Total Roman domination number of trees

J. Amjadi^{*} S. Nazari-Moghaddam

S.M. Sheikholeslami

Department of Mathematics Azarbaijan Shahid Madani University Tabriz I.R. Iran j-amjadi@azaruniv.edu s.nazari@azaruniv.edu s.m.sheikholeslami@azaruniv.edu

L. VOLKMANN

Lehrstuhl II für Mathematik RWTH Aachen University 52056 Aachen Germany volkm@math2.rwth-aachen.de

Abstract

A total Roman dominating function on a graph G is a function f: $V(G) \rightarrow \{0, 1, 2\}$ satisfying the following conditions: (i) every vertex ufor which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2, and (ii) the subgraph of G induced by the set of all vertices of positive weight has no isolated vertices. The weight of a total Roman dominating function f is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. The total Roman domination number $\gamma_{tR}(G)$ is the minimum weight of a total Roman dominating function of G. In [Ahangar, Henning, Samodivkin and Yero, Appl. Anal. Discrete Math. 10 (2016), 501–517], it was recently shown that for any graph G without isolated vertices, $\gamma_{tR}(G) \leq 2\gamma_t(G)$ where $\gamma_t(G)$ is the total domination number of G, and they posed the problem of characterizing the graphs G with $\gamma_{tR}(G) = 2\gamma_t(G)$. In this paper we provide a constructive characterization of trees T with $\gamma_{tR}(T) = 2\gamma_t(T)$.

^{*} Corresponding author

1 Introduction

Throughout this paper, G is a simple graph with no isolated vertices, with vertex set V(G) and edge set E(G) (briefly, V, E). The order |V| of G is denoted by n = n(G). For every vertex $v \in V(G)$, the open neighborhood of v is the set $N_G(v) = N(v) =$ $\{u \in V(G) \mid uv \in E(G)\}$ and its closed neighborhood is the set $N_G[v] = N[v] =$ $N(v) \cup \{v\}$. The degree of a vertex $v \in V$ is d(v) = |N(v)|. The open neighborhood of a set $S \subseteq V$ is the set $N(S) = \bigcup_{v \in S} N(v)$. A leaf of G is a vertex with degree one in G, a support vertex is a vertex adjacent to a leaf, a strong support vertex is a support vertex adjacent to at least two leaves, and an *end support vertex* is a support vertex all of whose neighbors with the exception of at most one are leaves, and an *end strong support vertex* is a strong support vertex all of whose neighbors with the exception of at most one are leaves. For every vertex $v \in V(G)$, the set of all leaves adjacent to v is denoted by L_v . The double star $DS_{q,p}$, where $q \ge p \ge 1$, is the graph consisting of the union of two stars $K_{1,q}$ and $K_{1,p}$ together with an edge joining their centers. A subdivision of an edge uv is obtained by replacing the edge uv with a path uwv, where w is a new vertex. The subdivision graph S(G) is the graph obtained from G by subdividing each edge of G. The subdivision star $S(K_{1,t})$ for $t \geq 2$, is called a *healthy spider*. We denote by P_n the path on n vertices. The distance $d_G(u, v)$ between two vertices u and v in a connected graph G is the length of a shortest u - v path in G. The *diameter* of a graph G, denoted by diam(G), is the greatest distance between two vertices of G. For a vertex v in a rooted tree T, let C(v) denote the set of children of v; moreover, D(v) denotes the set of descendants of v, and $D[v] = D(v) \cup \{v\}$. Also, the depth of v, depth(v), is the largest distance from v to a vertex in D(v). The maximal subtree at v is the subtree of T induced by D[v], and is denoted by T_v .

A subset S of vertices of G is a total dominating set if N(S) = V. The total domination number $\gamma_t(G)$ is the minimum cardinality of a total dominating set of G. A total dominating set with cardinality $\gamma_t(G)$ is called a $\gamma_t(G)$ -set. The total domination number was introduced by Cockayne, Dawes and Hedetniemi [9] and is now well-studied in graph theory. The literature on this subject has been surveyed and detailed in the book by Henning and Yeo [15].

A function $f: V(G) \to \{0, 1, 2\}$ is a Roman dominating function (RDF) on G if every vertex $u \in V$ for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2. The weight of an RDF is the value $\omega(f) = f(V(G)) = \sum_{u \in V(G)} f(u)$. The Roman domination number $\gamma_R(G)$ is the minimum weight of an RDF on G. Roman domination was introduced by Cockayne et al. in [10] and was inspired by the work of ReVelle and Rosing [17] and Stewart [18]. It is worth mentioning that since 2004, a hundred papers have been published on this topic, where several new variations were introduced: weak Roman domination [14]; Roman $\{2\}$ -domination [8]; maximal Roman domination [1]; mixed Roman domination [2]; double Roman domination [6]; and recently, total Roman domination was introduced by Liu and Chang [16].

For a Roman dominating function f, let $V_i = \{v \in V \mid f(v) = i\}$ for i = 0, 1, 2. Since these three sets determine f, we can equivalently write $f = (V_0, V_1, V_2)$ (or $f = (V_0^f, V_1^f, V_2^f)$ to refer to f). We note that $\omega(f) = |V_1| + 2|V_2|$.

A total Roman dominating function of a graph G with no isolated vertex, abbreviated TRDF, is a Roman dominating function f on G with the additional property that the subgraph of G induced by the set of all vertices of positive weight under fhas no isolated vertex. The total Roman domination number $\gamma_{tR}(G)$ is the minimum weight of a TRDF on G. A TRDF with minimum weight $\gamma_{tR}(G)$ is called a $\gamma_{tR}(G)$ function. The concept of total Roman domination in graphs was introduced by Liu and Chang [16] and has been studied in [3, 4, 5]. The authors in [3] observed that for any graph G with no isolated vertex,

$$\gamma_{tR}(G) \le 2\gamma_t(G),\tag{1}$$

and they posed the following problem.

Problem: Characterize the graphs G satisfying $\gamma_{tR}(G) = 2\gamma_t(G)$.

A graph G for which $\gamma_{tR}(G) = 2\gamma_t(G)$ is defined in [3] to be a *total Roman graph*. The authors in [3] presented the following trivial necessary and sufficient condition for a graph to be a total Roman graph.

Proposition A. Let G be a graph with no isolated vertices. Then G is a total Roman graph if and only if there exists a $\gamma_{tR}(G)$ -function $f = (V_0^f, V_1^f, V_2^f)$ such that $V_1^f = \emptyset$.

Finding a nontrivial necessary and sufficient condition for a graph to be a total Roman graph, or characterizing the total Roman graphs, remains an open problem. Let T_1 be a tree obtained from a star $K_{1,r}$ $(r \ge 2)$ by adding at least two pendant edges at every vertex of the star, and let T_2 be a tree obtained from a star $K_{1,r}$ $(r \ge 2)$ by adding at least two pendant edges at every vertex of the star except its center. Clearly, T_1 is a total Roman graph and T_2 is not a total Roman graph, while both of T_1, T_2 have a unique γ_{tR} -function. Thus, characterizing the total Roman graphs G, even when G has a unique γ_{tR} -function, is not easy.

