Orientable \mathbb{Z}_{n}-distance magic labeling of the Cartesian product of two cycles

Bryan Freyberg
Department of Mathematics and Computer Science
Southwest Minnesota State University
Marshall, MN 56258
U.S.A.
bryan.freyberg@smsu.edu

Melissa Keranen
Department of Mathematical Sciences
Michigan Technological University
Houghton, MI 49931
U.S.A.
msjukuri@mtu.edu

Abstract

A directed \mathbb{Z}_{n}-distance magic labeling of an oriented graph $\vec{G}=(V, A)$ of order n is a bijection $\vec{\ell}: V \rightarrow \mathbb{Z}_{n}$ with the property that there exists $\mu \in \mathbb{Z}_{n}$ (called the magic constant) such that $$
w(x)=\sum_{y \in N_{G}^{+}(x)} \vec{\ell}(y)-\sum_{y \in N_{G}^{-}(x)} \vec{\ell}(y)=\mu \text { for every } x \in V(G) .
$$

If for a graph G there exists an orientation \vec{G} such that there is a directed \mathbb{Z}_{n}-distance magic labeling $\vec{\ell}$ for \vec{G}, we say that G is orientable $\mathbb{Z}_{n^{-}}$ distance magic. In this paper, we prove that the Cartesian product of any two cycles is orientable \mathbb{Z}_{n}-distance magic.

1 Definitions and known results

A distance magic labeling of a graph $G=(V, E)$ of order n is a bijection $f: V \rightarrow$ $\{1,2, \ldots, n\}$ with the property that there is a positive integer k (called the magic constant) such that

$$
w(x)=\sum_{y \in N(x)} f(y)=k \text { for every } x \in V(G),
$$

where $N(x)=\{y \mid x y \in E\}$ is the open neighborhood of vertex x. We call $w(x)$ the weight of vertex x. See [1] for a survey of results regarding distance magic graphs. Froncek adapted distance magic labeling by using the elements from an abelian group as labels rather than integers in [5]. Let $G=(V, E)$ be a graph of order n and let Γ be an abelian group of order n. If there exists a bijection $\ell: V \rightarrow \Gamma$ with the property that there is an element $\mu \in \Gamma$ such that

$$
w(x)=\sum_{y \in N(x)} \ell(y)=\mu \text { for every } x \in V(G),
$$

we say the labeling ℓ is a Γ-distance magic labeling and we say the graph G is Γ distance magic. If such a labeling exists for every abelian group of order n, then we say G is group distance magic.

For a given natural number p, let $[p]$ denote the set $\{0,1, \ldots, p-1\}$. For a set of integers S and a number c, let $S+c=\{x+c: x \in S\}$. For an element g of a group G, we use the notation $\operatorname{ord}_{G}(g)$ to denote the order of g.

The Cartesian product $G \square H$ of two graphs G and H is a graph with vertex set $V(G) \times V(H)$ and two vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent in $G \square H$ if and only if $g=g^{\prime}$ and h is adjacent to h^{\prime} in H, or $h=h^{\prime}$ and g is adjacent to g^{\prime} in G. Let $C_{n}=\left\{x_{0}, x_{1}, \ldots, x_{n-1}, x_{0}\right\}$ denote a cycle of length n.

Figure 1: Cartesian product $C_{3} \square C_{4}$
Froncek proved the following result in [5].
Theorem 1. [5] The Cartesian product $C_{m} \square C_{n}$ is $\mathbb{Z}_{m n}$-distance magic if and only if $m n$ is even.

Cichacz made progress towards settling when $C_{m} \square C_{n}$ is group distance magic by proving the following in [2].

Theorem 2. [2] Let $l=1 \mathrm{~cm}(m, n)$. If m or n is even, then $C_{m} \square C_{n}$ is $Z_{\alpha} \times \Gamma$-distance magic for any $\alpha \equiv 0(\bmod l)$ and any abelian group Γ of order $\frac{m n}{\alpha}$.

Cichacz and Froncek proved the following non-existence result in [4].
Theorem 3. If G is an r-regular graph of order n and r is odd, then G is not \mathbb{Z}_{n}-distance magic.

The following analog of group distance magic labeling for directed graphs was introduced in [3]. Let $G=(V, E)$ be an undirected graph on n vertices. Assigning a direction to the edges of G gives an oriented graph $\vec{G}(V, A)$. We will use the notation $\overrightarrow{x y}$ to denote an edge directed from vertex x to vertex y. Let $N^{+}(x)=\{y \mid \overrightarrow{y x} \in A\}$ and $N^{-}(x)=\{z \mid \overrightarrow{x z} \in A\}$. Let Γ be an abelian group of order n. A directed Γ distance magic labeling of an oriented graph $\vec{G}=(V, A)$ of order n is a bijection $\vec{\ell}: V \rightarrow \Gamma$ with the property that there is a $\mu \in \Gamma$ (called the magic constant) such that

$$
w(x)=\sum_{y \in N^{+}(x)} \vec{\ell}(y)-\sum_{y \in N^{-}(x)} \vec{\ell}(y)=\mu \text { for every } x \in V(G) .
$$

If for a graph G there exists an orientation \vec{G} such that there is a directed Γ-distance magic labeling $\vec{\ell}$ for \vec{G}, we say that G is orientable Γ-distance magic.

In this paper, we focus on orientable \mathbb{Z}_{n}-distance magic labeling, where \mathbb{Z}_{n} is the cyclic group of order n. For the sake of orienting a cycle C_{n}, if the edges are oriented such that every arc has the form $\overrightarrow{x_{i} x_{i+1}}$ for all $i \in\{0,1, \ldots, n-1\}$ (where the addition in the subscript is taken modulo n), then we say the cycle is oriented clockwise. On the other hand, if all the edges of the cycle are oriented such that every arc has the form $\overrightarrow{x_{i} x_{i-1}}$ for all $i \in\{0,1, \ldots, n-1\}$, then we say the cycle is oriented counter-clockwise.

Figure 2: Orientable \mathbb{Z}_{4}-distance magic labeling of C_{4} with clockwise orientation
It is an easy observation that C_{n} is orientable \mathbb{Z}_{n}-distance magic for all $n \geq 3$ (orient all the edges in the same direction around the cycle and label the vertices consecutively $0,1, \ldots, n-1$).

The following theorem was proved by Cichacz et al. in [3].
Theorem 4. [3] Let G be a graph of order n in which every vertex has odd degree. If $n \equiv 2(\bmod 4)$, then G is not orientable \mathbb{Z}_{n}-distance magic.

Regarding the Cartesian product of two cycles, they obtained the following partial result.

Theorem 5. [3] If $\operatorname{gcd}(m, n)=1$, then the Cartesian product $C_{m} \square C_{n}$ is orientable $\mathbb{Z}_{m n}$-distance magic.

In Section 3 we prove the Cartesian product $C_{m} \square C_{n}$ is orientable $\mathbb{Z}_{m n}$-distance magic for all $m, n \geq 3$.

2 Lemmas

In this section, we prove a series of lemmas regarding the labelings used in the main theorem of Section 3. Let $m, n \geq 3$ be given and let $\operatorname{gcd}(m, n)=d$. Define $\lambda=\frac{m+n}{d}$ and let $\operatorname{gcd}\left(\frac{m}{d}, d\right)=\alpha$. For a given integer a, let $0 \leq \mathcal{R}(a)<d$ represent the remainder when a is divided by d. That is, $a=q d+\mathcal{R}(a)$ for some positive integer q. We begin by establishing some relationships between m, n, d, and α.

