti by Operation O4, then γtR(Ti+1) = 2γt(Ti+1).

Proof. Let O4 add a path P4: y1y2y3y4 and join x to y3. Clearly, any total dominating
set of Ti can be extended to a total dominating set of Ti+1 by adding y2, y3, yielding
γt(Ti+1) ≤ γt(Ti) + 2.

Assume now that f = (V0, V1, V2) is a γtR(Ti+1)-function. By Observation 4, we
may assume that y2, y3 ∈ V2. Then the function f , restricted to Ti, is an almost
total Roman dominating function of Ti and since x ∈ W 1

Ti
we have ω(f |Ti

) ≥ γtR(Ti).
Hence

γtR(Ti+1) = ω(f) ≥ 4 + ω(f |Ti
) ≥ 4 + γtR(Ti).

It follows from Observation 5 that γtR(Ti+1) = 2γt(Ti+1).

Let T be a tree obtained from three copies of P4 by adding a new vertex and
joining it to exactly one support vertex of each copy of P4. Clearly, γtR(T ) = 2γt(T )
and T is obtained from P4 by applying Operations O7 and O4 respectively. On
the other hand, T cannot be obtained by other operations, and so Operation O4 is
necessary to construct the family T .

Lemma 2.5. If Ti is a tree with γtR(Ti) = 2γt(Ti) and Ti+1 is a tree obtained from
Ti by Operation O5, then γtR(Ti+1) = 2γt(Ti+1).

Proof. Let O5 add a double star DSq,1 with central vertices a, b where deg(a) = 2
and join x to the leaf c adjacent to a. By adding a, b to any total dominating set of
Ti we obtain a total dominating set of Ti+1, implying that γt(Ti+1) ≤ γt(Ti) + 2.

Now let f be a γtR(Ti+1)-function such that f(b) is as large as possible. Then
clearly f(b) = 2, f(a) + f(b) ≥ 3 and f(a) + f(b) + f(c) ≥ 4. If f(c) ≤ 1, then
the function f , restricted to Ti is a nearly total Roman dominating function of Ti,
and if f(c) = 2, then the function g : V (Ti) → {0, 1, 2} defined by g(x) = 1 and
g(u) = f(u) for u ∈ V (Ti)−{x}, is a nearly total Roman dominating function of Ti.
Since x ∈ W 2

Ti
, we have ω(f |Ti

) ≥ γtR(Ti). Thus

γtR(Ti+1) = ω(f) ≥ 4 + ω(f |Ti
) ≥ 4 + γtR(Ti)

and the result follows by Observation 5.
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Since γtR(P8) = 2γt(P8) and P8 is obtained from P4 only by applying Operation
O5, we deduce that the operation O5 is necessary to construct the family T .

Lemma 2.6. If Ti is a tree with γtR(Ti) = 2γt(Ti) and Ti+1 is a tree obtained from
Ti by Operation O6, then γtR(Ti+1) = 2γt(Ti+1).

Proof. Clearly, any total dominating set of Ti can be extended to a total dominating
set of Ti+1 by adding N [y]− {z} yielding γt(Ti+1) ≤ γt(Ti) + deg(y).

Let f be a γtR(Ti+1)-function. To totally Roman dominate zi, we must have
f(yi) + f(zi) ≥ 2 for i = 1, . . . , t. If f(y) = 2 and f(z) = 0, then the function f
restricted to Ti is a nearly total Roman dominating function of Ti and since x ∈ W 2

Ti

we obtain γtR(Ti+1) = ω(f) ≥ 2 deg(y)+ω(f |Ti
) ≥ 2 deg(y)+γtR(Ti). If f(y) = 2 and

f(z) ≥ 1, then the function g : V (Ti) → {0, 1, 2} defined by g(x) = min{f(x) + 1, 2}
and g(u) = f(u) for u ∈ V (Ti)−{x} is a nearly total Roman dominating function of
Ti and as above we have γtR(Ti+1) ≥ 2 deg(y) + γtR(Ti). Let f(y) = 1. If f(z) ≥ 1,
then as above we have γtR(Ti+1) ≥ 2 deg(y) + γtR(Ti). If f(z) = 0, then f |Ti

is a
TRDF of Ti with f(x) = 2 and we conclude from x ∈ W 3

Ti
that ω(f |Ti

) > γtR(Ti).
Hence

γtR(Ti+1) = ω(f) ≥ 2 deg(y)− 1 + ω(f |Ti
) ≥ 2 deg(y) + γtR(Ti).