In this paper, we provide a constructive characterization of trees T with $\gamma_{tR}(T) = 2\gamma_t(T)$ which settles the above problem for trees.

We make use of the following results in this paper.

Observation 1. If T is a star of order at least two, then $\gamma_{tR}(T) < 2\gamma_t(T)$.

Observation 2. Let v be a strong support vertex in a graph G. Then there exists a $\gamma_{tR}(G)$ -function f such that f(v) = 2.

Proof. Let v be a strong support vertex and v_1, v_2 be leaves adjacent to v. Assume that f is a $\gamma_{tR}(G)$ -function. To totally Roman dominate v_1 we must have $f(v) \ge 1$. If f(v) = 2, then we are done. Let f(v) = 1. Then to Roman dominate v_1, v_2 we must have $f(v_1) = f(v_2) = 1$. Then the function $g: V(G) \to \{0, 1, 2\}$ defined by $g(v) = 2, g(v_1) = 1, g(v_2) = 0$ and g(x) = f(x) otherwise, is a $\gamma_{tR}(G)$ -function with the desired property. **Observation 3.** Let G be a connected graph different from a star, let v be an end strong support vertex in G, and let w be the neighbor of v which is not a leaf. Then there exists a $\gamma_{tR}(G)$ -function f such that f(v) = 2 and f(w) = 1.

Proof. Since v is a strong support vertex, we deduce from Observation 2 that there exists a $\gamma_{tR}(G)$ -function $f = (V_0, V_1, V_2)$ such that f(v) = 2. Since the induced subgraph $G[V_1 \cup V_2]$ has no isolated vertices, we have $(V_1 \cup V_2) \cap N(v) \neq \emptyset$. If $w \in (V_1 \cup V_2) \cap N(v)$, then we are done. Assume that $w \notin (V_1 \cup V_2) \cap N(v)$. Then $(V_1 \cup V_2) \cap L_v \neq \emptyset$. Let $z \in (V_1 \cup V_2) \cap L_v$. Clearly $z \in V_1$ and the function $g: V(G) \to \{0, 1, 2\}$ defined by g(z) = 0, g(w) = 1 and g(x) = f(x) otherwise, is a $\gamma_{tR}(G)$ -function with the desired property.

Observation 4. If u_1, u_2 are two adjacent support vertices in a graph G, then there exists a $\gamma_{tR}(G)$ -function f such that $f(u_1) = f(u_2) = 2$.

Proof. Let u_1, u_2 be two adjacent support vertices and let v_i be a leaf adjacent to u_i for i = 1, 2. Assume that f is a $\gamma_{tR}(G)$ -function. As above, we have $f(u_i) + f(v_i) \ge 2$ for i = 1, 2. Then the function $g: V(G) \to \{0, 1, 2\}$ defined by $g(u_1) = g(u_2) = 2, g(v_1) = g(v_2) = 0$ and g(x) = f(x) otherwise, is a $\gamma_{tR}(G)$ -function with the desired property.

Observation 5. Let H be a subgraph of a graph G such that G and H have no isolated vertices. If $\gamma_{tR}(H) = 2\gamma_t(H), \gamma_t(G) \leq \gamma_t(H) + s$ and $\gamma_{tR}(G) \geq \gamma_{tR}(H) + 2s$ for some non-negative integer s, then $\gamma_{tR}(G) = 2\gamma_t(G)$.

Proof. Since $\gamma_{tR}(G) \leq 2\gamma_t(G)$, we deduce from the assumptions that

$$\gamma_{tR}(G) \ge \gamma_{tR}(H) + 2s = 2\gamma_t(H) + 2s \ge 2\gamma_t(G)$$

and this leads to the result.

Observation 6. Let H be a subgraph of a graph G such that G and H have no isolated vertices. If $\gamma_{tR}(G) = 2\gamma_t(G), \ \gamma_t(G) \ge \gamma_t(H) + s$ and $\gamma_{tR}(G) \le \gamma_{tR}(H) + 2s$ for some non-negative integer s, then $\gamma_{tR}(H) = 2\gamma_t(H)$.

Proof. By the assumptions and the fact $\gamma_{tR}(H) \leq 2\gamma_t(H)$, we have

$$\gamma_{tR}(G) \le \gamma_{tR}(H) + 2s \le 2\gamma_t(H) + 2s \le 2\gamma_t(G) = \gamma_{tR}(G)$$

and this leads to the result.

2 A characterization of trees T with $\gamma_{tR}(T) = 2\gamma_t(T)$

In this section, we give a constructive characterization of all trees T satisfying $\gamma_{tR}(T) = 2\gamma_t(T)$. We start with three definitions.

Definition 1. Let v be a vertex of a tree T. A function $f: V(T) \to \{0, 1, 2\}$ is said to be an almost total Roman dominating function (almost TRDF) with respect to v, if the following two conditions are fulfilled: (i) every vertex $x \in V(T) - \{v\}$ for which f(x) = 0 is adjacent to at least one vertex $y \in V(T)$ for which f(y) = 2 and (ii) every vertex $x \in V(T) - \{v\}$ for which $f(x) \ge 1$ is adjacent to at least one vertex $y \in V(T)$ for which $f(y) \ge 1$. Let

 $\gamma_{tR}(T, v) = \min\{\omega(f) \mid f \text{ is an almost TRDF with respect to } v\}.$

Definition 2. Let v be a vertex of a tree T. A nearly total Roman dominating function (nearly TRDF) with respect to v, is an almost total Roman dominating function fwith an additional property that $f(v) \ge 1$ or $f(v) + f(u) \ge 2$ for some $u \in N(v)$. Let

 $\gamma_{tR}(T; v) = \min\{\omega(f) \mid f \text{ is a nearly TRDF with respect to } v\}.$

Since any total Roman dominating function on T is an almost TRDF and a nearly TRDF with respect to each vertex of T, $\gamma_{tR}(T, v)$ and $\gamma_{tR}(T; v)$ are well defined and $\gamma_{tR}(T, v) \leq \gamma_{tR}(T)$ and $\gamma_{tR}(T; v) \leq \gamma_{tR}(T)$ for each $v \in V(T)$. Now let

$$W_T^1 = \{ v \in V(T) | \gamma_{tR}(T, v) = \gamma_{tR}(T) \}$$

and

$$W_T^2 = \{ v \in V(T) | \gamma_{tR}(T; v) = \gamma_{tR}(T) \}.$$

Definition 3. For a tree T and each vertex $v \in V(T)$, we say v has property P in T if for any $\gamma_{tR}(T)$ -function f we have $f(v) \neq 2$. Define

$$W_T^3 = \{v | v \text{ has property } P \text{ in } T\}.$$

In order to presenting our constructive characterization, we define a family of trees as follows. Let \mathcal{T} be the family of trees T that can be obtained from a sequence T_1, T_2, \ldots, T_k of trees for some $k \ge 1$, where T_1 is P_4 and $T = T_k$. If $k \ge 2$, T_{i+1} can be obtained from T_i by one of the following operations.

