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Abstract

A total Roman dominating function on a graph G is a function f :
V(G) — {0, 1,2} satisfying the following conditions: (i) every vertex u
for which f(u) = 0 is adjacent to at least one vertex v for which f(v) = 2,
and (ii) the subgraph of G induced by the set of all vertices of positive
weight has no isolated vertices. The weight of a total Roman dominat-
ing function f is the value f(V(G)) = Zuev(e) f(u). The total Roman
domination number vir(G) is the minimum weight of a total Roman
dominating function of G. In [Ahangar, Henning, Samodivkin and Yero,
Appl. Anal. Discrete Math. 10 (2016), 501-517], it was recently shown
that for any graph G without isolated vertices, vr(G) < 2v(G) where
7:(G) is the total domination number of G, and they posed the problem
of characterizing the graphs G with v,z(G) = 2v(G). In this paper we
provide a constructive characterization of trees T" with v:g(T) = 2v(7T).

* Corresponding author
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1 Introduction

Throughout this paper, G is a simple graph with no isolated vertices, with vertex set
V(G) and edge set E(G) (briefly, V, E). The order |V| of G is denoted by n = n(G).
For every vertex v € V(G), the open neighborhood of v is the set Ng(v) = N(v) =
{u € V(G) | ww € E(G)} and its closed neighborhood is the set Nglv] = N[v] =
N(v) U{v}. The degree of a vertex v € V' is d(v) = |[N(v)|. The open neighborhood
of a set S C V is the set N(S) = U,esN(v). A leaf of G is a vertex with degree
one in G, a support verter is a vertex adjacent to a leaf, a strong support vertex
is a support vertex adjacent to at least two leaves, and an end support verter is a
support vertex all of whose neighbors with the exception of at most one are leaves,
and an end strong support vertex is a strong support vertex all of whose neighbors
with the exception of at most one are leaves. For every vertex v € V(G), the set of
all leaves adjacent to v is denoted by L,. The double star DS, ,, where ¢ > p > 1,
is the graph consisting of the union of two stars K , and K, , together with an edge
joining their centers. A subdivision of an edge uv is obtained by replacing the edge
wv with a path uwv, where w is a new vertex. The subdivision graph S(G) is the
graph obtained from G by subdividing each edge of G. The subdivision star S(K+)
for t > 2, is called a healthy spider. We denote by P, the path on n vertices. The
distance dg(u,v) between two vertices u and v in a connected graph G is the length
of a shortest u — v path in G. The diameter of a graph G, denoted by diam(G), is
the greatest distance between two vertices of GG. For a vertex v in a rooted tree T, let
C'(v) denote the set of children of v; moreover, D(v) denotes the set of descendants
of v, and D[v] = D(v) U {v}. Also, the depth of v, depth(v), is the largest distance
from v to a vertex in D(v). The mazimal subtree at v is the subtree of T" induced by
DJv], and is denoted by T,,.

A subset S of vertices of G is a total dominating set if N(S) = V. The total
domination number v;(G) is the minimum cardinality of a total dominating set of
G. A total dominating set with cardinality v;(G) is called a v,(G)-set. The total
domination number was introduced by Cockayne, Dawes and Hedetniemi [9] and is
now well-studied in graph theory. The literature on this subject has been surveyed
and detailed in the book by Henning and Yeo [15].

A function f : V(G) — {0, 1,2} is a Roman dominating function (RDF) on G if
every vertex u € V' for which f(u) = 0 is adjacent to at least one vertex v for which
f(v) = 2. The weight of an RDF is the value w(f) = f(V(G)) = > ey (g f(u). The
Roman domination number yg(G) is the minimum weight of an RDF on G. Roman
domination was introduced by Cockayne et al. in [10] and was inspired by the work
of ReVelle and Rosing [17] and Stewart [18]. It is worth mentioning that since 2004,
a hundred papers have been published on this topic, where several new variations
were introduced: weak Roman domination [14]; Roman {2}-domination [8]; maximal
Roman domination [1]; mixed Roman domination [2]; double Roman domination [6];
and recently, total Roman domination was introduced by Liu and Chang [16].

For a Roman dominating function f, let V; = {v € V| f(v) =i} for i = 0,1, 2.
Since these three sets determine f, we can equivalently write f = (Vy, V4, Va) (or
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f =i, Vi Vi) to refer to f). We note that w(f) = |Vi| + 2|Va|.

A total Roman dominating function of a graph G with no isolated vertex, abbre-
viated TRDF, is a Roman dominating function f on GG with the additional property
that the subgraph of G induced by the set of all vertices of positive weight under f
has no isolated vertex. The total Roman domination number vir(G) is the minimum
weight of a TRDF on G. A TRDF with minimum weight v;z(G) is called a vz(G)-
function. The concept of total Roman domination in graphs was introduced by Liu
and Chang [16] and has been studied in [3, 4, 5]. The authors in [3] observed that
for any graph G with no isolated vertex,

r(G) < 2%(G), (1)

and they posed the following problem.