Assume finally that f(y) = 0. To totally Roman dominate y, y must have a neighbor
with label 2. If f(z) = 2, then the function f restricted to Ti is a nearly total
Roman dominating function of Ti and since x ∈ W 2

Ti
we have γtR(Ti+1) = ω(f) ≥

2 deg(y) + ω(f |Ti
) ≥ 2 deg(y) + γtR(Ti). If f(z) ≤ 1, then f(yi) = 2 for some

1 ≤ i ≤ t. If f(z) = 1, then as above we obtain γtR(Ti+1) ≥ 2 deg(y) + γtR(Ti). If
f(z) = 0, then to dominate z we must have f(x) = 2 and hence f |Ti

is a TRDF
of Ti with f(x) = 2. We deduce from x ∈ W 3

Ti
that ω(f |Ti

) > γtR(Ti) and so
γtR(Ti+1) = ω(f) ≥ 2 deg(y) − 1 + ω(f |Ti

) ≥ 2 deg(y) + γtR(Ti). It follows from
Observation 5 that γtR(Ti+1) = 2γt(Ti+1).

Let T be the tree obtained from two copies of F2 by joining the leaves adjacent to
the centers of F2. Obviously, γtR(T ) = 2γt(T ) and T is obtained from P4 by applying
Operations O3 and O6 respectively. On the other hand, T cannot be obtained by
other operations and so Operation O6 is necessary to construct the family T .

Lemma 2.7. If Ti is a tree with γtR(Ti) = 2γt(Ti) and Ti+1 is a tree obtained from
Ti by Operation O7, then γtR(Ti+1) = 2γt(Ti+1).

Proof. Let O7 add a double star DS2,1 with central vertices a, b where deg(a) = 3
and let O7 join x to a leaf z adjacent to a. By adding a, b to any total dominating
set of Ti we obtain a total dominating set of Ti+1 and so γt(Ti+1) ≤ γt(Ti) + 2.

Suppose now that f is a γtR(Ti+1)-function such that f(z) is as small as possible.
We may assume, without loss of generality, that f(a) = f(b) = 2. We claim that
f(z) = 0. Assume, to the contrary, that f(z) ≥ 1. If f(z) = 2, then it is easy to
see that f(x) = 0. If f(w) ≥ 1 for a vertex w ∈ NTi

(x), then define g : V (Ti+1) →
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{0, 1, 2} by g(z) = 0, g(x) = 1 and g(u) = f(u) otherwise. Then g is also a total
Roman dominating set of Ti+1 of weight ω(f)− 1, a contradiction. If f(w) = 0 for
all w ∈ NTi

(x), then define g : V (Ti+1) → {0, 1, 2} by g(z) = 0, g(x) = g(w) = 1
for some w ∈ NTi

(x) and g(u) = f(u) otherwise. Then g is a γtR(Ti+1)-function
contradicting the choice of f .