- **Operation** \mathcal{O}_1 : If $x \in V(T_i)$ is a support vertex and there is a $\gamma_{tR}(T)$ -function f with f(x) = 2, then \mathcal{O}_1 adds a vertex y and an edge xy to obtain T_{i+1} .
- **Operation** \mathcal{O}_2 : If $x \in V(T_i)$ has degree at least two and x is adjacent to an end strong support vertex, then \mathcal{O}_2 adds a path yz and joins x to y to obtain T_{i+1} .
- **Operation** \mathcal{O}_3 : If $x \in V(T_i)$ is a support vertex and x is at distance 2 from some leaves, then \mathcal{O}_3 adds a path yz and joins x to y to obtain T_{i+1} .
- **Operation** \mathcal{O}_4 : If $x \in W_{T_i}^1$ and x is at distance 1 or 2 from a support vertex, then \mathcal{O}_4 adds a path P_4 and joins x to a support vertex of it to obtain T_{i+1} .
- **Operation** \mathcal{O}_5 : If $x \in W_{T_i}^2 \cap W_{T_i}^3$, then \mathcal{O}_5 adds a double star $DS_{q,1}$ (q = 1, 2) and joins x to the leaf adjacent to the support vertex of degree 2 in $DS_{q,1}$ to obtain T_{i+1} .

- **Operation** \mathcal{O}_6 : If $x \in W^2_{T_i} \cap W^3_{T_i}$, then \mathcal{O}_6 adds the graph F_t (see Figure 1) and the edge xz to obtain T_{i+1} .
- **Operation** \mathcal{O}_7 : If $x \in V(T_i)$, then \mathcal{O}_7 adds a double star $DS_{2,1}$ and joins x to a leaf adjacent to the support vertex of degree 3 to obtain T_{i+1} .

Figure 1: The graph F_t used in Operation \mathcal{O}_6

The proof of the first lemma is trivial and is therefore omitted.

Lemma 2.1. If T_i is a tree with $\gamma_{tR}(T_i) = 2\gamma_t(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_1 , then $\gamma_{tR}(T_{i+1}) = 2\gamma_t(T_{i+1})$.

Since $\gamma_{tR}(DS_{q,p}) = 2\gamma_t(DS_{q,p})$ and $DS_{q,p}$ $(q \ge 2)$ is obtained from P_4 only by Operation \mathcal{O}_1 , it follows that this operation is necessary to construct the family \mathcal{T} .

Lemma 2.2. If T_i is a tree with $\gamma_{tR}(T_i) = 2\gamma_t(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_2 , then $\gamma_{tR}(T_{i+1}) = 2\gamma_t(T_{i+1})$.

Proof. Let $w \in V(T_i)$ be an end strong support vertex adjacent to x and let the Operation \mathcal{O}_2 add a path yz and join x to y. Clearly, any total dominating set of T_i containing no leaf can be extended to a total dominating set of T_{i+1} by adding y. So $\gamma_t(T_{i+1}) \leq \gamma_t(T_i) + 1$.

Now let f be a $\gamma_{tR}(T_{i+1})$ -function such that f(x) is as large as possible. Clearly, $f(y) \ge 1$ and $f(y) + f(z) \ge 2$. By Observation 3, we may assume that f(w) = 2and $f(x) \ge 1$. Thus the function f, restricted to T_i , is a total Roman dominating function of T_i of weight $\gamma_{tR}(T_{i+1}) - 2$ and hence

$$\gamma_{tR}(T_{i+1}) = \omega(f) \ge 2 + \omega(f|_{T_i}) \ge 2 + \gamma_{tR}(T_i)$$

It follows from Observation 5 that $\gamma_{tR}(T_{i+1}) = 2\gamma_t(T_{i+1})$.

Lemma 2.3. If T_i is a tree with $\gamma_{tR}(T_i) = 2\gamma_t(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_3 , then $\gamma_{tR}(T_{i+1}) = 2\gamma_t(T_{i+1})$.

Proof. Let \mathcal{O}_3 add a path yz and the edge xy. Since x is a support vertex, adding y to any total dominating set of T_i yields a total dominating set for T_{i+1} and this implies that $\gamma_t(T_{i+1}) \leq \gamma_t(T_i) + 1$.

Now let $f = (V_0, V_1, V_2)$ be a $\gamma_{tR}(T_{i+1})$ -function. Obviously $f(y) + f(z) \ge 2$ and $x, y, w \in V_1 \cup V_2$ where $w \in N_{T_i}(x)$ is a support vertex (note that x is at distance 2)

 \Box

from some leaves and so x is adjacent to a support vertex). Therefore the function f, restricted to T_i , is a total Roman dominating function of T_i and so

$$\gamma_{tR}(T_{i+1}) = \omega(f) \ge 2 + \omega(f|_{T_i}) \ge 2 + \gamma_{tR}(T_i).$$

Now the result follows by Observation 5.

Since $\gamma_{tR}(F_t) = 2\gamma_t(F_t)$ and F_t $(t \ge 2)$ is obtained from P_4 only by using Operation \mathcal{O}_3 , t-1 times, we conclude that the Operation \mathcal{O}_3 is necessary to construct the family \mathcal{T} .

Lemma 2.4. If T_i is a tree with $\gamma_{tR}(T_i) = 2\gamma_t(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_4 , then $\gamma_{tR}(T_{i+1}) = 2\gamma_t(T_{i+1})$.

Proof. Let \mathcal{O}_4 add a path P_4 : $y_1y_2y_3y_4$ and join x to y_3 . Clearly, any total dominating set of T_i can be extended to a total dominating set of T_{i+1} by adding y_2, y_3 , yielding $\gamma_t(T_{i+1}) \leq \gamma_t(T_i) + 2$.

Assume now that $f = (V_0, V_1, V_2)$ is a $\gamma_{tR}(T_{i+1})$ -function. By Observation 4, we may assume that $y_2, y_3 \in V_2$. Then the function f, restricted to T_i , is an almost total Roman dominating function of T_i and since $x \in W_{T_i}^1$ we have $\omega(f|_{T_i}) \geq \gamma_{tR}(T_i)$. Hence

$$\gamma_{tR}(T_{i+1}) = \omega(f) \ge 4 + \omega(f|_{T_i}) \ge 4 + \gamma_{tR}(T_i).$$

It follows from Observation 5 that $\gamma_{tR}(T_{i+1}) = 2\gamma_t(T_{i+1})$.

Let T be a tree obtained from three copies of P_4 by adding a new vertex and joining it to exactly one support vertex of each copy of P_4 . Clearly, $\gamma_{tR}(T) = 2\gamma_t(T)$ and T is obtained from P_4 by applying Operations \mathcal{O}_7 and \mathcal{O}_4 respectively. On the other hand, T cannot be obtained by other operations, and so Operation \mathcal{O}_4 is necessary to construct the family \mathcal{T} .