Observation 6. If $\alpha^{2} \nmid d$, then $\operatorname{gcd}\left(\alpha \frac{m}{d}, d\right)=\alpha$ and $\operatorname{gcd}\left(\frac{m}{d}, \frac{n}{\alpha}\right)=1$.
Proof. By elementary properties of the greatest common divisor, $\operatorname{gcd}\left(\frac{m}{d}, \frac{n}{d}\right)=1$ implies $\operatorname{gcd}\left(\frac{m}{d} \cdot \frac{n}{d}, \frac{n}{\alpha}\right)=\operatorname{gcd}\left(\frac{m}{d}, \frac{n}{\alpha}\right) \operatorname{gcd}\left(\frac{n}{d}, \frac{n}{\alpha}\right)$. But $\operatorname{gcd}\left(\frac{m}{d} \cdot \frac{n}{d}, \frac{n}{\alpha}\right)=\frac{n}{d} \operatorname{gcd}\left(\frac{m}{d}, \frac{d}{\alpha}\right)$, and $\operatorname{gcd}\left(\frac{n}{d}, \frac{n}{\alpha}\right)=\frac{n}{d} \operatorname{gcd}\left(1, \frac{d}{\alpha}\right)=\frac{n}{d}$. Therefore, $\operatorname{gcd}\left(\frac{m}{d}, \frac{d}{\alpha}\right)=\operatorname{gcd}\left(\frac{m}{d}, \frac{n}{\alpha}\right)$. Multiplying both sides by α gives $\operatorname{gcd}\left(\alpha \frac{m}{d}, d\right)=\alpha \operatorname{gcd}\left(\frac{m}{d}, \frac{n}{\alpha}\right)$. But since $\alpha^{2} \nmid d$, we have $\operatorname{gcd}\left(\alpha \frac{m}{d}, d\right)=\alpha$ and hence, $\operatorname{gcd}\left(\frac{m}{d}, \frac{n}{\alpha}\right)=1$.

Observation 7. If $\alpha^{2} \mid d$, then $\operatorname{gcd}\left(\alpha^{2} \frac{m}{d}, d\right)=\alpha^{2}$ and $\operatorname{gcd}\left(\frac{m}{d}, \frac{n}{\alpha^{2}}\right)=1$.
Proof. Essentially the same argument as in the proof of Observation 6 gives $\operatorname{gcd}\left(\alpha \frac{m}{d}, \frac{d}{\alpha}\right)=\alpha \operatorname{gcd}\left(\frac{m}{d}, \frac{n}{\alpha^{2}}\right)$. Since $\alpha^{2} \mid d$, we have $\operatorname{gcd}\left(\alpha \frac{m}{d}, d\right)=\alpha^{2}$ and thus $\operatorname{gcd}\left(\alpha \frac{m}{d}, \frac{d}{\alpha}\right)=\alpha$. Hence, $\operatorname{gcd}\left(\frac{m}{d}, \frac{n}{\alpha^{2}}\right)=1$. The fact that $\operatorname{gcd}\left(\alpha^{2} \frac{m}{d}, d\right)=\alpha^{2}$ follows from $\operatorname{gcd}\left(\alpha \frac{m}{d}, \frac{d}{\alpha}\right)=\alpha$.

For the following lemmas, let $\mathbb{Z}_{m n}$ be the cyclic group of order $m n$, let $V=$ $\{(i, j): i \in[m], j \in[n]\}$, and for a given function $g: V \longmapsto \mathbb{Z}_{m n}$, define $g^{\prime}(i, j)=$ $g(i, j)-\mathcal{R}(j-i)$. For an element $g \in \mathbb{Z}_{m n}$, we denote by $\langle g\rangle$, the subgroup generated by g. Assume $1<d<\min \{m, n\}$ for all of the lemmas.

Lemma 8. If $\operatorname{gcd}(\lambda, d)=1$, then the mapping $g: V \longmapsto \mathbb{Z}_{m n}$ given by $g(i, j)=$ $j m+i n+\mathcal{R}(j-i)$, is a bijection.

Proof. To show that g is injective suppose that $g^{\prime}(i, j)=g^{\prime}(a, b)$ for some $(a, b),(i, j) \in V$. Therefore, we have

$$
\begin{equation*}
j m+i n \equiv b m+a n(\bmod m n) . \tag{1}
\end{equation*}
$$

Rearranging this equation gives $(j-b) m+(i-a) n \equiv 0(\bmod m n)$. For ease of notation, let $x=j-b$ and $y=i-a$. Then since $|x| \leq n-1,|y| \leq m-1$, and $x m+y n \equiv 0(\bmod m n)$, we have that $x m+y n=k m n$ for some $k \in\{-1,0,1\}$. Suppose $k= \pm 1$. Then $|y|=|i-a|=\frac{m(n-x)}{n} \in \mathbb{Z}$ if and only if $x=0$ since $n \nmid m$ by assumption (recall $d<\min \{m, n\}$). But if $x=0$, then $y n= \pm m n$, but this is impossible since $|y|<m$. Hence, $x m+y n=0$. Then dividing by d, we have $x \frac{m}{d}+y \frac{n}{d}=0$. Since $\frac{m}{d}$ and $\frac{n}{d}$ are relatively prime, the solutions have the form $(x, y)=\left(\frac{n}{d} r,-\frac{m}{d} r\right), \forall r \in[d]$. We have now established that there are exactly d ordered pairs in V which have the same value under g^{\prime}. This means that in order for g to be a bijection, we must show that $\left\{\mathcal{R}\left(y_{r}-x_{r}\right): r \in[d]\right\}=[d]$. To this end, observe that $\mathcal{R}\left(y_{r}-x_{r}\right) \equiv\left(y_{r}-x_{r}\right) \equiv-\frac{m}{d} r-\frac{n}{d} r \equiv-r \lambda(\bmod d)$ for each
$r \in[d]$. Since $\operatorname{gcd}(\lambda, d)=1$, we have $\langle\lambda\rangle \cong \mathbb{Z}_{d}$, hence $\langle-\lambda\rangle \cong \mathbb{Z}_{d}$. Therefore, $\left\{\mathcal{R}\left(y_{r}-x_{r}\right): r \in[d]\right\}=[d]$, so g is an injection, hence bijection.

Lemma 9. If $\operatorname{gcd}(\lambda, d)>1$, let $k=1$ if $\alpha^{2} \nmid d$ and let $k=2$ if $\alpha^{2} \mid d$. Then the mapping $g_{\alpha^{k}}: V \longmapsto \mathbb{Z}_{m n}$ given by $g_{\alpha^{k}}(i, j)=j m+i n \frac{d}{\alpha^{k}}+\mathcal{R}(j-i)$, is a bijection.