Let now f(z) = 1. If f(x) = 2, then it is easy to see that f(w) = 0 for all
w ∈ NTi

(x). Now define g : V (Ti+1) → {0, 1, 2} by g(z) = 0, g(w) = 1 for some w ∈
NTi

(x) and g(u) = f(u) otherwise. If f(x) = 1, then it is easy to see that f(w) = 0
for all w ∈ NTi

(x). Now define g : V (Ti+1) → {0, 1, 2} by g(z) = 0, g(w) = 1 for some
w ∈ NTi

(x) and g(u) = f(u) otherwise. If f(x) = 0, then there exists a vertex w ∈
NTi

(x) such that f(w) = 2. Now define g : V (Ti+1) → {0, 1, 2} by g(z) = 0, g(x) = 1
and g(u) = f(u) otherwise. Then g is a γtR(Ti+1)-function contradicting the choice of
f . Thus f(z) = 0. Then the function f , restricted to Ti is a total Roman dominating
function of Ti and hence γtR(Ti+1) = ω(f) ≥ 4+ω(f |Ti

) ≥ 4+γtR(Ti), and the result
follows from Observation 5.

Let T be a tree obtained from P10 by adding one pendant edges at every support
vertex and leaf. Clearly, γtR(T ) = 2γt(T ) and T is obtained from P4 by applying
Operations O1,O5 and O7 respectively. On the other hand, T cannot be obtained
by other operations and so Operation O7 is necessary to construct the family T .

Theorem 2.1. If T ∈ T , then γtR(T ) = 2γt(T ).

Proof. If T is P4, then obviously γtR(T ) = 2γt(T ). Suppose now that T ∈ T . Then
there exists a sequence of trees T1, T2, . . . , Tk (k ≥ 1) such that T1 is P4, and if
k ≥ 2, then Ti+1 can be obtained from Ti by one of the Operations O1,O2, . . . ,O7

for i = 1, 2, . . . , k − 1. We apply induction on the number of operations used to
construct T . If k = 1, the result is trivial. Assume the result holds for each tree
T ∈ T which can be obtained from a sequence of operations of length k − 1 and let
T ′ = Tk−1. By the induction hypothesis, we have γtR(T

′) = 2γt(T
′). Since T = Tk

is obtained by one of the Operations O1,O2, . . . ,O7 from T ′, we conclude from the
above lemmas that γtR(T ) = 2γt(T ).

Now we are ready to prove our main result.

Theorem 2.2. Let T be a tree of order n ≥ 4. Then γtR(T ) = 2γt(T ) if and only if
T ∈ T .

Proof. According to Theorem 2.1, we need only to prove necessity. Let T be a tree
of order n ≥ 4 with γtR(T ) = 2γt(T ). The proof is by induction on n. If n = 4, then
the only tree T of order 4 with γtR(T ) = 2γt(T ) is P4 ∈ T . Let n ≥ 5 and let the
statement hold for all trees of order less than n. Assume that T is a tree of order
n with γtR(T ) = 2γt(T ). By Observation 1, we have diam(T ) ≥ 3. If diam(T ) = 3,
then T is a double star and T can be obtained from P4 by applying Operation O1

and so T ∈ T . Hence let diam(T ) ≥ 4.
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Let v1v2 . . . vk (k ≥ 5) be a diametral path in T such that degT (v2) is as large as
possible and root T at vk. If degT (v2) ≥ 4, then clearly γtR(T − v1) = 2γt(T − v1). It
follows from the induction hypothesis that T − v1 ∈ T and hence T can be obtained
from T − v1 by Operation O1, implying that T ∈ T . Let degT (v2) ≤ 3. We consider
two cases.

Case 1. degT (v2) = 3.
Assume that Lv2 = {v1, w}.

Subcase 1.1. degT (v3) ≥ 3.
First let v3 be adjacent to a support vertex z �∈ {v2, v4}. Suppose T ′ = T − Tz.
For any γt(T )-set S containing no leaves we have z, v2, v3 ∈ S and so S \ {z} is
a total dominating set of T ′ yielding γt(T ) ≥ γt(T

′) + 1. Now let f be a γtR(T
′)-

function. Since v2 is an end strong support vertex and since f is a TRDF of T ′,
we may assume that f(v2) = 2 and f(v3) ≥ 1. Clearly f can be extended to a
TRDF of T by assigning the weight 2 to z and the weight 0 to the leaves adjacent
to z and this implies that γtR(T ) ≤ γtR(T

′) + 2. It follows from Observation 6 that
γtR(T

′) = 2γt(T
′) and by the induction hypothesis we have T ′ ∈ T . Now T can be

obtained from T ′ by Operation O2 if degT (z) = 2 and by Operations O2 and O1

when degT (z) ≥ 3. Hence T ∈ T .