Lemma 2.5. If T_i is a tree with $\gamma_{tR}(T_i) = 2\gamma_t(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_5 , then $\gamma_{tR}(T_{i+1}) = 2\gamma_t(T_{i+1})$.

Proof. Let \mathcal{O}_5 add a double star $DS_{q,1}$ with central vertices a, b where deg(a) = 2and join x to the leaf c adjacent to a. By adding a, b to any total dominating set of T_i we obtain a total dominating set of T_{i+1} , implying that $\gamma_t(T_{i+1}) \leq \gamma_t(T_i) + 2$.

Now let f be a $\gamma_{tR}(T_{i+1})$ -function such that f(b) is as large as possible. Then clearly f(b) = 2, $f(a) + f(b) \ge 3$ and $f(a) + f(b) + f(c) \ge 4$. If $f(c) \le 1$, then the function f, restricted to T_i is a nearly total Roman dominating function of T_i , and if f(c) = 2, then the function $g : V(T_i) \to \{0, 1, 2\}$ defined by g(x) = 1 and g(u) = f(u) for $u \in V(T_i) - \{x\}$, is a nearly total Roman dominating function of T_i . Since $x \in W_{T_i}^2$, we have $\omega(f|_{T_i}) \ge \gamma_{tR}(T_i)$. Thus

$$\gamma_{tR}(T_{i+1}) = \omega(f) \ge 4 + \omega(f|_{T_i}) \ge 4 + \gamma_{tR}(T_i)$$

and the result follows by Observation 5.

Since $\gamma_{tR}(P_8) = 2\gamma_t(P_8)$ and P_8 is obtained from P_4 only by applying Operation \mathcal{O}_5 , we deduce that the operation \mathcal{O}_5 is necessary to construct the family \mathcal{T} .

Lemma 2.6. If T_i is a tree with $\gamma_{tR}(T_i) = 2\gamma_t(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_6 , then $\gamma_{tR}(T_{i+1}) = 2\gamma_t(T_{i+1})$.

Proof. Clearly, any total dominating set of T_i can be extended to a total dominating set of T_{i+1} by adding $N[y] - \{z\}$ yielding $\gamma_t(T_{i+1}) \leq \gamma_t(T_i) + \deg(y)$.

Let f be a $\gamma_{tR}(T_{i+1})$ -function. To totally Roman dominate z_i , we must have $f(y_i) + f(z_i) \geq 2$ for $i = 1, \ldots, t$. If f(y) = 2 and f(z) = 0, then the function f restricted to T_i is a nearly total Roman dominating function of T_i and since $x \in W_{T_i}^2$ we obtain $\gamma_{tR}(T_{i+1}) = \omega(f) \geq 2 \deg(y) + \omega(f|_{T_i}) \geq 2 \deg(y) + \gamma_{tR}(T_i)$. If f(y) = 2 and $f(z) \geq 1$, then the function $g: V(T_i) \to \{0, 1, 2\}$ defined by $g(x) = \min\{f(x) + 1, 2\}$ and g(u) = f(u) for $u \in V(T_i) - \{x\}$ is a nearly total Roman dominating function of T_i and as above we have $\gamma_{tR}(T_{i+1}) \geq 2 \deg(y) + \gamma_{tR}(T_i)$. Let f(y) = 1. If $f(z) \geq 1$, then as above we have $\gamma_{tR}(T_{i+1}) \geq 2 \deg(y) + \gamma_{tR}(T_i)$. If f(z) = 0, then $f|_{T_i}$ is a TRDF of T_i with f(x) = 2 and we conclude from $x \in W_{T_i}^3$ that $\omega(f|_{T_i}) > \gamma_{tR}(T_i)$. Hence

$$\gamma_{tR}(T_{i+1}) = \omega(f) \ge 2 \deg(y) - 1 + \omega(f|_{T_i}) \ge 2 \deg(y) + \gamma_{tR}(T_i).$$

Assume finally that f(y) = 0. To totally Roman dominate y, y must have a neighbor with label 2. If f(z) = 2, then the function f restricted to T_i is a nearly total Roman dominating function of T_i and since $x \in W_{T_i}^2$ we have $\gamma_{tR}(T_{i+1}) = \omega(f) \ge 2 \deg(y) + \omega(f|_{T_i}) \ge 2 \deg(y) + \gamma_{tR}(T_i)$. If $f(z) \le 1$, then $f(y_i) = 2$ for some $1 \le i \le t$. If f(z) = 1, then as above we obtain $\gamma_{tR}(T_{i+1}) \ge 2 \deg(y) + \gamma_{tR}(T_i)$. If f(z) = 0, then to dominate z we must have f(x) = 2 and hence $f|_{T_i}$ is a TRDF of T_i with f(x) = 2. We deduce from $x \in W_{T_i}^3$ that $\omega(f|_{T_i}) > \gamma_{tR}(T_i)$ and so $\gamma_{tR}(T_{i+1}) = \omega(f) \ge 2 \deg(y) - 1 + \omega(f|_{T_i}) \ge 2 \deg(y) + \gamma_{tR}(T_i)$. It follows from Observation 5 that $\gamma_{tR}(T_{i+1}) = 2\gamma_t(T_{i+1})$.

Let T be the tree obtained from two copies of F_2 by joining the leaves adjacent to the centers of F_2 . Obviously, $\gamma_{tR}(T) = 2\gamma_t(T)$ and T is obtained from P_4 by applying Operations \mathcal{O}_3 and \mathcal{O}_6 respectively. On the other hand, T cannot be obtained by other operations and so Operation \mathcal{O}_6 is necessary to construct the family \mathcal{T} .

Lemma 2.7. If T_i is a tree with $\gamma_{tR}(T_i) = 2\gamma_t(T_i)$ and T_{i+1} is a tree obtained from T_i by Operation \mathcal{O}_7 , then $\gamma_{tR}(T_{i+1}) = 2\gamma_t(T_{i+1})$.

Proof. Let \mathcal{O}_7 add a double star $DS_{2,1}$ with central vertices a, b where deg(a) = 3 and let \mathcal{O}_7 join x to a leaf z adjacent to a. By adding a, b to any total dominating set of T_i we obtain a total dominating set of T_{i+1} and so $\gamma_t(T_{i+1}) \leq \gamma_t(T_i) + 2$.

Suppose now that f is a $\gamma_{tR}(T_{i+1})$ -function such that f(z) is as small as possible. We may assume, without loss of generality, that f(a) = f(b) = 2. We claim that f(z) = 0. Assume, to the contrary, that $f(z) \ge 1$. If f(z) = 2, then it is easy to see that f(x) = 0. If $f(w) \ge 1$ for a vertex $w \in N_{T_i}(x)$, then define $g: V(T_{i+1}) \rightarrow C$ $\{0, 1, 2\}$ by g(z) = 0, g(x) = 1 and g(u) = f(u) otherwise. Then g is also a total Roman dominating set of T_{i+1} of weight $\omega(f) - 1$, a contradiction. If f(w) = 0 for all $w \in N_{T_i}(x)$, then define $g: V(T_{i+1}) \to \{0, 1, 2\}$ by g(z) = 0, g(x) = g(w) = 1for some $w \in N_{T_i}(x)$ and g(u) = f(u) otherwise. Then g is a $\gamma_{tR}(T_{i+1})$ -function contradicting the choice of f.