Proof. Suppose that $g_{\alpha^{k}}^{\prime}(i, j)=g_{\alpha^{k}}^{\prime}(a, b)$ for some $(i, j),(a, b) \in V$. Then we have $j m+i n \frac{d}{\alpha^{k}} \equiv b m+a n \frac{d}{\alpha^{k}}(\bmod m n)$. Letting $t=j-b$, and $u=i-a$, dividing by d, and observing that $\alpha^{k} \mid n$ gives

$$
\begin{equation*}
t \frac{m}{d}+u \frac{n}{\alpha^{k}} \equiv 0\left(\bmod \frac{m}{d} n\right) . \tag{2}
\end{equation*}
$$

Now observe that $\operatorname{gcd}\left(\frac{m}{d}, d\right)=\alpha$ implies $\alpha^{2} \mid m$. Therefore, $\alpha \nmid \frac{n}{\alpha^{k}}$ since otherwise, $\alpha \left\lvert\, \frac{n}{\alpha^{k}}\right.$ implies $\alpha^{k+1} \mid n$. Then if $k=1$, we have $\alpha^{2} \mid n$ and $\alpha^{2} \nmid d$ implies that $\alpha \left\lvert\, \frac{n}{d}\right.$ which in turn implies $\operatorname{gcd}\left(\frac{m}{d}, \frac{n}{d}\right)>1$, contradicting the assumption, $\operatorname{gcd}(m, n)=d$. While if $k=2$, we have $\alpha^{3} \mid n$ implies $\operatorname{gcd}\left(\frac{m}{d}, \frac{n}{\alpha^{2}}\right)>1$, a contradiction of Observation 7. Then since $\alpha \left\lvert\, \frac{m}{d}\right.$ but $\alpha \nmid \frac{n}{\alpha^{k}}$, we have that $\alpha \mid u$ from (2). But also, $\frac{m}{d} \left\lvert\, u \frac{n}{\alpha^{k}}\right.$. By (2) and Observations 6 and $7, \operatorname{gcd}\left(\frac{m}{d}, \frac{n}{\alpha^{k}}\right)=1$ which implies $\left.\frac{m}{d} \right\rvert\, u$. Therefore, both α and $\frac{m}{d}$ must divide u. Similarly, $\frac{n}{\alpha^{k}}$ must divide $t \frac{m}{d}$, which implies that $\left.\frac{n}{\alpha^{k}} \right\rvert\, t$. This allows us to provide a full description of the pairs (u, t) satisfying (2). Let S be the set of all such pairs. Then for all $p \in\left[\frac{d}{\alpha^{k}}\right]$, we have

$$
\begin{aligned}
S= & \left\{\left(\frac{m}{d} \alpha^{k} p, 0\right),\left(\frac{m}{d} \alpha^{k} p-\frac{m}{d}, \frac{n}{\alpha^{k}}\right),\left(\frac{m}{d} \alpha^{k} p-2 \frac{m}{d}, \frac{2 n}{\alpha^{k}}\right),\right. \\
& \left.\ldots,\left(\frac{m}{d} \alpha^{k} p-\left(\alpha^{k}-1\right) \frac{m}{d}, \frac{\left(\alpha^{k}-1\right) n}{\alpha^{k}}\right)\right\} .
\end{aligned}
$$

Note that there are exactly $\alpha^{k} \cdot \frac{d}{\alpha^{k}}=d$ pairs in S. Therefore, we have established that exactly d ordered pairs in V share the same value under $g_{\alpha^{k}}^{\prime}$. Now it remains to show that these ordered pairs have distinct values under \mathcal{R}. For ease of notation, let $x=\mathcal{R}\left(-\frac{m}{d} \alpha^{k}\right), y=\mathcal{R}\left(\frac{n}{\alpha^{k}}\right)$, and $z=\mathcal{R}\left(\frac{m}{d}\right)$. Furthermore, let $H=\langle x\rangle \leqslant \mathbb{Z}_{d}$. Then, $|H|=\operatorname{or}_{\mathbb{Z}_{d}}(x)=\frac{d^{\alpha^{\alpha}}}{\operatorname{gcd}(x, d)}=\frac{d}{\alpha^{k}}$, by Observations 6 and 7. Applying \mathcal{R} to each member of S defines the multiset,

$$
\mathcal{R}(S)=\left\{H+0, H+(y+z), H+2(y+z), \ldots, H+\left(\alpha^{k}-1\right)(y+z)\right\}
$$

It remains to show that the cosets of H in $\mathcal{R}(S)$ partition [d]. First observe that $y+z \not \equiv 0(\bmod d)$ since otherwise we have $\alpha \left\lvert\, \frac{n}{\alpha^{k}}\right.$ which we have already established is a contradiction. Secondly, suppose $(y+z) \in H$. Then $\frac{n}{\alpha^{k}}+\frac{m}{d} \equiv-\frac{m}{d} \alpha^{k} q(\bmod d)$ for some $q \in\left[\frac{d}{\alpha^{k}}\right]$. But since $\alpha \left\lvert\, \frac{m}{d}\right.$, it must be the case that $\alpha \left\lvert\, \frac{n}{\alpha^{k}}\right.$, which leads to the same contradiction as before. Therefore, $(y+z) \notin H$. Hence $\mathcal{R}(S)=[d]$, and so $g_{\alpha^{k}}$ is an injection, hence bijection.

Lemma 10. Let m be even and n be odd. If $\operatorname{gcd}(\lambda, d)=1$, then the mapping $g: V \longmapsto \mathbb{Z}_{m n}$ given by $g(i, j)=\left\{\begin{array}{l}j m+i n+\mathcal{R}(j-i), i \text { even } \\ (j-1) m+(i-1) n+d+\mathcal{R}(j-i), i \text { odd }\end{array}\right.$ is a bijection.

Proof. Suppose that $g^{\prime}(i, j)=g^{\prime}(a, b)$ for some $(i, j),(a, b) \in V$. It cannot be the case that i and a have different parities. For the sake of contradiction, suppose i is even and a is odd. Then we have $j m+i n \equiv d+(b-1) m+(a-1) n(\bmod m n)$. Therefore, $(j-b+1) m+(i-a+1) n \equiv d(\bmod m n)$. But this is a contradiction since $(j-b+1) m$ and $(i-a+1) n$ are both even and d is necessarily odd. So it cannot be the case that i is even and a is odd. Essentially the same argument shows it cannot be the case that i is odd and a is even. Therefore, i and a must be of the same parity. If i and a are both even, then $g^{\prime}(i, j)=g^{\prime}(a, b)$ implies equation (1) from Lemma 8, while if i and a are both odd, then we have $d+(j-1) m+(i-1) n \equiv$ $d+(b-1) m+(a-1) n(\bmod m n)$, which also is equivalent with (1). Thus g is a bijection by the same argument as in Lemma 8.

Lemma 11. Let m be even and n be odd. If $\operatorname{gcd}(\lambda, d)>1$, let $k=1$ when $\alpha^{2} \nmid d$, and let $k=2$ when $\alpha^{2} \mid d$. Then the mapping $g_{\alpha^{k}}: V \longmapsto \mathbb{Z}_{m n}$ given by $g_{\alpha^{k}}(i, j)=\left\{\begin{array}{l}j m+i n \frac{d}{\alpha^{k}}+\mathcal{R}(j-i), i \text { even } \\ (j-1) m+(i-1) n \frac{d}{\alpha^{k}}+d+\mathcal{R}(j-i), i \text { odd }\end{array}\right.$ is a bijection.