Now assume that each neighbor of v3 except v2, v4, is a leaf and let T ′ = T−v1. It
is easy to see that γt(T ) = γt(T −v1) and γtR(T ) = γtR(T −v1). Hence γtR(T −v1) =
2γt(T −v1) and by the induction hypothesis we have T ′ ∈ T . Since v2, v3 are support
vertices in T ′, there exists a γtR(T

′)-function f such that f(v2) = f(v3) = 2. Now T
can be obtained from T ′ by Operation O1.

Subcase 1.2. degT (v3) = 2.
If v4 is a support vertex, then let T ′ = T − {v1, w}. It is easy to see that γt(T ) =
γt(T

′) + 1 and γtR(T ) = γtR(T
′) + 1. Then 2γt(T ) = γtR(T ) ≤ γtR(T

′) + 1 ≤
2γt(T

′) + 1 = 2γt(T )− 1 which is a contradiction. If v4 has a children z �= v3, with
depth 1 or 2, then let T ′ = T − Tv3 . It is not hard to see that γt(T ) = γt(T

′) + 2
and γtR(T ) ≤ γtR(T

′) + 3. But then 2γt(T ) = γtR(T ) ≤ γtR(T
′) + 3 ≤ 2γt(T

′) +
3 = 2γt(T ) − 1, a contradiction again. Henceforth, we assume deg(v4) = 2. Since
γtR(T ) = 2γt(T ), we have diam(T ) ≥ 5. Let T ′ = T − Tv4 . Clearly, any γtR(T

′)-
function can be extended to a TRDF of T by assigning the weight 2 to v2, v3 and
the weight 0 to v1, v4, w and so γtR(T ) ≤ γtR(T

′) + 4. On the other hand, let S be
a γt(T )-set containing no leaves. Then v2, v3 ∈ S and the set S ′ = S − {v2, v3} if
v4 �∈ S, and S ′ = (S − {v2, v3, v4}) ∪ {v6} if v4 ∈ S, is a total dominating set of T ′

yielding γt(T ) ≥ γt(T
′) + 2. By Observation 6 we have γtR(T

′) = 2γt(T
′) and this

implies that γtR(T ) = γtR(T
′) + 4 and γt(T ) = γt(T

′) + 2 by the assumption. By
the induction hypothesis we have T ′ ∈ T . Now we show that v5 ∈ W 2

T ′ ∩ W 3
T ′ . If

v5 �∈ W 2
T ′, then let g be a nearly TRDF of T ′ of weight less than γtR(T

′) and define
h : V (T ) → {0, 1, 2} by h(v2) = 2, h(v3) = h(v4) = 1, h(x) = g(x) for x ∈ V (T ′) and
h(x) = 0 otherwise. If v5 �∈ W 3

T ′ , then let g be a TRDF of T ′ with g(v5) = 2 and
define h : V (T ) → {0, 1, 2} by h(v2) = 2, h(v3) = 1, h(x) = g(x) for x ∈ V (T ′) and
h(x) = 0 otherwise. Clearly h is a TRDF of T with weight γtR(T )−1, a contradiction.
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Thus v5 ∈ W 2
T ′ ∩W 3

T ′ and so T can be obtained from T ′ by Operation O5, implying
T ∈ T .

Case 2. deg(v2) = 2.
By the choice of the diametral path, we may assume that all support vertices adjacent
to v3 and vk−1 have degree 2. We consider the following subcases.

