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Abstract

A directed Zn-distance magic labeling of an oriented graph
−→
G = (V,A)

of order n is a bijection
−→
� : V → Zn with the property that there exists

μ ∈ Zn (called the magic constant) such that

w(x) =
∑

y∈N+
G (x)

−→
� (y)−

∑
y∈N−

G (x)

−→
� (y) = μ for every x ∈ V (G).

If for a graph G there exists an orientation
−→
G such that there is a directed

Zn-distance magic labeling
−→
� for

−→
G , we say that G is orientable Zn-

distance magic. In this paper, we prove that the Cartesian product of
any two cycles is orientable Zn-distance magic.

1 Definitions and known results

A distance magic labeling of a graph G = (V,E) of order n is a bijection f : V →
{1, 2, . . . , n} with the property that there is a positive integer k (called the magic
constant) such that

w(x) =
∑

y∈N(x)

f(y) = k for every x ∈ V (G),
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where N(x) = {y|xy ∈ E} is the open neighborhood of vertex x. We call w(x) the
weight of vertex x. See [1] for a survey of results regarding distance magic graphs.
Froncek adapted distance magic labeling by using the elements from an abelian group
as labels rather than integers in [5]. Let G = (V,E) be a graph of order n and let
Γ be an abelian group of order n. If there exists a bijection � : V → Γ with the
property that there is an element μ ∈ Γ such that

w(x) =
∑

y∈N(x)

�(y) = μ for every x ∈ V (G),

we say the labeling � is a Γ-distance magic labeling and we say the graph G is Γ-
distance magic. If such a labeling exists for every abelian group of order n, then we
say G is group distance magic.

For a given natural number p, let [p] denote the set {0, 1, . . . , p− 1} . For a set of
integers S and a number c, let S+ c = {x+ c : x ∈ S} . For an element g of a group
G, we use the notation ordG(g) to denote the order of g.

The Cartesian product G�H of two graphs G and H is a graph with vertex set
V (G) × V (H) and two vertices (g, h) and (g′, h′) are adjacent in G�H if and only
if g = g′ and h is adjacent to h′ in H, or h = h′ and g is adjacent to g′ in G. Let
Cn = {x0, x1, . . . , xn−1, x0} denote a cycle of length n.

Figure 1: Cartesian product C3�C4

Froncek proved the following result in [5].

Theorem 1. [5] The Cartesian product Cm�Cn is Zmn-distance magic if and only
if mn is even.

Cichacz made progress towards settling when Cm�Cn is group distance magic by
proving the following in [2].

Theorem 2. [2] Let l = lcm (m,n). If m or n is even, then Cm�Cn is Zα×Γ-distance
magic for any α ≡ 0 (mod l) and any abelian group Γ of order mn

α
.

Cichacz and Froncek proved the following non-existence result in [4].

Theorem 3. If G is an r-regular graph of order n and r is odd, then G is not
Zn-distance magic.
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The following analog of group distance magic labeling for directed graphs was
introduced in [3]. Let G = (V,E) be an undirected graph on n vertices. Assigning a

direction to the edges of G gives an oriented graph
−→
G(V,A). We will use the notation−→xy to denote an edge directed from vertex x to vertex y. Let N+(x) = {y|−→yx ∈ A}

and N−(x) = {z|−→xz ∈ A}. Let Γ be an abelian group of order n. A directed Γ-

distance magic labeling of an oriented graph
−→
G = (V,A) of order n is a bijection−→

� : V → Γ with the property that there is a μ ∈ Γ (called the magic constant) such
that

w(x) =
∑

y∈N+(x)

−→
� (y)−

∑
y∈N−(x)

−→
� (y) = μ for every x ∈ V (G).

If for a graph G there exists an orientation
−→
G such that there is a directed Γ-distance

magic labeling
−→
� for

−→
G , we say that G is orientable Γ-distance magic.

In this paper, we focus on orientable Zn-distance magic labeling, where Zn is
the cyclic group of order n. For the sake of orienting a cycle Cn, if the edges are
oriented such that every arc has the form −−−→xixi+1 for all i ∈ {0, 1, . . . , n− 1} (where
the addition in the subscript is taken modulo n), then we say the cycle is oriented
clockwise. On the other hand, if all the edges of the cycle are oriented such that
every arc has the form −−−→xixi−1 for all i ∈ {0, 1, . . . , n− 1}, then we say the cycle is
oriented counter-clockwise.

0 1

23

Figure 2: Orientable Z4-distance magic labeling of C4 with clockwise orientation

It is an easy observation that Cn is orientable Zn-distance magic for all n ≥ 3
(orient all the edges in the same direction around the cycle and label the vertices
consecutively 0, 1, . . . , n− 1).

The following theorem was proved by Cichacz et al. in [3].

Theorem 4. [3] Let G be a graph of order n in which every vertex has odd degree.
If n ≡ 2 (mod 4), then G is not orientable Zn-distance magic.

Regarding the Cartesian product of two cycles, they obtained the following partial
result.