Let now f(z) = 1. If f(x) = 2, then it is easy to see that f(w) = 0 for all $w \in N_{T_i}(x)$. Now define $g: V(T_{i+1}) \to \{0, 1, 2\}$ by g(z) = 0, g(w) = 1 for some $w \in N_{T_i}(x)$ and g(u) = f(u) otherwise. If f(x) = 1, then it is easy to see that f(w) = 0 for all $w \in N_{T_i}(x)$. Now define $g: V(T_{i+1}) \to \{0, 1, 2\}$ by g(z) = 0, g(w) = 1 for some $w \in N_{T_i}(x)$ and g(u) = f(u) otherwise. If f(x) = 0, then there exists a vertex $w \in N_{T_i}(x)$ such that f(w) = 2. Now define $g: V(T_{i+1}) \to \{0, 1, 2\}$ by g(z) = 0, g(x) = 1 and g(u) = f(u) otherwise. Then g is a $\gamma_{tR}(T_{i+1})$ -function contradicting the choice of f. Thus f(z) = 0. Then the function f, restricted to T_i is a total Roman dominating function of T_i and hence $\gamma_{tR}(T_{i+1}) = \omega(f) \ge 4 + \omega(f|_{T_i}) \ge 4 + \gamma_{tR}(T_i)$, and the result follows from Observation 5.

Let T be a tree obtained from P_{10} by adding one pendant edges at every support vertex and leaf. Clearly, $\gamma_{tR}(T) = 2\gamma_t(T)$ and T is obtained from P_4 by applying Operations $\mathcal{O}_1, \mathcal{O}_5$ and \mathcal{O}_7 respectively. On the other hand, T cannot be obtained by other operations and so Operation \mathcal{O}_7 is necessary to construct the family \mathcal{T} .

Theorem 2.1. If $T \in \mathcal{T}$, then $\gamma_{tR}(T) = 2\gamma_t(T)$.

Proof. If T is P_4 , then obviously $\gamma_{tR}(T) = 2\gamma_t(T)$. Suppose now that $T \in \mathcal{T}$. Then there exists a sequence of trees T_1, T_2, \ldots, T_k $(k \ge 1)$ such that T_1 is P_4 , and if $k \ge 2$, then T_{i+1} can be obtained from T_i by one of the Operations $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_7$ for $i = 1, 2, \ldots, k - 1$. We apply induction on the number of operations used to construct T. If k = 1, the result is trivial. Assume the result holds for each tree $T \in \mathcal{T}$ which can be obtained from a sequence of operations of length k - 1 and let $T' = T_{k-1}$. By the induction hypothesis, we have $\gamma_{tR}(T') = 2\gamma_t(T')$. Since $T = T_k$ is obtained by one of the Operations $\mathcal{O}_1, \mathcal{O}_2, \ldots, \mathcal{O}_7$ from T', we conclude from the above lemmas that $\gamma_{tR}(T) = 2\gamma_t(T)$.

Now we are ready to prove our main result.

Theorem 2.2. Let T be a tree of order $n \ge 4$. Then $\gamma_{tR}(T) = 2\gamma_t(T)$ if and only if $T \in \mathcal{T}$.

Proof. According to Theorem 2.1, we need only to prove necessity. Let T be a tree of order $n \ge 4$ with $\gamma_{tR}(T) = 2\gamma_t(T)$. The proof is by induction on n. If n = 4, then the only tree T of order 4 with $\gamma_{tR}(T) = 2\gamma_t(T)$ is $P_4 \in \mathcal{T}$. Let $n \ge 5$ and let the statement hold for all trees of order less than n. Assume that T is a tree of order n with $\gamma_{tR}(T) = 2\gamma_t(T)$. By Observation 1, we have diam $(T) \ge 3$. If diam(T) = 3, then T is a double star and T can be obtained from P_4 by applying Operation \mathcal{O}_1 and so $T \in \mathcal{T}$. Hence let diam $(T) \ge 4$. Let $v_1v_2...v_k$ $(k \ge 5)$ be a diametral path in T such that $\deg_T(v_2)$ is as large as possible and root T at v_k . If $\deg_T(v_2) \ge 4$, then clearly $\gamma_{tR}(T-v_1) = 2\gamma_t(T-v_1)$. It follows from the induction hypothesis that $T-v_1 \in \mathcal{T}$ and hence T can be obtained from $T-v_1$ by Operation \mathcal{O}_1 , implying that $T \in \mathcal{T}$. Let $\deg_T(v_2) \le 3$. We consider two cases.

Case 1. $\deg_T(v_2) = 3.$ Assume that $L_{v_2} = \{v_1, w\}.$

Subcase 1.1. $\deg_T(v_3) \ge 3$.

First let v_3 be adjacent to a support vertex $z \notin \{v_2, v_4\}$. Suppose $T' = T - T_z$. For any $\gamma_t(T)$ -set S containing no leaves we have $z, v_2, v_3 \in S$ and so $S \setminus \{z\}$ is a total dominating set of T' yielding $\gamma_t(T) \geq \gamma_t(T') + 1$. Now let f be a $\gamma_{tR}(T')$ function. Since v_2 is an end strong support vertex and since f is a TRDF of T', we may assume that $f(v_2) = 2$ and $f(v_3) \geq 1$. Clearly f can be extended to a TRDF of T by assigning the weight 2 to z and the weight 0 to the leaves adjacent to z and this implies that $\gamma_{tR}(T) \leq \gamma_{tR}(T') + 2$. It follows from Observation 6 that $\gamma_{tR}(T') = 2\gamma_t(T')$ and by the induction hypothesis we have $T' \in \mathcal{T}$. Now T can be obtained from T' by Operation \mathcal{O}_2 if $\deg_T(z) = 2$ and by Operations \mathcal{O}_2 and \mathcal{O}_1 when $\deg_T(z) \geq 3$. Hence $T \in \mathcal{T}$.

Now assume that each neighbor of v_3 except v_2, v_4 , is a leaf and let $T' = T - v_1$. It is easy to see that $\gamma_t(T) = \gamma_t(T - v_1)$ and $\gamma_{tR}(T) = \gamma_{tR}(T - v_1)$. Hence $\gamma_{tR}(T - v_1) = 2\gamma_t(T - v_1)$ and by the induction hypothesis we have $T' \in \mathcal{T}$. Since v_2, v_3 are support vertices in T', there exists a $\gamma_{tR}(T')$ -function f such that $f(v_2) = f(v_3) = 2$. Now Tcan be obtained from T' by Operation \mathcal{O}_1 .