Proof. Suppose that $g_{\alpha^{k}}^{\prime}(i, j)=g_{\alpha^{k}}^{\prime}(a, b)$ for some $(i, j),(a, b) \in V$. As in Lemma $10, i$ and a must be of the same parity. If i and a are both even, then necessarily $j m+i n \frac{d}{\alpha^{k}} \equiv b m+a n \frac{d}{\alpha^{k}}(\bmod m n)$. Whereas, if i and a are both odd, then we have that $d+(j-1) m+(i-1) n \frac{d}{\alpha^{k}} \equiv d+(b-1) m+(a-1) n \frac{d}{\alpha^{k}}(\bmod m n)$. However, letting $t=j-b, u=i-a$, dividing by d, and observing that $\alpha^{k} \mid n$, we see that both equations are equivalent to (2) from Lemma 9. Hence in either case, $g_{\alpha^{k}}$ is a bijection by the same argument used in Lemma 9.

In the next three lemmas, assume m and n are even. Then let $V_{2}=\{(i, j) \in V$: $i \equiv j(\bmod 2)\} \subseteq V$. Let $2 \mathbb{Z}_{m n}=\left\{2 h: h \in \mathbb{Z}_{m n}\right\}$ denote the subgroup of $\mathbb{Z}_{m n}$ consisting of the even integers contained in $\mathbb{Z}_{m n}$. Similarly, let $2[d]=\left\{2 h: h \in \mathbb{Z}_{d}\right\}$. Also note that since m and n are both even, then at most one of $\frac{m}{d}$ and $\frac{n}{d}$ may be even. So assume without loss of generality that $\frac{n}{d}$ is always odd.

Lemma 12. Let m and n be even. If $\operatorname{gcd}(\lambda, d)=1$, then the mapping $g: V_{2} \longmapsto$ $2 \mathbb{Z}_{\text {mn }}$ given by
$g(i, j)=\left\{\begin{array}{l}j m+i n+\mathcal{R}(j-i), \text { for } i \equiv j \equiv 0(\bmod 2) \\ (j-1) m+(i-1) n+d+\mathcal{R}(j-i), \text { for } i \equiv j \equiv 1(\bmod 2)\end{array}\right.$
is a bijection.
Proof. Suppose $g^{\prime}(i, j)=g^{\prime}(a, b)$ for some $(i, j),(a, b) \in V$. Observe that it cannot be the case that i, j are both even and a, b are both odd, since otherwise ($j-$ $b+1) m+(i-a+1) n=k m n+d$ for some integer k would imply $(j-b+1) \frac{m}{d}+$ $(i-a+1) \frac{n}{d}=\frac{k m n}{d}+1$, a contradiction since the left hand side of the equation is even and the right hand side is odd (recall that $\frac{n}{d}$ is odd). For the same reason, it cannot be the case that i, j are both odd while a, b are both even. Therefore, i, j, a, and b are all of the same parity. Consequently, $g^{\prime}(i, j)=g^{\prime}(a, b)$ implies equation (1) from Lemma 8. With no restriction on the parities of $x=j-b$ and $y=i-a$, this equation was found to have the d solutions $\left(x_{r}, y_{r}\right)=\left(\frac{n}{d} r,-\frac{m}{d} r\right)$ for
each $r \in[d]$ in the proof of Lemma 8. However, in the present case we require that x and y both be even. Recall that $\frac{n}{d}$ is odd. Therefore, the $\frac{d}{2}$ solutions to (1) are $\left(x_{r}, y_{r}\right)=\left(\frac{n}{d} 2 r,-\frac{m}{d} 2 r\right)$ for each $r \in\left[\frac{d}{2}\right]$. We have now established that there are exactly $\frac{d}{2}$ ordered pairs in V_{2} having the same value under g^{\prime}. This means that in order for g to be a bijection, we must show that the set $\left\{\mathcal{R}\left(y_{r}-x_{r}\right): r \in\left[\frac{d}{2}\right]\right\}=2[d]$. To this end, observe $\mathcal{R}\left(y_{r}-x_{r}\right) \equiv\left(y_{r}-x_{r}\right) \equiv-\frac{m}{d} 2 r-\frac{n}{d} 2 r \equiv-2 r \lambda(\bmod d)$ for each $r \in\left[\frac{d}{2}\right]$. Since $\operatorname{gcd}(\lambda, d)=1$, we have $\langle\lambda\rangle \cong \mathbb{Z}_{d}$, hence $\langle-\lambda\rangle \cong \mathbb{Z}_{d}$. Therefore, $\left\{\mathcal{R}\left(x_{r}, y_{r}\right): r \in\left[\frac{d}{2}\right]\right\}=2[d]$. Therefore, the $\frac{d}{2}$ ordered pairs of V_{2} having the same value under g^{\prime} have distinct and even values under \mathcal{R}. Hence, $g: V_{2} \longmapsto 2 \mathbb{Z}_{m n}$ is an injection, hence bijection.

Lemma 13. Let m and n both be even. If $\operatorname{gcd}(\lambda, d)>1$, let $k=1$ when $\alpha^{2} \nmid d$, and let $k=2$ when $\alpha^{2} \mid d$. Then the mapping $g_{\alpha^{k}}: V_{2} \longmapsto 2 \mathbb{Z}_{m n}$ given by $g_{\alpha^{k}}(i, j)=\left\{\begin{array}{l}j m+i n \frac{d}{\alpha^{k}}+\mathcal{R}(j-i), \text { for } i \equiv j \equiv 0(\bmod 2) \\ (j-1) m+(i-1) n \frac{d}{\alpha^{k}}+d+\mathcal{R}(j-i), \text { for } i \equiv j \equiv 1(\bmod \end{array}\right.$ jection.

Proof. Suppose $g_{\alpha^{k}}^{\prime}(i, j)=g_{\alpha^{k}}^{\prime}(a, b)$ for some $(i, j),(a, b) \in V$. As in Lemma 12, it must be the case that i, j, a, and b are all of the same parity. Then letting $u=i-a$, $t=j-b$, dividing by d, and observing that $\alpha^{k} \mid n$ we have that $g_{\alpha^{k}}^{\prime}(i, j)=g_{\alpha^{k}}^{\prime}(a, b)$ implies equation (2) from Lemma 9. With no restriction on the parities of u and t, we observed in the proof of Lemma 9 that a full description of the d pairs (u, t) satisfying (2) is given by

$$
\begin{aligned}
S= & \left\{\left(\frac{m}{d} \alpha^{k} p, 0\right),\left(\frac{m}{d} \alpha^{k} p-\frac{m}{d}, \frac{n}{\alpha^{k}}\right),\left(\frac{m}{d} \alpha^{k} p-2 \frac{m}{d}, \frac{2 n}{\alpha^{k}}\right),\right. \\
& \left.\ldots,\left(\frac{m}{d} \alpha^{k} p-\left(\alpha^{k}-1\right) \frac{m}{d}, \frac{\left(\alpha^{k}-1\right) n}{\alpha^{k}}\right)\right\},
\end{aligned}
$$

for all $p \in\left[\frac{d}{\alpha^{k}}\right]$. However, in this case we are restricted to the pairs in S such that u and t are both even.