Problem: Characterize the graphs G satisfying 1z(G) = 27:(G).

A graph G for which v,z(G) = 2v(G) is defined in [3] to be a total Roman graph.
The authors in [3] presented the following trivial necessary and sufficient condition
for a graph to be a total Roman graph.

Proposition A. Let G be a graph with no isolated vertices. Then G is a total
Roman graph if and only if there exists a vr(G)-function f = (VI VI, Vi) such
that VI = 0.

Finding a nontrivial necessary and sufficient condition for a graph to be a total
Roman graph, or characterizing the total Roman graphs, remains an open problem.
Let T3 be a tree obtained from a star K;, (r > 2) by adding at least two pendant
edges at every vertex of the star, and let 75 be a tree obtained from a star Ky, (r > 2)
by adding at least two pendant edges at every vertex of the star except its center.
Clearly, 77 is a total Roman graph and 75 is not a total Roman graph, while both of
Ty, T; have a unique y;g-function. Thus, characterizing the total Roman graphs G,
even when G has a unique ,z-function, is not easy.

In this paper, we provide a constructive characterization of trees T with v,z(T) =
29¢(T") which settles the above problem for trees.

We make use of the following results in this paper.
Observation 1. If T is a star of order at least two, then yir(T) < 2v(T).

Observation 2. Let v be a strong support vertex in a graph G. Then there exists a
Yr(G)-function f such that f(v) = 2.

Proof. Let v be a strong support vertex and vy, vy be leaves adjacent to v. Assume
that f is a yg(G)-function. To totally Roman dominate v; we must have f(v) > 1.
If f(v) = 2, then we are done. Let f(v) = 1. Then to Roman dominate vy, vy we
must have f(v1) = f(v2) = 1. Then the function g : V(G) — {0, 1,2} defined by
g(v) =2,9(v1) =1, g(ve) = 0 and g(z) = f(x) otherwise, is a yr(G)-function with
the desired property. O
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Observation 3. Let G be a connected graph different from a star, let v be an end
strong support vertex in G, and let w be the neighbor of v which is not a leaf. Then
there exists a vir(G)-function f such that f(v) =2 and f(w) = 1.

Proof. Since v is a strong support vertex, we deduce from Observation 2 that there
exists a yr(G)-function f = (V, Vi, Va) such that f(v) = 2. Since the induced
subgraph G[V; U V3] has no isolated vertices, we have (V3 U Vo) N N(v) # 0. If
w € (V1 UVy) N N(v), then we are done. Assume that w ¢ (V4 U Va) N N(v). Then
ViuWV)NL, # 0. Let 2z € (V4 UVy) N L, Clearly z € V; and the function
g: V(G) — {0,1,2} defined by g(z) = 0,g9(w) = 1 and g(x) = f(z) otherwise, is a
Yir(G)-function with the desired property. O

Observation 4. If uy,us are two adjacent support vertices in a graph G, then there
exists a vir(G)-function f such that f(uy) = f(ug) = 2.

Proof. Let uy,us be two adjacent support vertices and let v; be a leaf adjacent to u;
fori = 1,2. Assume that f is a 1:z(G)-function. As above, we have f(u;)+ f(v;) > 2
for i = 1,2. Then the function g : V(G) — {0,1,2} defined by g(u;) = g(us) =
2,9(v1) = g(ve) = 0 and g(z) = f(z) otherwise, is a y;z(G)-function with the desired
property. ]

Observation 5. Let H be a subgraph of a graph G such that G and H have no
isolated vertices. If vir(H) = 2v(H), 2w(G) < w(H) + s and wr(G) > yr(H) + 2s
for some non-negative integer s, then vr(G) = 27(G).

Proof. Since v1r(G) < 279:(G), we deduce from the assumptions that
Yr(G) > nr(H) +2s = 2v(H) + 25 > 2%(G)
and this leads to the result. O

Observation 6. Let H be a subgraph of a graph G such that G and H have no
isolated vertices. If ir(G) = 2v(G), v(G) > w(H) + s and r(G) < vr(H) + 2s
for some non-negative integer s, then yir(H) = 2v,(H).

Proof. By the assumptions and the fact yz(H) < 2v,(H), we have
Vr(G) < ver(H) + 25 < 27%(H) 4 25 < 29%(G) = 1r(G)

and this leads to the result. O

2 A characterization of trees T' with 7,z(T) = 2v(T)

In this section, we give a constructive characterization of all trees T satisfying
Yer(T) = 27(T). We start with three definitions.
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Definition 1. Let v be a vertex of a tree T'. A function f: V(T') — {0, 1,2} is said to
be an almost total Roman dominating function (almost TRDF) with respect to v, if
the following two conditions are fulfilled: (i) every vertex z € V(T) — {v} for which
f(z) = 0 is adjacent to at least one vertex y € V(T) for which f(y) = 2 and (ii)
every vertex x € V(T) — {v} for which f(z) > 1 is adjacent to at least one vertex
y € V(T) for which f(y) > 1. Let

Yr(T,v) = min{w(f) | fis an almost TRDF with respect to v}.