Subcase 1.2. $\deg_T(v_3) = 2$.

If v_4 is a support vertex, then let $T' = T - \{v_1, w\}$. It is easy to see that $\gamma_t(T) =$ $\gamma_t(T') + 1$ and $\gamma_{tR}(T) = \gamma_{tR}(T') + 1$. Then $2\gamma_t(T) = \gamma_{tR}(T) \leq \gamma_{tR}(T') + 1 \leq 1$ $2\gamma_t(T') + 1 = 2\gamma_t(T) - 1$ which is a contradiction. If v_4 has a children $z \neq v_3$, with depth 1 or 2, then let $T' = T - T_{v_3}$. It is not hard to see that $\gamma_t(T) = \gamma_t(T') + 2$ and $\gamma_{tR}(T) \leq \gamma_{tR}(T') + 3$. But then $2\gamma_t(T) = \gamma_{tR}(T) \leq \gamma_{tR}(T') + 3 \leq 2\gamma_t(T') + 3$ $3 = 2\gamma_t(T) - 1$, a contradiction again. Henceforth, we assume deg $(v_4) = 2$. Since $\gamma_{tR}(T) = 2\gamma_t(T)$, we have diam $(T) \geq 5$. Let $T' = T - T_{v_4}$. Clearly, any $\gamma_{tR}(T')$ function can be extended to a TRDF of T by assigning the weight 2 to v_2, v_3 and the weight 0 to v_1, v_4, w and so $\gamma_{tR}(T) \leq \gamma_{tR}(T') + 4$. On the other hand, let S be a $\gamma_t(T)$ -set containing no leaves. Then $v_2, v_3 \in S$ and the set $S' = S - \{v_2, v_3\}$ if $v_4 \notin S$, and $S' = (S - \{v_2, v_3, v_4\}) \cup \{v_6\}$ if $v_4 \in S$, is a total dominating set of T' yielding $\gamma_t(T) \geq \gamma_t(T') + 2$. By Observation 6 we have $\gamma_{tR}(T') = 2\gamma_t(T')$ and this implies that $\gamma_{tR}(T) = \gamma_{tR}(T') + 4$ and $\gamma_t(T) = \gamma_t(T') + 2$ by the assumption. By the induction hypothesis we have $T' \in \mathcal{T}$. Now we show that $v_5 \in W^2_{T'} \cap W^3_{T'}$. If $v_5 \notin W_{T'}^2$, then let g be a nearly TRDF of T' of weight less than $\gamma_{tR}(T')$ and define $h: V(T) \to \{0, 1, 2\}$ by $h(v_2) = 2, h(v_3) = h(v_4) = 1, h(x) = g(x)$ for $x \in V(T')$ and h(x) = 0 otherwise. If $v_5 \notin W_{T'}^3$, then let g be a TRDF of T' with $g(v_5) = 2$ and define $h: V(T) \to \{0, 1, 2\}$ by $h(v_2) = 2, h(v_3) = 1, h(x) = g(x)$ for $x \in V(T')$ and h(x) = 0 otherwise. Clearly h is a TRDF of T with weight $\gamma_{tR}(T) - 1$, a contradiction.

Thus $v_5 \in W^2_{T'} \cap W^3_{T'}$ and so T can be obtained from T' by Operation \mathcal{O}_5 , implying $T \in \mathcal{T}$.

Case 2. $\deg(v_2) = 2$.

By the choice of the diametral path, we may assume that all support vertices adjacent to v_3 and v_{k-1} have degree 2. We consider the following subcases.

Subcase 2.1. v_3 is a support vertex and v_3 has a support neighbor w other than v_2 .

Let $T' = T - \{v_1, v_2\}$. If S is a $\gamma_t(T)$ -set containing no leaves, then $v_2, v_3, w \in S$ and so $S \setminus \{v_2\}$ is a total dominating set of T', implying that $\gamma_t(T) \geq \gamma_t(T') + 1$. On the other hand, since any $\gamma_{tR}(T')$ -function can be extended to a TRDF of T by assigning the weight 2 to v_2 and the weight 0 to v_1 , we have $\gamma_{tR}(T) \leq \gamma_{tR}(T') + 2$. By Observation 6 and the induction hypothesis, we obtain $T' \in \mathcal{T}$. Now T can be obtained from T' by Operation \mathcal{O}_3 , and hence $T \in \mathcal{T}$.

Subcase 2.2. deg_T(v_3) ≥ 3 and all neighbors of v_3 except v_2, v_4 are leaves.

Let w be a leaf adjacent to v_3 . If $\deg(v_3) \ge 4$, then let T' = T - w. It is easy to see that $\gamma_t(T) = \gamma_t(T')$ and $\gamma_{tR}(T) = \gamma_{tR}(T')$. Hence $\gamma_{tR}(T') = 2\gamma_t(T')$ and by the induction hypothesis we have $T' \in \mathcal{T}$. Then T can be obtained from T' by Operation \mathcal{O}_1 . Assume that $\deg_T(v_3) = 3$. We distinguish the following cases.

(a) v_4 is a support vertex.

Let $T' = T - \{v_1, v_2\}$. As above we can see that $\gamma_t(T) = \gamma_t(T') + 1$ and $\gamma_{tR}(T) = \gamma_{tR}(T') + 2$, yielding $\gamma_{tR}(T') = 2\gamma_t(T')$. By the induction hypothesis we have $T' \in \mathcal{T}$ and now T can be obtained by Operation \mathcal{O}_3 .

(b) $\deg(v_4) = 2$.

By (a) we may assume that v_4 is not a support vertex. Let $T' = T - T_{v_4}$. As in the proof of subcase 1.2, we can see that $T' \in \mathcal{T}$. Then T can be obtained from T' by Operation \mathcal{O}_7 .

(c) $\deg(v_4) \ge 3$.

By (a) we may assume that v_4 is not a support vertex. Thus v_4 has a children z different from v_2 with depth 1 or 2. Let $T' = T - T_{v_3}$. If S is a $\gamma_t(T)$ -set containing no leaves, then clearly $v_2, v_3, z \in S$ and so $S - \{v_2, v_3\}$ is a total dominating set of T', yielding $\gamma_t(T) \geq \gamma_t(T') + 2$. On the other hand, any $\gamma_{tR}(T')$ -function can be extended to a TRDF of T by assigning 2 to v_2, v_3 and the weight 0 to w, v_1 , and hence $\gamma_{tR}(T) \leq \gamma_{tR}(T') + 4$. We deduce from Observation 6 that $\gamma_{tR}(T') = 2\gamma_t(T')$ and by the induction hypothesis we have $T' \in \mathcal{T}$. If $v_4 \notin W_{T'}^1$, then let f be an almost TRDF of T by assigning the weight 2 to v_2, v_3 and the weight 0 to w, v_1 , and hence $\gamma_{tR}(T) \leq \gamma_{TR}(T) = T$ by assigning the weight 2 to v_2, v_3 and the weight 0 to w, v_1 ; this implies that $\gamma_{tR}(T) \leq \gamma_{tR}(T') + 3 = 2\gamma_t(T') + 3 \leq 2\gamma_t(T) - 1$, a contradiction. Thus $v_4 \in W_{T'}^1$, and now T can be obtained from T' by Operation \mathcal{O}_4 , yielding $T \in \mathcal{T}$.