If $\frac{m}{d}$ is odd, then $\operatorname{gcd}\left(\frac{m}{d}, d\right)=\alpha$ is odd, since d is even. So α^{k} is also odd, and hence $\frac{n}{\alpha^{k}}$ is even, since n is even. Then for all $p \in\left\{0,2, \ldots, \frac{d}{\alpha^{k}}\right\}$ and all $l \in\left\{1,3, \ldots, \frac{d}{\alpha^{k}}-1\right\}$, $S_{1} \subset S$ where

$$
\begin{aligned}
S_{1}= & \left\{\left(\frac{m}{d} \alpha^{k} p, 0\right),\left(\frac{m}{d} \alpha^{k} l-\frac{m}{d}, \frac{n}{\alpha^{k}}\right),\left(\frac{m}{d} \alpha^{k} p-2 \frac{m}{d}, \frac{2 n}{\alpha^{k}}\right),\right. \\
& \left.\ldots,\left(\frac{m}{d} \alpha^{k} l-\left(\alpha^{k}-2\right) \frac{m}{d}, \frac{\left(\alpha^{k}-2\right) n}{\alpha^{k}}\right),\left(\frac{m}{d} \alpha^{k} p-\left(\alpha^{k}-1\right) \frac{m}{d}, \frac{\left(\alpha^{k}-1\right) n}{\alpha^{k}}\right)\right\},
\end{aligned}
$$

is the full set of $\frac{d}{2}$ solutions to (2) in this case.
On the other hand, if $\frac{m}{d}$ is even we have $\operatorname{gcd}\left(\frac{m}{d}, d\right)=\alpha$ is even, so α^{k} is also even. Then since $\operatorname{gcd}\left(\frac{m}{d}, \frac{d}{\alpha^{k}}\right)=1$ by Observations 6 and 7 , we have that $\frac{d}{\alpha^{k}}$ is odd and hence $\frac{n}{\alpha^{k}}=\frac{d}{\alpha^{k}} \cdot \frac{n}{d}$ is odd, since $\frac{n}{d}$ is odd. Then for all $p \in\left[\frac{d}{\alpha^{k}}\right], S_{2} \subset S$ where

$$
\begin{aligned}
S_{2}= & \left\{\left(\frac{m}{d} \alpha^{k} p, 0\right),\left(\frac{m}{d} \alpha^{k} p-2 \frac{m}{d}, \frac{2 n}{\alpha^{k}}\right),\left(\frac{m}{d} \alpha^{k} p-4 \frac{m}{d}, \frac{4 n}{\alpha^{k}}\right),\right. \\
& \left.\ldots,\left(\frac{m}{d} \alpha^{k} p-\left(\alpha^{k}-2\right) \frac{m}{d}, \frac{\left.\alpha^{k}-2\right) n}{\alpha^{k}}\right)\right\},
\end{aligned}
$$

is the full set of $\frac{d}{2}$ solutions to (2) in this case. Therefore, in either case we have established that exactly $\frac{d}{2}$ ordered pairs in V_{2} share the same value under $g_{\alpha^{k}}^{\prime}$. Now
we will show that these ordered pairs have distinct values under \mathcal{R}. We have already observed that $\mathcal{R}(S)=[d]$ in the proof of Lemma 9. Then since $S_{1}, S_{2} \subseteq S$ and $\frac{\left|S_{1}\right|}{|S|}=\frac{\left|S_{2}\right|}{|S|}=\frac{1}{2}$ and both S_{1} and S_{2} contain ordered pairs of the form (u, t) where u and t are both even, we conclude that $\mathcal{R}\left(S_{1}\right)=\mathcal{R}\left(S_{2}\right)=2[d]$. Hence, the mapping $g_{\alpha^{k}}: V_{2} \longmapsto 2 \mathbb{Z}_{m n}$ is an injection, hence bijection.

3 Cartesian product of two cycles

We begin with a construction for the case when one cycle length is a multiple of the other.
Theorem 14. The Cartesian product $C_{m} \square C_{k m}$ is orientable $\mathbb{Z}_{k m^{2}}$-distance magic for all $m \geq 3$ and $k \geq 1$.

Proof. Let $G=C_{m}=\left\{g_{0}, g_{1}, \ldots, g_{m-1}, g_{0}\right\}$ and $H=C_{k m}=\left\{h_{0}, h_{1}, \ldots, h_{k m-1}, h_{0}\right\}$. Then orient each copy of $G \square H$ as follows. Fix $j \in[k m]$. Then for all $i \in[m]$, orient counter-clockwise each cycle of the form $\left\{\left(g_{i}, h_{j}\right),\left(g_{i+1}, h_{j}\right), \ldots,\left(g_{i-1}, h_{j}\right),\left(g_{i}, h_{j}\right)\right\}$, where the arithmetic in the subscript is performed modulo m. Similarly, fix $i \in[m]$. Then for all $j \in[k m]$, orient counter-clockwise each cycle of the form

$$
\left\{\left(g_{i}, h_{j}\right),\left(g_{i}, h_{j+1}\right), \ldots,\left(g_{i}, h_{j-1}\right),\left(g_{i}, h_{j}\right)\right\},
$$

where the arithmetic in the subscript is performed modulo km . Since the graph $G \square H$ can be edge-decomposed into cycles of those two forms, we have oriented every edge in $G \square H$. Let x_{i}^{j} denote the vertex $\left(g_{i}, h_{j}\right) \in V(G \square H)$ for $i \in[m], j \in[k m]$. Define $\vec{l}: V \rightarrow \mathbb{Z}_{k m^{2}}$ by

$$
\vec{l}\left(x_{i}^{j}\right)=m j+\mathcal{R}(i-j) .
$$

Expressing $\vec{l}\left(x_{i}^{j}\right)$ in the following alternative way,

$$
\vec{l}\left(x_{i}^{j}\right)= \begin{cases}m j, & \text { for } i \equiv j(\bmod m) \\ m j+1, & \text { for } i \equiv j+1(\bmod m) \\ m j+2, & \text { for } i \equiv j+2(\bmod m) \\ \vdots & \vdots \\ m j+(m-1), & \text { for } i \equiv j-1(\bmod m)\end{cases}
$$

we see that \vec{l} is clearly bijective.
Then for all x_{i}^{j} we have $N^{+}\left(x_{i}^{j}\right)=\left\{x_{i}^{j+1}, x_{i+1}^{j}\right\}$ and $N^{-}\left(x_{i}^{j}\right)=\left\{x_{i}^{j-1}, x_{i-1}^{j}\right\}$ where the arithmetic is performed modulo km in the superscript and modulo m in the subscript. Therefore,

$$
\begin{aligned}
& w\left(x_{i}^{j}\right)= \vec{l}\left(x_{i}^{j+1}\right)+\vec{l}\left(x_{i+1}^{j}\right)-\left[\vec{l}\left(x_{i-1}^{j}\right)+\vec{l}\left(x_{i}^{j-1}\right)\right] \\
&= m(j+1)+m j-m j-m(j-1) \\
&+[\mathcal{R}(i-j-1)+\mathcal{R}(i-j+1)-\mathcal{R}(i-j-1)-\mathcal{R}(i-j+1)] \\
&=\left\{\begin{array}{l}
m(2-k m), j \in\{0, k m-1\} \\
m \cdot 2, j \in\{1, \ldots, k m-2\} \\
=
\end{array}\right. \\
& 2 m,
\end{aligned}
$$

since $m(2-k m) \equiv 2 m\left(\bmod k m^{2}\right)$.
Thus, \vec{l} is an orientable $\mathbb{Z}_{k m^{2}}$-distance magic labeling.
Each case in the proof of the next theorem uses a directed labeling which was shown to be a bijection from the vertex set of the graph to the appropriate group in Section 2.