Subcase 2.1. v3 is a support vertex and v3 has a support neighbor w other
than v2.
Let T ′ = T − {v1, v2}. If S is a γt(T )-set containing no leaves, then v2, v3, w ∈ S
and so S \ {v2} is a total dominating set of T ′, implying that γt(T ) ≥ γt(T

′) + 1.
On the other hand, since any γtR(T

′)-function can be extended to a TRDF of T by
assigning the weight 2 to v2 and the weight 0 to v1, we have γtR(T ) ≤ γtR(T

′) + 2.
By Observation 6 and the induction hypothesis, we obtain T ′ ∈ T . Now T can be
obtained from T ′ by Operation O3, and hence T ∈ T .

Subcase 2.2. degT (v3) ≥ 3 and all neighbors of v3 except v2, v4 are leaves.
Let w be a leaf adjacent to v3. If deg(v3) ≥ 4, then let T ′ = T − w. It is easy to
see that γt(T ) = γt(T

′) and γtR(T ) = γtR(T
′). Hence γtR(T

′) = 2γt(T
′) and by the

induction hypothesis we have T ′ ∈ T . Then T can be obtained from T ′ by Operation
O1. Assume that degT (v3) = 3. We distinguish the following cases.

(a) v4 is a support vertex.
Let T ′ = T − {v1, v2}. As above we can see that γt(T ) = γt(T

′) + 1 and
γtR(T ) = γtR(T

′) + 2, yielding γtR(T
′) = 2γt(T

′). By the induction hypothesis
we have T ′ ∈ T and now T can be obtained by Operation O3.

(b) deg(v4) = 2.
By (a) we may assume that v4 is not a support vertex. Let T ′ = T − Tv4 . As
in the proof of subcase 1.2, we can see that T ′ ∈ T . Then T can be obtained
from T ′ by Operation O7.

(c) deg(v4) ≥ 3.
By (a) we may assume that v4 is not a support vertex. Thus v4 has a children
z different from v2 with depth 1 or 2. Let T ′ = T − Tv3 . If S is a γt(T )-set
containing no leaves, then clearly v2, v3, z ∈ S and so S − {v2, v3} is a total
dominating set of T ′, yielding γt(T ) ≥ γt(T

′) + 2. On the other hand, any
γtR(T

′)-function can be extended to a TRDF of T by assigning 2 to v2, v3
and the weight 0 to w, v1, and hence γtR(T ) ≤ γtR(T

′) + 4. We deduce from
Observation 6 that γtR(T

′) = 2γt(T
′) and by the induction hypothesis we have

T ′ ∈ T . If v4 �∈ W 1
T ′ , then let f be an almost TRDF of T ′ with respect to

v4 of weight at most γtR(T
′) − 1 and extend f to a TRDF of T by assigning

the weight 2 to v2, v3 and the weight 0 to w, v1; this implies that γtR(T ) ≤
γtR(T

′) + 3 = 2γt(T
′) + 3 ≤ 2γt(T )− 1, a contradiction. Thus v4 ∈ W 1

T ′, and
now T can be obtained from T ′ by Operation O4, yielding T ∈ T .

Subcase 2.3. degT (v3) ≥ 3 and all children of v3 are support vertices of degree 2.
We distinguish three cases.
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(i) v4 is a support vertex.
Suppose T ′ = T − v1. By adding v2 to any γt(T

′)-set we obtain a total domi-
nating set of T and so γt(T ) ≤ γt(T

′)+1. On the other hand, if S is a γt(T )-set
containing no leaves then N [v3] ⊆ S and clearly S−{v2} is a total dominating
set of T ′, implying that γt(T ) ≥ γt(T

′) + 1. Thus γt(T ) = γt(T
′) + 1. Now let

f be a γtR(T
′)-function. Since v3 and its neighbors other than v2 in T ′ are sup-

port vertices, we may assume that f(x) = 2 for each x ∈ NT ′ [v3]− {v2}. Then
the function g : V (T ) → {0, 1, 2} defined by g(v3) = 1, g(v2) = 2, g(v1) = 0,
and g(u) = f(u) otherwise, is a TRDF of T with weight ω(f) + 1. Hence
γtR(T ) ≤ γtR(T

′) + 1 ≤ 2γt(T
′) + 1 = 2γt(T )− 1, a contradiction.