Subcase 2.3. $\deg_T(v_3) \ge 3$ and all children of v_3 are support vertices of degree 2. We distinguish three cases.

(i) v_4 is a support vertex.

Suppose $T' = T - v_1$. By adding v_2 to any $\gamma_t(T')$ -set we obtain a total dominating set of T and so $\gamma_t(T) \leq \gamma_t(T') + 1$. On the other hand, if S is a $\gamma_t(T)$ -set containing no leaves then $N[v_3] \subseteq S$ and clearly $S - \{v_2\}$ is a total dominating set of T', implying that $\gamma_t(T) \geq \gamma_t(T') + 1$. Thus $\gamma_t(T) = \gamma_t(T') + 1$. Now let f be a $\gamma_{tR}(T')$ -function. Since v_3 and its neighbors other than v_2 in T' are support vertices, we may assume that f(x) = 2 for each $x \in N_{T'}[v_3] - \{v_2\}$. Then the function $g: V(T) \to \{0, 1, 2\}$ defined by $g(v_3) = 1, g(v_2) = 2, g(v_1) = 0$, and g(u) = f(u) otherwise, is a TRDF of T with weight $\omega(f) + 1$. Hence $\gamma_{tR}(T) \leq \gamma_{tR}(T') + 1 \leq 2\gamma_t(T') + 1 = 2\gamma_t(T) - 1$, a contradiction.

- (ii) v_4 has a child $z \neq v_3$ with depth 1 or 2.
 - Assume that $T' = T T_{v_3}$. Any $\gamma_t(T')$ -set S can be extended to a total dominating set of T by adding $C(v_3) \cup \{v_3\}$ and so $\gamma_t(T) \leq \gamma_t(T') + |C(v_3)| + 1$. On the other hand, if S is a $\gamma_t(T)$ -set containing no leaves, then $C(v_3) \cup \{v_3, z\} \subseteq S$, and clearly $S - (C(v_3) \cup \{v_3\})$ is a total dominating set of T', implying that $\gamma_t(T) \geq \gamma_t(T') + |C(v_3)| + 1$. Thus $\gamma_t(T) = \gamma_t(T') + |C(v_3)| + 1$. Clearly, any $\gamma_{tR}(T')$ -function can be extended to a TRDF of T by assigning the weight 1 to v_3 , the weight 2 to the children of v_3 and the weight 0 to the leaves of T_{v_3} , and this implies that $\gamma_{tR}(T) \leq \gamma_{tR}(T') + 2|C(v_3)| + 1 \leq 2\gamma_t(T') + 2|C(v_3)| + 1 = 2\gamma_t(T) - 1$, a contradiction again.
- (iii) $\deg(v_4) = 2$.

If diam(T) = 4, then T is a healthy spider, and we have $\gamma_{tR}(T) = 2 \deg(v_3) + 1 \leq 1$ $2(\deg(v_3)+1)-1=2\gamma_t(T)-1$, which is a contradiction. Let diam $(T) \ge 5$ and let $T' = T - T_{v_4}$. Assume that S is a $\gamma_t(T)$ -set. Then clearly $N[v_3] - \{v_4\} \subseteq S$, and the set $S' = S - N[v_3]$ if $v_4 \notin S$ and $S' = (S - N[v_3]) \cup \{v_6\}$ if $v_4 \in S$, is a total dominating set of T', yielding $\gamma_t(T) \geq \gamma_t(T') + \deg(v_3)$. On the other hand, any $\gamma_{tR}(T')$ -function can be extended to a TRDF of T by assigning the weight 2 to each vertex in $N[v_3] - \{v_4\}$ and the weight 0 to the remaining vertices, and this implies that $\gamma_{tR}(T) \leq \gamma_{tR}(T') + 2 \deg(v_3)$. It follows from Observation 6 and the induction hypothesis that $T' \in \mathcal{T}$. If $v_5 \notin W_{T'}^2$, then let f be a nearly TRDF of T' of weight at most $\gamma_{tR}(T') - 1$ and define $g: V(T) \to \{0, 1, 2\}$ by g(u) = f(u) for $u \in V(T')$, g(u) = 1 for $u \in V(T_{v_4})$. If $v_5 \notin W^3_{T'}$, then let f be a $\gamma_{tR}(T')$ -function with $f(v_5) = 2$ and define $g: V(T) \to \{0, 1, 2\}$ by g(u) = f(u) for $u \in V(T')$, $g(v_4) = 0$ and g(u) = 1 for $u \in N[v_3] - \{v_4\}$ and g(u) = 0 otherwise. In each case, g is a TRDF of T of weight at most $\gamma_{tR}(T') + 2 \deg(v_3) - 1$ that leads to a contradiction. Thus $v_5 \in W^2_{T'} \cap W^3_{T'}$ and so T can be obtained from T' by Operation \mathcal{O}_6 , yielding $T \in \mathcal{T}$.

Subcase 2.4. $\deg(v_3) = 2$.

We claim that $\deg(v_4) = 2$. Assume, to the contrary, that $\deg(v_4) \ge 3$. First assume v_4 is at distance 1 or 2 from a support vertex other than v_2 and let $T' = T - T_{v_3}$. Assume that S is a $\gamma_t(T)$ -set containing no leaves. Then $v_2, v_3 \in S$ and clearly $S - \{v_2, v_3\}$ is a total dominating set of T', implying that $\gamma_t(T') \le \gamma_t(T) - 2$. On the other hand, any $\gamma_{tR}(T')$ -function can be extended to a TRDF of T by assigning the weight 1 to v_3, v_2, v_1 and this implies that $\gamma_{tR}(T) \leq \gamma_{tR}(T') + 3$. But then

$$2\gamma_t(T) = \gamma_{tR}(T) \le \gamma_{tR}(T') + 3 \le 2\gamma_t(T') + 3 \le 2\gamma_t(T) - 1$$

which is a contradiction. Now let v_4 be a support vertex and let $T' = T - v_1$. Suppose that S is a $\gamma_t(T)$ -set containing no leaves. Then $v_2, v_3, v_4 \in S$, and clearly $S - \{v_2\}$ is a total dominating set of T' yielding $\gamma_t(T') \leq \gamma_t(T) - 1$. On the other hand, let f be a $\gamma_{tR}(T')$ -function. Since v_3, v_4 in T' are support vertices, we may assume that $f(v_3) = f(v_4) = 2$. Define $g: V(T) \to \{0, 1, 2\}$ by g(u) = f(u) for $u \in V(T') - \{v_2, v_3\}, g(v_3) = 1, g(v_2) = 2$ and $g(v_1) = 0$. Clearly g is a TRDF of T of weight $\gamma_{tR}(T') + 1$. It follows that