Theorem 15. The Cartesian product $C_{m} \square C_{n}$ is orientable $\mathbb{Z}_{m n}$-distance magic for all $m, n \geq 3$.

Proof. Let $m, n \geq 3$ be given and let $\operatorname{gcd}(m, n)=d$. Then define $\lambda=\frac{m+n}{d}$ and let $\operatorname{gcd}\left(\frac{m}{d}, d\right)=\alpha$. If $d=1$, we are done by Theorem 5. If $d=\min \{m, n\}$ (i.e. one cycle length is a multiple of the other), we are done by Theorem 14. So assume $1<d<\min \{m, n\}$. Notice this is the same assumption used to prove the lemmas in Section 2. Let $G=C_{m}=\left\{g_{0}, g_{1}, \ldots, g_{m-1}, g_{0}\right\}$ and $H=C_{n}=\left\{h_{0}, h_{1}, \ldots, h_{n-1}, h_{0}\right\}$. Then orient each copy of $G \square H$ as in Theorem 14. Now let x_{i}^{j} denote the vertex $\left(g_{i}, h_{j}\right) \in V(G \square H)$ for all $i \in[m]$ and $j \in[n]$. We proceed in three cases based on the parity of m and n. Since we will define a different directed labeling for each case, we first pause to make the following observation. For any directed labeling $\vec{l}: V(G \square H) \rightarrow \mathbb{Z}_{m n}$ of $\overrightarrow{G \square H}$, we have

$$
\begin{aligned}
w\left(x_{i}^{j}\right) & =\sum_{y \in N^{+}\left(x_{i}^{j}\right)} \vec{l}(y)-\sum_{y \in N^{-}\left(x_{i}^{j}\right)} \vec{l}(y) \\
& =\vec{l}\left(x_{i}^{j+1}\right)+\vec{l}\left(x_{i+1}^{j}\right)-\left[\vec{l}\left(x_{i-1}^{j}\right)+\vec{l}\left(x_{i}^{j-1}\right)\right],
\end{aligned}
$$

for every vertex $x_{i}^{j} \in V(G \square H)$, where the arithmetic is performed modulo n in the superscript and modulo m in the subscript. However, it should be emphasized that the weight calculation is performed in the group $\mathbb{Z}_{m n}$.

Case 1.1. m and n both odd and $\operatorname{gcd}(\lambda, d)=1$.
For all $x_{i}^{j} \in V(G \square H)$, define $\vec{l}: V(G \square H) \rightarrow \mathbb{Z}_{m n}$ where

$$
\vec{l}\left(x_{i}^{j}\right)=j m+i n+\mathcal{R}(j-i) .
$$

Then \vec{l} is a bijection by Lemma 8 and

$$
\begin{aligned}
w\left(x_{i}^{j}\right) & =(j+1) m+i n+j m+(i+1) n \\
& -[j m+(i-1) n+(j-1) m+i n] \\
& +\mathcal{R}(j-i+1)-\mathcal{R}(j-i+1)+\mathcal{R}(j-i-1)-\mathcal{R}(j-i-1) \\
& =s m+r n,
\end{aligned}
$$

where $s \in\{2,2-n\}$ and $r \in\{2,2-m\}$. But, $s m+r n \equiv 2 m+2 n(\bmod m n)$, so

$$
w\left(x_{i}^{j}\right)=2 m+2 n .
$$

In the remaining cases we will omit the equality involving s and r above and only show the final congruence modulo mn .

Case 1.2. m and n both odd and $\operatorname{gcd}(\lambda, d)>1$.
Let $k=1$ when $\alpha^{2} \nmid d$ and let $k=2$ when $\alpha^{2} \mid d$. Then for all $x_{i}^{j} \in V(G \square H)$, define $\overrightarrow{l_{\alpha^{k}}}: V(G \square H) \rightarrow \mathbb{Z}_{m n}$ where

$$
\overrightarrow{l_{\alpha^{k}}}\left(x_{i}^{j}\right)=j m+i n \frac{d}{\alpha^{k}}+\mathcal{R}(j-i) .
$$

Then $\overrightarrow{l_{\alpha^{k}}}$ is a bijection by Lemma 9 and

$$
\begin{aligned}
w\left(x_{i}^{j}\right) & =(j+1) m+i n \frac{d}{\alpha^{k}}+j m+(i+1) n \frac{d}{\alpha^{k}} \\
& -\left[j m+(i-1) \frac{d}{\alpha^{k}}+(j-1) m+i n \frac{d}{\alpha^{k}}\right] \\
& +\mathcal{R}(j-i+1)-\mathcal{R}(j-i+1)+\mathcal{R}(j-i-1)-\mathcal{R}(j-i-1) \\
& =2 m+2 n \frac{d}{\alpha^{k}} .
\end{aligned}
$$

Suppose exactly one of m and n is odd. Since the Cartesian product is commutative, we may assume without loss of generality that m is even and n is odd. Then as in the previous case, $\operatorname{gcd}(\lambda, d)$ establishes two subcases.

Case 2.1. m even, n odd, and $\operatorname{gcd}(\lambda, d)=1$.
For all $x_{i}^{j} \in V(G \square H)$, define $\vec{l}: V(G \square H) \rightarrow \mathbb{Z}_{m n}$ where

$$
\vec{l}\left(x_{i}^{j}\right)=\left\{\begin{array}{l}
j m+i n+\mathcal{R}(j-i), i \text { even } \\
(j-1) m+(i-1) n+d+\mathcal{R}(j-i), i \text { odd }
\end{array} .\right.
$$

Then \vec{l} is a bijection by Lemma 10 , and if i is even we have

$$
\begin{aligned}
w\left(x_{i}^{j}\right) & =(j+1) m+i n+(j-1) m+i n+d \\
& -[(j-1) m+(i-2) n+d+(j-1) m+i n] \\
& +\mathcal{R}(j-i+1)-\mathcal{R}(j-i+1)+\mathcal{R}(j-i-1)-\mathcal{R}(j-i-1) \\
& =2 m+2 n .
\end{aligned}
$$

While if i is odd we have

$$
\begin{aligned}
w\left(x_{i}^{j}\right) & =j m+(i-1) n+d+j m+(i+1) n \\
& -[j m+(i-1) n+(j-2) m+(i-1) n+d] \\
& +\mathcal{R}(j-i+1)-\mathcal{R}(j-i+1)+\mathcal{R}(j-i-1)-\mathcal{R}(j-i-1) \\
& =2 m+2 n .
\end{aligned}
$$

Case 2.2. m even, n odd, and $\operatorname{gcd}(\lambda, d)>1$.
As in Case 1.2, let $k=1$ when $\alpha^{2} \nmid d$ and let $k=2$ when $\alpha^{2} \mid d$. For all $x_{i}^{j} \in V(G \square H)$, define $\overrightarrow{l_{\alpha^{k}}}: V(G \square H) \rightarrow \mathbb{Z}_{m n}$ where

$$
\overrightarrow{l_{\alpha^{k}}}\left(x_{i}^{j}\right)=\left\{\begin{array}{l}
j m+i n \frac{d}{\alpha^{k}}+\mathcal{R}(j-i), i \text { even } \\
(j-1) m+(i-1) n \frac{d}{\alpha^{k}}+d+\mathcal{R}(j-i), i \text { odd }
\end{array} .\right.
$$