Definition 2. Let v be a vertex of a tree T'. A nearly total Roman dominating function
(nearly TRDF) with respect to v, is an almost total Roman dominating function f
with an additional property that f(v) > 1 or f(v) 4+ f(u) > 2 for some u € N(v).
Let

vr(T;v) = min{w(f) | f is a nearly TRDF with respect to v}.

Since any total Roman dominating function on 7" is an almost TRDF and a nearly
TRDF with respect to each vertex of T, y:x(7T,v) and vz (T'; v) are well defined and
Yr(T,v) < vr(T) and yg(T;v) < 3r(T) for each v € V(T). Now let

Wi = {v € V(D) |yr(T,v) = %r(T)}

and

Wi = {v € V(D) lur(Tiv) = %r(T)}.
Definition 3. For a tree T' and each vertex v € V(T'), we say v has property P in T
if for any vz (7T")-function f we have f(v) # 2. Define

W2 = {v|v has property P in T}.

In order to presenting our constructive characterization, we define a family of
trees as follows. Let T be the family of trees T that can be obtained from a sequence
Ty, T5, ..., Ty of trees for some k > 1, where T1 is Pyand T'=T}. If £k > 2, T}, can
be obtained from T; by one of the following operations.

Operation O;: If x € V(T;) is a support vertex and there is a y;z(7T)-function f
with f(z) =2, then O; adds a vertex y and an edge xy to obtain T;,;.

Operation O,: If z € V(T;) has degree at least two and z is adjacent to an end
strong support vertex, then O, adds a path yz and joins x to y to obtain T;,.

Operation O;: If x € V(T;) is a support vertex and z is at distance 2 from some
leaves, then O3 adds a path yz and joins x to y to obtain T} .

Operation O,: Ifx e W%Z and z is at distance 1 or 2 from a support vertex, then
0, adds a path P, and joins x to a support vertex of it to obtain Tj;;.

Operation Os: If x € WZ NW3, then Os adds a double star DSy, (¢ = 1,2) and
joins z to the leaf adjacent to the support vertex of degree 2 in DS, ; to obtain
Tit1.
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Operation Og: If 2 € W7 NW3, then Og adds the graph F; (see Figure 1) and
the edge xz to obtain T;.

Operation O;: If x € V(T;), then O7 adds a double star DS;; and joins z to a
leaf adjacent to the support vertex of degree 3 to obtain 7.

226 oo 2t

Figure 1: The graph F; used in Operation Og

The proof of the first lemma is trivial and is therefore omitted.

Lemma 2.1. IfT; is a tree with vgr(T;) = 27(T;) and T;y1 is a tree obtained from
T; by Operation Oy, then vig(Tiv1) = 27(Tit1).

Since vr(DS,,) = 2v(DS,,) and DS,, (¢ > 2) is obtained from P, only by
Operation Oy, it follows that this operation is necessary to construct the family 7.

Lemma 2.2. IfT; is a tree with vr(T;) = 27(T;) and T;y1 is a tree obtained from
T; by Operation Oy, then vig(Tiv1) = 27(Tit1).

Proof. Let w € V(T;) be an end strong support vertex adjacent to x and let the
Operation Oy add a path yz and join z to y. Clearly, any total dominating set of T;
containing no leaf can be extended to a total dominating set of T;,; by adding y. So
Ye(Tiv1) < v(Ti) + 1.

Now let f be a y4r(T;41)-function such that f(x) is as large as possible. Clearly,
f(y) > 1 and f(y) + f(z) > 2. By Observation 3, we may assume that f(w) = 2
and f(z) > 1. Thus the function f, restricted to T;, is a total Roman dominating
function of T; of weight v;z(7;11) — 2 and hence

Yr(Tip1) = w(f) > 2+ w(fln) = 2+ vr(Th).
It follows from Observation 5 that vir(Tiv1) = 27¢(Tiv1)- O

Lemma 2.3. IfT; is a tree with vr(T;) = 2v(T;) and T;11 is a tree obtained from
T; by Operation Os, then vig(Tiv1) = 27(Tit1).

Proof. Let O3 add a path yz and the edge xy. Since x is a support vertex, adding
y to any total dominating set of 7} yields a total dominating set for 7;,; and this
implies that v(T;11) < %(T;) + 1.