(ii) v4 has a child z �= v3 with depth 1 or 2.
Assume that T ′ = T − Tv3 . Any γt(T

′)-set S can be extended to a total
dominating set of T by adding C(v3)∪{v3} and so γt(T ) ≤ γt(T

′)+ |C(v3)|+1.
On the other hand, if S is a γt(T )-set containing no leaves, then C(v3) ∪
{v3, z} ⊆ S, and clearly S − (C(v3) ∪ {v3}) is a total dominating set of T ′,
implying that γt(T ) ≥ γt(T

′) + |C(v3)|+ 1. Thus γt(T ) = γt(T
′) + |C(v3)|+ 1.

Clearly, any γtR(T
′)-function can be extended to a TRDF of T by assigning

the weight 1 to v3, the weight 2 to the children of v3 and the weight 0 to
the leaves of Tv3 , and this implies that γtR(T ) ≤ γtR(T

′) + 2|C(v3)| + 1 ≤
2γt(T

′) + 2|C(v3)|+ 1 = 2γt(T )− 1, a contradiction again.

(iii) deg(v4) = 2.
If diam(T ) = 4, then T is a healthy spider, and we have γtR(T ) = 2 deg(v3)+1 ≤
2(deg(v3)+1)−1 = 2γt(T )−1, which is a contradiction. Let diam(T ) ≥ 5 and
let T ′ = T −Tv4 . Assume that S is a γt(T )-set. Then clearly N [v3]−{v4} ⊆ S,
and the set S ′ = S−N [v3] if v4 �∈ S and S ′ = (S−N [v3])∪ {v6} if v4 ∈ S, is a
total dominating set of T ′, yielding γt(T ) ≥ γt(T

′)+deg(v3). On the other hand,
any γtR(T

′)-function can be extended to a TRDF of T by assigning the weight
2 to each vertex in N [v3]−{v4} and the weight 0 to the remaining vertices, and
this implies that γtR(T ) ≤ γtR(T

′) + 2 deg(v3). It follows from Observation 6
and the induction hypothesis that T ′ ∈ T . If v5 �∈ W 2

T ′ , then let f be a nearly
TRDF of T ′ of weight at most γtR(T

′) − 1 and define g : V (T ) → {0, 1, 2}
by g(u) = f(u) for u ∈ V (T ′), g(u) = 1 for u ∈ V (Tv4). If v5 �∈ W 3

T ′, then
let f be a γtR(T

′)-function with f(v5) = 2 and define g : V (T ) → {0, 1, 2}
by g(u) = f(u) for u ∈ V (T ′), g(v4) = 0 and g(u) = 1 for u ∈ N [v3] − {v4}
and g(u) = 0 otherwise. In each case, g is a TRDF of T of weight at most
γtR(T

′)+ 2 deg(v3)− 1 that leads to a contradiction. Thus v5 ∈ W 2
T ′ ∩W 3

T ′ and
so T can be obtained from T ′ by Operation O6, yielding T ∈ T .

Subcase 2.4. deg(v3) = 2.
We claim that deg(v4) = 2. Assume, to the contrary, that deg(v4) ≥ 3. First assume
v4 is at distance 1 or 2 from a support vertex other than v2 and let T ′ = T − Tv3 .
Assume that S is a γt(T )-set containing no leaves. Then v2, v3 ∈ S and clearly
S − {v2, v3} is a total dominating set of T ′, implying that γt(T

′) ≤ γt(T ) − 2. On
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the other hand, any γtR(T
′)-function can be extended to a TRDF of T by assigning

the weight 1 to v3, v2, v1 and this implies that γtR(T ) ≤ γtR(T
′) + 3. But then