Then $\overrightarrow{l_{\alpha^{k}}}$ is a bijection by Lemma 11, and if i is even we have

$$
\begin{aligned}
w\left(x_{i}^{j}\right) & =(j+1) m+i n \frac{d}{\alpha^{k}}+(j-1) m+i n \frac{d}{\alpha^{k}} \\
& \left.-[(j-1) m+i-2) n \frac{d}{\alpha^{k}}+d+(j-1) m+i n \frac{d}{\alpha^{k}}\right] \\
& +\mathcal{R}(j-i+1)-\mathcal{R}(j-i+1)+\mathcal{R}(j-i-1)-\mathcal{R}(j-i-1) \\
& =2 m+2 n \frac{d}{\alpha^{k}} .
\end{aligned}
$$

While if i is odd we have

$$
\begin{aligned}
w\left(x_{i}^{j}\right) & =j m+(i-1) n \frac{d}{\alpha^{k}}+d+j m+(i+1) n \frac{d}{\alpha^{k}} \\
& -\left[j m+\left(i-1 n \frac{d}{\alpha^{k}}+(j-2) m+(i-1) n \frac{d}{\alpha^{k}}+d\right]\right. \\
& +\mathcal{R}(j-i+1)-\mathcal{R}(j-i+1)+\mathcal{R}(j-i-1)-\mathcal{R}(j-i-1) \\
& =2 m+2 n \frac{d}{\alpha^{k}} .
\end{aligned}
$$

Now suppose that both m and n are even. Since $\operatorname{gcd}(m, n)=d$, at most one of $\frac{m}{d}$ and $\frac{n}{d}$ is even. Since the Cartesian product is commutative, if one of $\frac{m}{d}$ and $\frac{n}{d}$ is even, we may assume without loss of generality that $\frac{n}{d}$ is odd. Then as in the previous cases, $\operatorname{gcd}(\lambda, d)$ establishes two subcases.

Case 3.1. $\frac{m}{d}$ even, $\frac{n}{d}$ odd, and $\operatorname{gcd}(\lambda, d)=1$.
For all $x_{i}^{j} \in V(G \square H)$, define $\vec{f}: V(G \square H) \rightarrow \mathbb{Z}_{m n}$ and $\vec{l}: V(G \square H) \rightarrow \mathbb{Z}_{m n}$ where

$$
\vec{f}\left(x_{i}^{j}\right)=\left\{\begin{array}{l}
j m+i n+\mathcal{R}(j-i), \text { for } i \equiv j \equiv 0(\bmod 2) \\
(j-1) m+(i-1) n+d+\mathcal{R}(j-i), \text { for } i \equiv j \equiv 1(\bmod 2)
\end{array}\right.
$$

and

$$
\vec{l}\left(x_{i}^{j}\right)=\left\{\begin{array}{l}
\vec{f}\left(x_{i}^{j}\right), \text { for } i \equiv j(\bmod 2) \\
\vec{f}\left(x_{i}^{j-1}\right)+1, \text { for } i \not \equiv j(\bmod 2)
\end{array} .\right.
$$

By Lemma $12, \vec{f}$ maps the vertices $\left\{x_{i}^{j}: i \equiv j(\bmod 2)\right\}$ bijectively to $2 \mathbb{Z}_{m n}$. Then clearly $\vec{f}+1$ maps the vertices $\left\{x_{i}^{j-1}: i \not \equiv j(\bmod 2)\right\}$ bijectively to $2 \mathbb{Z}_{m n}+1$. Therefore, $\vec{l}: V(G \square H) \rightarrow \mathbb{Z}_{m n}$ is a bijection since $\mathbb{Z}_{m n} \cong 2 \mathbb{Z}_{m n} \cup 2 \mathbb{Z}_{m n}+1$. If $i \equiv j(\bmod 2)$ we have

$$
\begin{aligned}
w\left(x_{i}^{j}\right) & =\vec{l}\left(x_{i}^{j+1}\right)+\vec{l}\left(x_{i+1}^{j}\right)-\left[\vec{l}\left(x_{i-1}^{j}\right)+\vec{l}\left(x_{i}^{j-1}\right)\right] \\
& =\vec{f}\left(x_{i}^{j}\right)+1+\vec{f}\left(x_{i+1}^{j-1}\right)+1-\left[\vec{f}\left(x_{i-1}^{j-1}\right)+1+\vec{f}\left(x_{i}^{j-2}\right)+1\right] \\
& =\vec{f}^{\prime}\left(x_{i}^{j}\right)+\overrightarrow{f^{\prime}}\left(x_{i+1}^{j-1}\right)-\left[\overrightarrow{f^{\prime}}\left(x_{i-1}^{j-1}\right)+\vec{f}^{\prime}\left(x_{i}^{j-2}\right)\right] \\
& +\mathcal{R}(j-i)+\mathcal{R}(j-i-2)-\mathcal{R}(j-i)-\mathcal{R}(j-i-2) \\
& =2 m+2 n .
\end{aligned}
$$

While if $i \not \equiv j(\bmod 2)$ we have

$$
\begin{aligned}
w\left(x_{i}^{j}\right) & =\vec{l}\left(x_{i}^{j+1}\right)+\vec{l}\left(x_{i+1}^{j}\right)-\left[\vec{l}\left(x_{i-1}^{j}\right)+\vec{l}\left(x_{i}^{j-1}\right)\right] \\
& =\vec{f}\left(x_{i}^{j+1}\right)+\vec{f}\left(x_{i+1}^{j}\right)-\left[\vec{f}\left(x_{i-1}^{j}\right)+\vec{f}\left(x_{i}^{j-1}\right)\right] \\
& =\vec{f}^{\prime}\left(x_{i}^{j+1}\right)+\vec{f}^{\prime}\left(x_{i+1}^{j}\right)-\left[\vec{f}^{\prime}\left(x_{i-1}^{j}\right)+\vec{f}^{\prime}\left(x_{i}^{j-1}\right)\right] \\
& +\mathcal{R}(j-i+1)+\mathcal{R}(j-i-1)-\mathcal{R}(j-i+1)-\mathcal{R}(j-i-1) \\
& =2 m+2 n .
\end{aligned}
$$

Figure 3 provides an example of this case.

Case 3.2. $\frac{m}{d}$ even, $\frac{n}{d}$ odd, and $\operatorname{gcd}(\lambda, d)>1$.
As in the previous cases, let $k=1$ when $\alpha^{2} \nmid d$, let $k=2$ when $\alpha^{2} \mid d$, and for all $x_{i}^{j} \in V(G \square H)$, define $\overrightarrow{f_{\alpha^{k}}}: V(G \square H) \rightarrow \mathbb{Z}_{m n}$ and $\overrightarrow{l_{\alpha^{k}}}: V(G \square H) \rightarrow \mathbb{Z}_{m n}$ where

$$
\overrightarrow{f_{\alpha^{k}}}\left(x_{i}^{j}\right)=\left\{\begin{array}{l}
j m+i n \frac{d}{\alpha^{k}}+\mathcal{R}(j-i), \text { for } i \equiv j \equiv 0(\bmod 2) \\
(j-1) m+(i-1) n \frac{d}{\alpha^{k}}+d+\mathcal{R}(j-i), \text { for } i \equiv j \equiv 1(\bmod 2)
\end{array},\right.
$$

and

$$
\overrightarrow{l_{\alpha^{k}}}\left(x_{i}^{j}\right)=\left\{\begin{array}{l}
\overrightarrow{f_{\alpha^{k}}}\left(x_{i}^{j}\right), \text { for } i \equiv j(\bmod 2) \\
\overrightarrow{f_{\alpha^{k}}}\left(x_{i}^{j-1}\right)+1, \text { for } i \not \equiv j(\bmod 2)
\end{array} .\right.
$$