Now let f = (Vo, V4, Vo) be a vz (T4 1)-function. Obviously f(y) + f(z) > 2 and
z,y,w € V4 UV,y where w € Nr,(z) is a support vertex (note that x is at distance 2
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from some leaves and so x is adjacent to a support vertex). Therefore the function
f, restricted to T;, is a total Roman dominating function of 7; and so

Yr(Tiv1) = w(f) 2 2 +w(fln) = 2+ vr(Th).
Now the result follows by Observation 5. U

Since g (Fy) = 2v(F;) and F; (t > 2) is obtained from P, only by using Oper-
ation O3, t — 1 times, we conclude that the Operation O3 is necessary to construct
the family 7.

Lemma 2.4. IfT; is a tree with vgr(T;) = 27(T;) and T;y1 is a tree obtained from
T; by Operation Oy, then vig(Tiv1) = 27(Tit1).

Proof. Let O4 add a path Py: y1y2y3y4 and join x to y3. Clearly, any total dominating
set of T} can be extended to a total dominating set of T;,; by adding y», y3, yielding
Ye(Tiv1) < w(Th) + 2.

Assume now that f = (Vy, Vi, V5) is a vyg(Tis1)-function. By Observation 4, we
may assume that ys,y3 € V5. Then the function f, restricted to T;, is an almost
total Roman dominating function of 7; and since = € Wy, we have w(f|r,) > vr(T;).
Hence

Yr(Tip1) = w(f) >4+ w(fln) =4+ vr(Th).
It follows from Observation 5 that vir(Tiv1) = 27¢(Tiv1)- O

Let T be a tree obtained from three copies of P, by adding a new vertex and
joining it to exactly one support vertex of each copy of Py. Clearly, vr(T) = 2v(T)
and T is obtained from P, by applying Operations O; and Oy respectively. On
the other hand, T cannot be obtained by other operations, and so Operation O, is
necessary to construct the family 7.

Lemma 2.5. IfT; is a tree with vgr(T;) = 27(T;) and T;y1 is a tree obtained from
T; by Operation Os, then vir(Tit1) = 27(Tiv1)-

Proof. Let O3 add a double star DS, ; with central vertices a,b where deg(a) = 2
and join x to the leaf ¢ adjacent to a. By adding a, b to any total dominating set of
T; we obtain a total dominating set of T; 1, implying that v,(T;11) < v(T3) + 2.

Now let f be a y:gr(T;+1)-function such that f(b) is as large as possible. Then
clearly f(b) = 2, f(a) + f(b) > 3 and f(a) + f(b) + f(c) > 4. If f(c) < 1, then
the function f, restricted to 7T; is a nearly total Roman dominating function of T;,
and if f(c¢) = 2, then the function ¢ : V(7;) — {0,1,2} defined by g(z) = 1 and
g(u) = f(u) for u € V(T;) — {x}, is a nearly total Roman dominating function of T;.
Since € W7, we have w(f|r,) > vr(T;). Thus

Yr(Tiy1) = w(f) > 44+ w(f|n) > 44+ wr(Th)

and the result follows by Observation 5. U
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Since vir(FPs) = 27¢(Fs) and Py is obtained from P, only by applying Operation
Os, we deduce that the operation Os is necessary to construct the family 7.

Lemma 2.6. IfT; is a tree with vr(T;) = 2v(T;) and T;11 is a tree obtained from
T; by Operation Og, then vir(Tit1) = 27(Tiv1)-

Proof. Clearly, any total dominating set of T; can be extended to a total dominating
set of Tjy1 by adding N[y| — {z} yielding v(Ti11) < %(T;) + deg(y).

Let f be a vr(T;y1)-function. To totally Roman dominate z;, we must have
flyi) + f(zi) > 2for i =1,....t. If f(y) =2 and f(z) = 0, then the function f
restricted to 7T is a nearly total Roman dominating function of 7; and since x € W%
we obtain Yip(Tiv1) = w(f) = 2deg(y) +w(f|r,) = 2deg(y)+yr(Ti). If f(y) = 2 and
f(z) > 1, then the function g : V(T;) — {0, 1,2} defined by g(x) = min{f(z)+ 1,2}
and g(u) = f(u) for u € V(T;) — {z} is a nearly total Roman dominating function of
T; and as above we have vg(Ti+1) > 2deg(y) + 1r(T3). Let f(y) = 1. If f(2) > 1,
then as above we have vr(Ti41) > 2deg(y) + wr(T;). If f(2) = 0, then f|g, is a
TRDF of T; with f(z) = 2 and we conclude from = € W}, that w(f|r,) > %r(T3).
Hence

Yir(Tis1) = w(f) > 2deg(y) — 1 +w(f|r,) > 2deg(y) + 1r(T3).