$$2\gamma_t(T) = \gamma_{tR}(T) \le \gamma_{tR}(T') + 1 \le 2\gamma_t(T') + 1 \le 2\gamma_t(T) - 1,$$

a contradiction again. This proves our claim. That is, $\deg(v_4) = 2$. Since $\gamma_{tR}(T) = 2\gamma_t(T)$, we have $\operatorname{diam}(T) \geq 6$. Let $T' = T - T_{v_4}$. Any total dominating set of T' can be extended to a total dominating set of T by adding v_2, v_3 , and so $\gamma_t(T) \leq \gamma_t(T') + 2$. Let S be a total dominating set of T containing no leaves. Then $v_2, v_3 \in S$ and the set $S' = S \setminus \{v_2, v_3\}$ if $v_4 \notin S$ and $S' = (S \setminus \{v_2, v_3, v_4\}) \cup \{v_6\}$ if $v_4 \in S$ is a total dominating set of T'. Hence $\gamma_t(T) - 2 \geq \gamma_t(T')$ and we have $\gamma_t(T') = \gamma_t(T) - 2$. On the other hand, any $\gamma_{tR}(T')$ -function can be extended to a TRDF of T by assigning the weight 2 to v_2, v_3 and the weight 0 to v_1, v_4 , yielding $\gamma_{tR}(T) \leq \gamma_{tR}(T') + 4$. Hence, $2\gamma_t(T) = \gamma_{tR}(T) \leq \gamma_{tR}(T') + 4 \leq 2\gamma_t(T') + 4 = 2\gamma_t(T)$, and this leads to

$$\gamma_{tR}(T) = \gamma_{tR}(T') + 4 \tag{2}$$

and $\gamma_{tR}(T') = 2\gamma_t(T')$. Therefore, by the induction hypothesis, we have $T' \in \mathcal{T}$.

If $v_5 \notin W_{T'}^2$, then let f be a nearly TRDF with respect to v_5 with $w(f) \leq \gamma_{tR}(T') - 1$. If $f(v_5) = 0$, then f is a TRDF of T', which is impossible. Hence $f(v_5) \geq 1$. Then f can be extended to a TRDF of T by assigning the weight 1 to v_4, v_3, v_2, v_1 and hence $\gamma_{tR}(T) \leq \gamma_{tR}(T') + 3$, which is a contradiction with (2). If $v_5 \notin W_{T'}^3$, then let f be a $\gamma_{tR}(T')$ -function with $f(v_5) = 2$, and define $g: V(T) \to \{0, 1, 2\}$ by g(u) = f(u) for $u \in V(T'), g(v_4) = 0, g(v_3) = g(v_2) = g(v_1) = 1$. Clearly g is a TRDF of T of weight $\gamma_{tR}(T') + 3$, contradicting (2). Thus $v_5 \in W_{T'}^2 \cap W_{T'}^3$ and so T can be obtained from T' by Operation \mathcal{O}_5 . This completes the proof.

It is shown in [10] that for every graph G, the Roman domination number of G is bounded above by twice its domination number. Graphs which have Roman domination number equal to twice their domination number are called Roman graphs. A characterization of Roman trees is given in [13]. If T is a tree obtained from a star $K_{1,r}$ $(r \ge 2)$ by adding at least two pendant edges at every vertex of $K_{1,r}$, then clearly T is both Roman and total Roman. On the other hand, P_4 is a total Roman tree which is not a Roman tree and P_5 is a Roman tree which is not a total Roman tree. We conclude this paper with an open problem.

Problem. Characterize the trees T which are both Roman and total Roman.

References

- H. Abdollahzadeh Ahangar, A. Bahremandpour, S.M. Sheikholeslami, N.D. Soner, Z. Tahmasbzadehbaee and L. Volkmann, Maximal Roman domination numbers in graphs, *Util. Math.* **103** (2017), 245–258.
- [2] H. Abdollahzadeh Ahangar, T.W. Haynes and J.C. Valenzuela-Tripodoro, Mixed Roman domination in graphs, Bull. Malays. Math. Sci. Soc. DOI 10.1007/s40840-015-0141-1.
- [3] H. Abdollahzadeh Ahangar, M.A. Henning, V. Samodivkin and I.G. Yero, Total Roman domination in graphs, Appl. Anal. Discrete Math. 10 (2016), 501–517.
- [4] J. Amjadi, S. Nazari-Moghaddam and S.M. Sheikholeslami, Global total Roman domination in graphs, *Discrete Math. Algorithms Appl.* 9 (2017), ID: 1750050 (13 pp.).
- [5] J. Amjadi, S.M. Sheikholeslami and M. Soroudi, Nordhaus-Gaddum bounds for total Roman domination, J. Comb. Optim. DOI 10.1007/s10878-017-0158-5.
- [6] R.A. Beeler, T.W. Haynes and S.T. Hedetniemi, Double Roman domination, Discrete Appl. Math. 211 (2016) 23–29.
- [7] E.W. Chambers, B. Kinnersley, N. Prince and D.B. West, Extremal problems for Roman domination, SIAM J. Discrete Math. 23 (2009), 1575–1586.
- [8] M. Chellali, T.W. Haynes, S.T. Hedetniemi and A. MacRae, Roman {2}domination, Discrete Appl. Math. 204 (2016), 22–28.
- [9] E.J. Cockayne, R.M. Dawes, and S.T. Hedetniemi, Total domination in graphs, *Networks* 10 (1980), 211–219.
- [10] E.J. Cockayne, P.A. Dreyer Jr., S.M. Hedetniemi and S.T. Hedetniemi, Roman domination in graphs, *Discrete Math.* 278 (2004), 11–22.
- [11] O. Favaron, H. Karami and S.M. Sheikholeslami, On the Roman domination number in graphs, *Discrete Math.* **309** (2009), 3447–3451.
- [12] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in graphs, Marcel Dekker, Inc., New York, 1998.
- [13] M.A. Henning, A characterization of Roman trees, *Discuss. Math. Graph Theory* 22 (2002), 325–334.
- [14] M.A. Henning and S.T. Hedetniemi, Defending the roman empire—a new strategy, Discrete Math. 266 (2003), 239–251.
- [15] M. A. Henning and A. Yeo, Total domination in graphs (Springer Monographs in Mathematics) 2013. ISBN: 978-1-4614-6524-9 (Print); 978-1-4614-6525-6 (Online).

- [16] C.-H. Liu and G.J. Chang, Roman domination on strongly chordal graphs, J. Comb. Optim. 26 (2013), 608–619.
- [17] C.S. Revelle and K.E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), 585–594.
- [18] I. Stewart, Defend the Roman Empire, Sci. Amer. 281 (1999), 136–139.
- [19] D.B. West, Introduction to Graph Theory, Prentice-Hall, Inc, 2000.

(Received 1 Mar 2017; revised 5 July 2017)