By Lemma 13 and essentially the same argument used in Case 3.1, we conclude that $\overrightarrow{l_{\alpha^{k}}}: V(G \square H) \rightarrow \mathbb{Z}_{m n}$ is a bijection. Finally, if $i \equiv j(\bmod 2)$ we have

$$
\begin{aligned}
w\left(x_{i}^{j}\right) & =\overrightarrow{l_{\alpha^{k}}}\left(x_{i}^{j+1}\right)+\overrightarrow{l_{\alpha^{k}}}\left(x_{i+1}^{j}\right)-\left[\overrightarrow{l_{\alpha^{k}}}\left(x_{i-1}^{j}\right)+\overrightarrow{l_{\alpha^{k}}}\left(x_{i}^{j-1}\right)\right] \\
& =\overrightarrow{f_{\alpha^{k}}}\left(x_{i}^{j}\right)+1+\overrightarrow{f_{\alpha^{k}}}\left(x_{i+1}^{j-1}\right)+1-\left[\overrightarrow{f_{\alpha^{k}}}\left(x_{i-1}^{j-1}\right)+1+\overrightarrow{f_{\alpha^{k}}}\left(x_{i}^{j-2}\right)+1\right] \\
& =\overrightarrow{f_{\alpha^{k}}}\left(x_{i}^{j}\right)+\overrightarrow{f_{\alpha^{k}}^{\prime}}\left(x_{i+1}^{j-1}\right)-\left[\overrightarrow{f_{\alpha^{k}}}\left(x_{i-1}^{j-1}\right)+\overrightarrow{f_{\alpha^{k}}^{\prime}}\left(x_{i}^{j-2}\right)\right] \\
& +\mathcal{R}(j-i)+\mathcal{R}(j-i-2)-\mathcal{R}(j-i)-\mathcal{R}(j-i-2) \\
& =2 m+2 n \frac{d}{\alpha^{k}} .
\end{aligned}
$$

While if $i \not \equiv j(\bmod 2)$ we have

$$
\begin{aligned}
w\left(x_{i}^{j}\right) & =\overrightarrow{l_{\alpha^{k}}}\left(x_{i}^{j+1}\right)+\overrightarrow{l_{\alpha^{k}}}\left(x_{i+1}^{j}\right)-\left[\overrightarrow{l_{\alpha^{k}}}\left(x_{i-1}^{j}\right)+\overrightarrow{l_{\alpha^{k}}}\left(x_{i}^{j-1}\right)\right] \\
& =\overrightarrow{f_{\alpha^{k}}}\left(x_{i}^{j+1}\right)+\overrightarrow{f_{\alpha^{k}}}\left(x_{i+1}^{j}\right)-\left[\overrightarrow{f_{\alpha^{k}}}\left(x_{i-1}^{j}\right)+\overrightarrow{f_{\alpha^{k}}}\left(x_{i}^{j-1}\right)\right. \\
& =\overrightarrow{f_{\alpha^{k}}}\left(x_{i}^{j+1}\right)+\overrightarrow{f_{\alpha^{k}}}\left(x_{i+1}^{j}\right)-\left[\overrightarrow{f_{\alpha^{k}}}\left(x_{i-1}^{j}\right)+\overrightarrow{f_{\alpha^{k}}}\left(x_{i}^{j-1}\right)\right] \\
& +\mathcal{R}(j-i+1)+\mathcal{R}(j-i-1)-\mathcal{R}(j-i+1)-\mathcal{R}(j-i-1) \\
& =2 m+2 n \frac{d}{\alpha^{k}} .
\end{aligned}
$$

In every case, $w\left(x_{i}^{j}\right)$ is constant for all $x_{i}^{j} \in V(G \square H)$. Hence, $C_{m} \square C_{n}$ is orientable $\mathbb{Z}_{m n}$-distance magic.

Figure 3: Orientable \mathbb{Z}_{24}-distance magic labeling of $C_{4} \square C_{6}$

4 Future work

We have shown that the Cartesian product of any two cycles is orientable \mathbb{Z}_{n}-distance magic. In this paper, we fix the orientation of our cycles. However, because any cycle can be oriented in a non-unique way, it would be interesting to see if there are other orientations for which an accompanying orientable Z_{n}-distance magic labeling could be found.

Hypercubes are an important class of graphs which can be constructed using the Cartesian product of cycles. In [6] we showed the repeated Cartesian product of a cycle is orientable \mathbb{Z}_{n}-distance magic, proving that even-ordered hypercubes are orientable \mathbb{Z}_{n}-distance magic. A natural direction forward is to generalize to the Cartesian product of many cycles of various lengths. We pose the following problem.

Problem 16. For what numbers $n_{1}, n_{2}, \ldots, n_{k}$ is the Cartesian product $C_{n_{1}} \square C_{n_{2}} \square$ $\ldots \square C_{n_{k}}$ orientable $\mathbb{Z}_{n_{1}, n_{2}, \ldots, n_{k}}$-distance magic?

Another possibility for future work is to consider abelian groups other than the cyclic group.

Problem 17. Determine all abelian groups Γ such that $C_{m} \square C_{n}$ is orientable Γ distance magic.

One may wonder whether an orientable \mathbb{Z}_{n}-distance magic graph G of order n is also \mathbb{Z}_{n}-distance magic, or vice versa. Since \mathbb{Z}_{n}-distance magic labeling is more restrictive than orientable \mathbb{Z}_{n}-distance magic labeling, intuitively it should not be the case that orientable \mathbb{Z}_{n}-distance magic implies \mathbb{Z}_{n}-distance magic. Indeed, Theorems 1 and 15 show that this is not the case.

But perhaps \mathbb{Z}_{n}-distance magic implies orientable \mathbb{Z}_{n}-distance magic. Theorems 3 and 4 indicate that the contrapositive checks for the case of odd regular graphs on $n \equiv 2(\bmod 4)$ vertices. We pose the following conjecture.

Conjecture 18. If a graph G of order n is \mathbb{Z}_{n}-distance magic, then it is orientable \mathbb{Z}_{n}-distance magic.

References

[1] S. Arumugam, D. Froncek and N. Kamatchi, Distance magic graphs-a survey, J. Indones. Math. Soc. (2011), Special edition, 1-9.
[2] S. Cichacz, Group distance magic labeling of some cycle-related graphs, Australas. J. Combin. 57 (2013), 235-243.
[3] S. Cichacz, B. Freyberg and D. Froncek, Orientable \mathbb{Z}_{n}-distance magic graphs, Discuss. Math. (2017) (to appear).
[4] S. Cichacz and D. Froncek, Distance magic circulant graphs, Discrete Math. 339(1), (2016), 84-94.
[5] D. Froncek, Group distance magic labeling of Cartesian product of cycles, Australas. J. Combin. 55 (2013), 167-174.
[6] B. Freyberg and M. Keranen, Orientable \mathbb{Z}_{n}-distance magic labeling of Cartesian product of many cycles, Electron. J. Graph Theory Appl. (to appear).