Assume finally that f(y) = 0. To totally Roman dominate y, y must have a neighbor
with label 2. If f(z) = 2, then the function f restricted to T; is a nearly total
Roman dominating function of 7; and since z € W7 we have vz(Ti1) = w(f) >
2deg(y) + w(flr) > 2deg(y) + wr(T3). If f(2) < 1, then f(y;) = 2 for some
1 <i<t If f(2) =1, then as above we obtain vz(T;41) > 2deg(y) + vr(T:). If
f(z) = 0, then to dominate z we must have f(z) = 2 and hence f|r, is a TRDF
of T; with f(z) = 2. We deduce from z € W3 that w(f|r,) > vr(T;) and so
Yr(Tiy1) = w(f) > 2deg(y) — 1 + w(flr,) > 2deg(y) + 1r(T;). It follows from
Observation 5 that vir(Tiv1) = 29(Tit1). O

Let T be the tree obtained from two copies of F; by joining the leaves adjacent to
the centers of Fy. Obviously, (1) = 2v(T) and T is obtained from Py by applying
Operations O3 and Oy respectively. On the other hand, T' cannot be obtained by
other operations and so Operation Og is necessary to construct the family 7.

Lemma 2.7. If T; is a tree with vr(T;) = 2v(T;) and T;11 is a tree obtained from
T; by Operation Oz, then vig(Tiv1) = 27(Tit1).

Proof. Let O7 add a double star DS, with central vertices a,b where deg(a) = 3
and let O join x to a leaf z adjacent to a. By adding a, b to any total dominating
set of T; we obtain a total dominating set of T, 1 and so (T4 1) < v (T;) + 2.

Suppose now that f is a y,g(7;11)-function such that f(z) is as small as possible.
We may assume, without loss of generality, that f(a) = f(b) = 2. We claim that
f(z) = 0. Assume, to the contrary, that f(z) > 1. If f(z) = 2, then it is easy to
see that f(z) = 0. If f(w) > 1 for a vertex w € Nr,(z), then define g : V(T;41) —
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{0,1,2} by g(z) = 0,9(x) = 1 and g(u) = f(u) otherwise. Then g is also a total
Roman dominating set of T;,1 of weight w(f) — 1, a contradiction. If f(w) = 0 for
all w € Nr,(x), then define g : V(T;11) — {0,1,2} by g(2) = 0, g(z) = g(w) =1
for some w € Nr,(z) and g(u) = f(u) otherwise. Then g is a 7g(T;;1)-function
contradicting the choice of f.

Let now f(z) = 1. If f(z) = 2, then it is easy to see that f(w) = 0 for all
w € Nr,(x). Now define g : V(T;41) — {0,1,2} by g(z) = 0, g(w) = 1 for some w €
Nr.(x) and g(u) = f(u) otherwise. If f(x) = 1, then it is easy to see that f(w) =0
for all w € Nr,(z). Now define g : V(T;41) — {0,1,2} by g(2) = 0, g(w) = 1 for some
w € Np,(x) and g(u) = f(u) otherwise. If f(z) = 0, then there exists a vertex w €
Nr,(z) such that f(w) = 2. Now define g : V(T;41) — {0,1,2} by g(2) = 0,g9(z) =1
and g(u) = f(u) otherwise. Then g is a v;r(7;+1)-function contradicting the choice of
f. Thus f(z) = 0. Then the function f, restricted to T} is a total Roman dominating
function of T; and hence yr(Ti11) = w(f) > 4+w(f|n) > 4+vr(T;), and the result
follows from Observation 5. O

Let T be a tree obtained from P by adding one pendant edges at every support
vertex and leaf. Clearly, 1gr(T) = 27(T) and T is obtained from P, by applying
Operations Oy, O5 and O; respectively. On the other hand, T cannot be obtained
by other operations and so Operation O is necessary to construct the family 7.

Theorem 2.1. If T € T, then vr(T) = 2v%(T).

Proof. 1f T'is Py, then obviously vz(T") = 2v(T). Suppose now that 7" € 7. Then
there exists a sequence of trees T1,Ts,..., T, (k > 1) such that T3 is Py, and if
k > 2, then T;,; can be obtained from T; by one of the Operations Oy, Os, ..., Oy
fori = 1,2,...,k — 1. We apply induction on the number of operations used to
construct T'. If k = 1, the result is trivial. Assume the result holds for each tree
T € T which can be obtained from a sequence of operations of length k£ — 1 and let
T" = Ty—1. By the induction hypothesis, we have vg(T") = 2v(T"). Since T' = Ty
is obtained by one of the Operations O, O,, ..., O; from T’, we conclude from the
above lemmas that vz(T) = 2v,(T). O

Now we are ready to prove our main result.

Theorem 2.2. Let T be a tree of order n > 4. Then vyg(T) = 2v(T) if and only if
TeT.