2γt(T ) = γtR(T ) ≤ γtR(T
′) + 3 ≤ 2γt(T

′) + 3 ≤ 2γt(T )− 1

which is a contradiction. Now let v4 be a support vertex and let T ′ = T − v1.
Suppose that S is a γt(T )-set containing no leaves. Then v2, v3, v4 ∈ S, and clearly
S − {v2} is a total dominating set of T ′ yielding γt(T

′) ≤ γt(T ) − 1. On the other
hand, let f be a γtR(T

′)-function. Since v3, v4 in T ′ are support vertices, we may
assume that f(v3) = f(v4) = 2. Define g : V (T ) → {0, 1, 2} by g(u) = f(u) for
u ∈ V (T ′)− {v2, v3}, g(v3) = 1, g(v2) = 2 and g(v1) = 0. Clearly g is a TRDF of T
of weight γtR(T

′) + 1. It follows that

2γt(T ) = γtR(T ) ≤ γtR(T
′) + 1 ≤ 2γt(T

′) + 1 ≤ 2γt(T )− 1,

a contradiction again. This proves our claim. That is, deg(v4) = 2. Since γtR(T ) =
2γt(T ), we have diam(T ) ≥ 6. Let T ′ = T − Tv4 . Any total dominating set of T ′ can
be extended to a total dominating set of T by adding v2, v3, and so γt(T ) ≤ γt(T

′)+2.
Let S be a total dominating set of T containing no leaves. Then v2, v3 ∈ S and the
set S ′ = S \ {v2, v3} if v4 �∈ S and S ′ = (S \ {v2, v3, v4}) ∪ {v6} if v4 ∈ S is a total
dominating set of T ′. Hence γt(T )− 2 ≥ γt(T

′) and we have γt(T
′) = γt(T )− 2. On

the other hand, any γtR(T
′)-function can be extended to a TRDF of T by assigning

the weight 2 to v2, v3 and the weight 0 to v1, v4, yielding γtR(T ) ≤ γtR(T
′)+4. Hence,

2γt(T ) = γtR(T ) ≤ γtR(T
′) + 4 ≤ 2γt(T

′) + 4 = 2γt(T ), and this leads to

γtR(T ) = γtR(T
′) + 4 (2)

and γtR(T
′) = 2γt(T

′). Therefore, by the induction hypothesis, we have T ′ ∈ T .

If v5 �∈ W 2
T ′ , then let f be a nearly TRDF with respect to v5 with w(f) ≤ γtR(T

′)−
1. If f(v5) = 0, then f is a TRDF of T ′, which is impossible. Hence f(v5) ≥ 1. Then
f can be extended to a TRDF of T by assigning the weight 1 to v4, v3, v2, v1 and
hence γtR(T ) ≤ γtR(T

′)+3, which is a contradiction with (2). If v5 �∈ W 3
T ′ , then let f

be a γtR(T
′)-function with f(v5) = 2, and define g : V (T ) → {0, 1, 2} by g(u) = f(u)

for u ∈ V (T ′), g(v4) = 0, g(v3) = g(v2) = g(v1) = 1. Clearly g is a TRDF of T of
weight γtR(T

′)+3, contradicting (2). Thus v5 ∈ W 2
T ′ ∩W 3

T ′ and so T can be obtained
from T ′ by Operation O5. This completes the proof.

It is shown in [10] that for every graph G, the Roman domination number of
G is bounded above by twice its domination number. Graphs which have Roman
domination number equal to twice their domination number are called Roman graphs.
A characterization of Roman trees is given in [13]. If T is a tree obtained from a
star K1,r (r ≥ 2) by adding at least two pendant edges at every vertex of K1,r, then
clearly T is both Roman and total Roman. On the other hand, P4 is a total Roman
tree which is not a Roman tree and P5 is a Roman tree which is not a total Roman
tree. We conclude this paper with an open problem.

Problem. Characterize the trees T which are both Roman and total Roman.
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