Proof. According to Theorem 2.1, we need only to prove necessity. Let T' be a tree
of order n > 4 with vz(T") = 27(T"). The proof is by induction on n. If n = 4, then
the only tree T' of order 4 with vr(T) = 2v(T) is Py € T. Let n > 5 and let the
statement hold for all trees of order less than n. Assume that T is a tree of order
n with vz(T) = 2v(T). By Observation 1, we have diam(7") > 3. If diam(7T") = 3,
then T is a double star and 7' can be obtained from P, by applying Operation O,
and so 7' € T. Hence let diam(7") > 4.
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Let v1vg ... v (k > 5) be a diametral path in 7" such that deg,(vs) is as large as
possible and root T at v. If degp(vy) > 4, then clearly vg(T —v1) = 29%(T —vq). It
follows from the induction hypothesis that T'— v, € T and hence T can be obtained
from T — vy by Operation Oy, implying that T' € T. Let degy(ve) < 3. We consider
two cases.

Case 1. degp(v2) = 3.
Assume that L,, = {v;, w}.

Subcase 1.1. deg;(vs) > 3.

First let vz be adjacent to a support vertex z & {vs,v4}. Suppose T = T — T,.
For any ~,(T)-set S containing no leaves we have z,v9,v3 € S and so S\ {z} is
a total dominating set of 7" yielding (7') > v(7") + 1. Now let f be a yr(T")-
function. Since v, is an end strong support vertex and since f is a TRDF of T”,
we may assume that f(vy) = 2 and f(vz) > 1. Clearly f can be extended to a
TRDF of T' by assigning the weight 2 to z and the weight 0 to the leaves adjacent
to z and this implies that vr(T') < 1r(T") + 2. It follows from Observation 6 that
Yr(T") = 2v(T") and by the induction hypothesis we have 77 € T. Now 7' can be
obtained from 7" by Operation Oy if deg;(z) = 2 and by Operations Oy and O,
when deg;(z) > 3. Hence T € T.

Now assume that each neighbor of v3 except vq, vy, is a leaf and let T/ = T —wv;. It
is easy to see that v,(T') = (T —v1) and g(T) = yr(T —v1). Hence (T —v1) =
29¢(T —v,) and by the induction hypothesis we have 7" € T. Since vy, v3 are support
vertices in 7", there exists a 1z (7")-function f such that f(vs) = f(vs) = 2. Now T’
can be obtained from 7" by Operation O;.

Subcase 1.2. deg,(vs) = 2.
If vy is a support vertex, then let 7" = T — {v,w}. Tt is easy to see that v, (T) =
(1) + 1 and %r(T) = wr(T") + 1. Then 2%(T) = wr(T) < %r(T") +1 <
29(T") + 1 = 2%(T") — 1 which is a contradiction. If v, has a children z # vz, with
depth 1 or 2, then let 7" = T — T,,. It is not hard to see that v (T) = % (T") + 2
and r(T) < wr(T") + 3. But then 2v(T) = r(T) < %r(T) +3 < 2%(T") +
3 = 2v%(T) — 1, a contradiction again. Henceforth, we assume deg(vys) = 2. Since
Yr(T) = 2%(T), we have diam(T) > 5. Let 7" = T — T,,. Clearly, any vr(71")-
function can be extended to a TRDF of T' by assigning the weight 2 to vy, v3 and
the weight 0 to vy, vy, w and so vr(T) < vr(T') + 4. On the other hand, let S be
a v(T)-set containing no leaves. Then vy, v3 € S and the set S" = S — {vy, v3} if
vy € S, and S = (S — {ve,v3,v4}) U {wg} if vy € S, is a total dominating set of 7"
yielding (7)) > v (T") + 2. By Observation 6 we have vz(7") = 2v(7") and this
implies that vz(T) = vr(T") + 4 and 1 (T) = v(T") + 2 by the assumption. By
the induction hypothesis we have T" € T. Now we show that vs € W2, N W2, If
vs & W2, then let g be a nearly TRDF of T" of weight less than ;z(7") and define
h:V(T)—{0,1,2} by h(ve) = 2, h(vs) = h(vy) = 1, h(z) = g(x) for x € V(T") and
h(z) = 0 otherwise. If vs & W2, then let g be a TRDF of T” with g(vs) = 2 and
define h : V(T) — {0,1,2} by h(vs) = 2,h(v3) = 1, h(xz) = g(z) for x € V(T") and
h(xz) = 0 otherwise. Clearly his a TRDF of T' with weight ~;z(7")—1, a contradiction.
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Thus vs € W2 N W2, and so T can be obtained from 7" by Operation O, implying
TeT.

Case 2. deg(ve) = 2.
By the choice of the diametral path, we may assume that all support vertices adjacent
to v and vg_; have degree 2. We consider the following subcases.

Subcase 2.1. wv3 is a support vertex and vs has a support neighbor w other
than vs.
Let 7" =T — {vy,v}. If S is a 3(T')-set containing no leaves, then vy, v3,w € S
and so S\ {v2} is a total dominating set of 7", implying that v (7)) > v (7") + 1.
On the other hand, since any ;g (7”)-function can be extended to a TRDF of T' by
assigning the weight 2 to ve and the weight 0 to vy, we have yg(T) < yr(T") + 2.
By Observation 6 and the induction hypothesis, we obtain 7" € 7. Now T can be
obtained from 7" by Operation O3, and hence T € T.

Subcase 2.2. deg;(v3) > 3 and all neighbors of v3 except vq, vy are leaves.
Let w be a leaf adjacent to vs. If deg(vs) > 4, then let 77" = T — w. It is easy to
see that v (T) = % (T") and vgr(T) = vr(T"). Hence vxr(T") = 27(T") and by the
induction hypothesis we have T” € T. Then T can be obtained from 7" by Operation
O;. Assume that deg;(v3) = 3. We distinguish the following cases.

(a) vy is a support vertex.
Let 7" = T — {v1,v2}. As above we can see that v(T) = %(T") + 1 and
Yr(T) = yr(T") + 2, yielding ygr(T") = 2v(1"). By the induction hypothesis
we have T" € T and now T can be obtained by Operation Os.

(b) deg(vy) = 2.
By (a) we may assume that v, is not a support vertex. Let 7" =T — T,,. As
in the proof of subcase 1.2, we can see that 7" € 7. Then T can be obtained
from 7" by Operation O;.

(c) deg(vy) > 3.

By (a) we may assume that v, is not a support vertex. Thus v4 has a children
z different from vy with depth 1 or 2. Let 77 =T — T,,. If S is a 3(T)-set
containing no leaves, then clearly vy, v3,2 € S and so S — {vy,v3} is a total
dominating set of 77, yielding v(7T) > ~v(7") + 2. On the other hand, any
~Yer(T")-function can be extended to a TRDF of T by assigning 2 to vs,v3
and the weight 0 to w, vy, and hence vr(T) < yr(T") + 4. We deduce from
Observation 6 that v,zr(7") = 2v,(7") and by the induction hypothesis we have
T € T. If vy € Wi, then let f be an almost TRDF of T with respect to
vy of weight at most yz(7") — 1 and extend f to a TRDF of T' by assigning
the weight 2 to vg,v3 and the weight 0 to w,vy; this implies that vz(T) <
Yr(T') + 3 = 2%(T") + 3 < 2y(T) — 1, a contradiction. Thus v, € W, and
now 7' can be obtained from 7" by Operation Oy, yielding T' € T.

Subcase 2.3. deg,(v3) > 3 and all children of v are support vertices of degree 2.
We distinguish three cases.
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(i) vy is a support vertex.

Suppose 7" =T — v;. By adding vy to any ~,(7”)-set we obtain a total domi-
nating set of T"and so 1(7T") < 7(7")+1. On the other hand, if S is a 7;(T")-set
containing no leaves then Nvs] C S and clearly S — {v,} is a total dominating
set of T, implying that v(T) > v(T") + 1. Thus %(T) = %(T") + 1. Now let
f be a yg(T")-function. Since vz and its neighbors other than vs in 7" are sup-
port vertices, we may assume that f(z) = 2 for each © € Ny [vs] — {va}. Then
the function g : V(T') — {0,1,2} defined by g(vs) = 1,g(v2) = 2,9(v1) = 0,
and g(u) = f(u) otherwise, is a TRDF of T with weight w(f) + 1. Hence
Yr(T) < wr(T') +1 < 2%(T") + 1 = 2%(T) — 1, a contradiction.

(ii) wv4 has a child z # vg with depth 1 or 2.

Assume that 7" = T — T,,. Any v(7")-set S can be extended to a total
dominating set of T' by adding C'(v3)U{wv3} and so v(T) < v (T")+|C(v3)| + 1.
On the other hand, if S is a 74(T)-set containing no leaves, then C(v3) U
{vs,z} C S, and clearly S — (C(v3) U {v3}) is a total dominating set of 77,
implying that 7(T) > 3(T’) + |C(u5)| + 1. Thus % (T) = 3(T") + |C(us)] + 1.
Clearly, any v;zr(7")-function can be extended to a TRDF of T" by assigning
the weight 1 to wvs, the weight 2 to the children of vz and the weight 0 to
the leaves of T,,, and this implies that vr(T) < yr(T") + 2|C(vs)] + 1 <
29(T") 4 2|C(vs)| + 1 = 2%(T) — 1, a contradiction again.

(iii) deg(vy) = 2.

If diam(7") = 4, then T is a healthy spider, and we have 1z (7T") = 2deg(vs)+1 <
2(deg(v3) +1) —1 = 294(T") — 1, which is a contradiction. Let diam(7") > 5 and
let 7" =T —T,,. Assume that S is a 7;(T)-set. Then clearly N[vs] —{v4} C S,
and the set S" = 5 — Nvg] if vy € S and S" = (S — N[vs]) U{vg} if vg € S, is a
total dominating set of 7", yielding ~v,(T") > v(T")+deg(vs). On the other hand,
any v;r(T")-function can be extended to a TRDF of T' by assigning the weight
2 to each vertex in N[vs] —{v4} and the weight 0 to the remaining vertices, and
this implies that vz(T) < vr(T") + 2deg(vs). It follows from Observation 6
and the induction hypothesis that 77 € T. If vs & W2, then let f be a nearly
TRDF of T" of weight at most y:z(7") — 1 and define g : V(T) — {0,1,2}
by g(u) = f(u) for u € V(T'), g(u) = 1 for u € V(T,,). If vs & W2, then
let f be a yg(T')-function with f(vs) = 2 and define g : V(T) — {0,1,2}
by g(u) = f(u) for u € V(T"), g(vy) = 0 and g(u) = 1 for u € Nlvs] — {vs}
and g(u) = 0 otherwise. In each case, g is a TRDF of T' of weight at most
Yr(T') + 2 deg(vs) — 1 that leads to a contradiction. Thus vs € W2 NW2, and
so T can be obtained from 7" by Operation Og, yielding T € T .

Subcase 2.4. deg(vs) = 2.

We claim that deg(vs) = 2. Assume, to the contrary, that deg(vy) > 3. First assume
vy is at distance 1 or 2 from a support vertex other than vy and let 77 =T — T,,.
Assume that S is a v(7T)-set containing no leaves. Then vy, v3 € S and clearly
S — {va,v3} is a total dominating set of 7", implying that ~(7") < %(T) — 2. On
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the other hand, any ;z(7")-function can be extended to a TRDF of T' by assigning
the weight 1 to vs, vy, vy and this implies that vz(T) < yr(T") + 3. But then

29(T) = r(T) < %r(T") +3 < 29(T") + 3 < 2%(T) — 1

which is a contradiction. Now let vy be a support vertex and let 77" = T — vy.
Suppose that S is a ,(T")-set containing no leaves. Then vy, v3,v4 € S, and clearly
S — {v9} is a total dominating set of 7" yielding v;(7") < 7(T) — 1. On the other
hand, let f be a vr(T")-function. Since vz, vy in T” are support vertices, we may
assume that f(v3) = f(vy) = 2. Define g : V(T) — {0,1,2} by g(u) = f(u) for
u € V(T") — {va,v3}, g(vs) = 1,9(vs) = 2 and g(v1) = 0. Clearly g is a TRDF of T
of weight v,r(T") + 1. It follows that

29(T) = %r(T) < wr(T") + 1 <2%(T") + 1 < 29%(T) — 1,

a contradiction again. This proves our claim. That is, deg(vs) = 2. Since yr(T) =
29(T), we have diam(7T") > 6. Let T" =T —T,,. Any total dominating set of 7" can
be extended to a total dominating set of T" by adding vy, v3, and so V(1) < v(T")+2.
Let S be a total dominating set of T" containing no leaves. Then v, v3 € S and the
set S" = S\ {va,v3} if vy & S and S" = (S \ {va, v3,v4}) U{vg} if vy € S is a total
dominating set of 7". Hence 7;(T") — 2 > v(1") and we have 1 (T") = %(T) — 2. On
the other hand, any 7;g(7")-function can be extended to a TRDF of T" by assigning
the weight 2 to vq, v3 and the weight 0 to vy, vy, yielding vr(T) < vr(T")+4. Hence,
29%(T) = nr(T) < wr(T') + 4 < 29%(T") + 4 = 2v%(T), and this leads to

Yr(T) = %r(T") + 4 (2)

and v;r(T") = 2v(T"). Therefore, by the induction hypothesis, we have T" € T.

If vs & W2, then let f be a nearly TRDF with respect to vs with w(f) < yr(T")—
1. If f(vs) =0, then f is a TRDF of 7", which is impossible. Hence f(vs) > 1. Then
f can be extended to a TRDF of T by assigning the weight 1 to vy, vs, ve,v; and
hence v:z(T) < vr(T") + 3, which is a contradiction with (2). If vs & W2,, then let f
be a vr(T")-function with f(vs) = 2, and define g : V(T') — {0,1,2} by g(u) = f(u)
for w € V(T"), g(vs) = 0,9(v3) = g(ve) = g(vy) = 1. Clearly g is a TRDF of T' of
weight v (T") + 3, contradicting (2). Thus vs € W2 NW.2, and so T can be obtained
from T" by Operation Q. This completes the proof. O

It is shown in [10] that for every graph G, the Roman domination number of
G is bounded above by twice its domination number. Graphs which have Roman
domination number equal to twice their domination number are called Roman graphs.
A characterization of Roman trees is given in [13]. If T is a tree obtained from a
star K, (r > 2) by adding at least two pendant edges at every vertex of K ,, then
clearly T' is both Roman and total Roman. On the other hand, Pj is a total Roman
tree which is not a Roman tree and Ps is a Roman tree which is not a total Roman
tree. We conclude this paper with an open problem.

Problem. Characterize the trees T which are both Roman and total Roman.
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