Theorem 5. [3] If gcd(m,n) = 1, then the Cartesian product Cm�Cn is orientable
Zmn-distance magic.

In Section 3 we prove the Cartesian product Cm�Cn is orientable Zmn-distance
magic for all m,n ≥ 3.
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2 Lemmas

In this section, we prove a series of lemmas regarding the labelings used in the main
theorem of Section 3. Let m,n ≥ 3 be given and let gcd(m,n) = d. Define λ = m+n

d

and let gcd(m
d
, d) = α. For a given integer a, let 0 ≤ R(a) < d represent the

remainder when a is divided by d. That is, a = qd+R(a) for some positive integer
q. We begin by establishing some relationships between m, n, d, and α.

Observation 6. If α2 � d, then gcd
(
αm

d
, d
)
= α and gcd

(
m
d
, n
α

)
= 1.

Proof. By elementary properties of the greatest common divisor, gcd
(
m
d
, n
d

)
= 1

implies gcd
(
m
d
· n
d
, n
α

)
= gcd

(
m
d
, n
α

)
gcd

(
n
d
, n
α

)
. But gcd

(
m
d
· n
d
, n
α

)
= n

d
gcd

(
m
d
, d
α

)
,

and gcd
(
n
d
, n
α

)
= n

d
gcd

(
1, d

α

)
= n

d
. Therefore, gcd

(
m
d
, d
α

)
= gcd

(
m
d
, n
α

)
. Multiply-

ing both sides by α gives gcd
(
αm

d
, d
)
= α gcd

(
m
d
, n
α

)
. But since α2 � d, we have

gcd
(
αm

d
, d
)
= α and hence, gcd

(
m
d
, n
α

)
= 1.

Observation 7. If α2 | d, then gcd
(
α2m

d
, d
)
= α2 and gcd

(
m
d
, n
α2

)
= 1.

Proof. Essentially the same argument as in the proof of Observation 6 gives
gcd

(
αm

d
, d
α

)
= α gcd

(
m
d
, n
α2

)
. Since α2 | d, we have gcd

(
αm

d
, d
)
= α2 and thus

gcd
(
αm

d
, d
α

)
= α. Hence, gcd

(
m
d
, n
α2

)
= 1. The fact that gcd

(
α2m

d
, d
)
= α2 follows

from gcd
(
αm

d
, d
α

)
= α.

For the following lemmas, let Zmn be the cyclic group of order mn, let V =
{(i, j) : i ∈ [m], j ∈ [n]}, and for a given function g : V �−→ Zmn, define g′ (i, j) =
g (i, j) − R(j − i). For an element g ∈ Zmn, we denote by < g >, the subgroup
generated by g. Assume 1 < d < min{m,n} for all of the lemmas.

Lemma 8. If gcd (λ, d) = 1, then the mapping g : V �−→ Zmn given by g(i, j) =
jm+ in +R(j − i), is a bijection.

Proof. To show that g is injective suppose that g′ (i, j) = g′ (a, b) for some
(a, b), (i, j) ∈ V . Therefore, we have

jm+ in ≡ bm+ an (modmn) . (1)

Rearranging this equation gives (j − b)m + (i − a)n ≡ 0 (modmn). For ease of
notation, let x = j − b and y = i − a. Then since |x| ≤ n − 1, |y| ≤ m − 1, and
xm + yn ≡ 0 (modmn), we have that xm + yn = kmn for some k ∈ {−1, 0, 1}.
Suppose k = ±1. Then |y| = |i− a| = m(n−x)

n
∈ Z if and only if x = 0 since n � m

by assumption (recall d < min{m,n}). But if x = 0, then yn = ±mn, but this
is impossible since |y| < m. Hence, xm + yn = 0. Then dividing by d, we have
xm

d
+ y n

d
= 0. Since m

d
and n

d
are relatively prime, the solutions have the form

(x, y) =
(
n
d
r,−m

d
r
)
, ∀r ∈ [d]. We have now established that there are exactly d

ordered pairs in V which have the same value under g′. This means that in order
for g to be a bijection, we must show that {R(yr − xr) : r ∈ [d]} = [d]. To this
end, observe that R(yr − xr) ≡ (yr − xr) ≡ −m

d
r − n

d
r ≡ −rλ (mod d) for each
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r ∈ [d]. Since gcd (λ, d) = 1, we have 〈λ〉 ∼= Zd, hence 〈−λ〉 ∼= Zd. Therefore,
{R(yr − xr) : r ∈ [d]} = [d], so g is an injection, hence bijection.

Lemma 9. If gcd(λ, d) > 1, let k = 1 if α2 � d and let k = 2 if α2 | d. Then the
mapping gαk : V �−→ Zmn given by gαk(i, j) = jm+ in d

αk +R(j − i), is a bijection.

Proof. Suppose that g′
αk (i, j) = g′

αk (a, b) for some (i, j), (a, b) ∈ V . Then we have
jm+ in d

αk ≡ bm+ an d
αk (modmn). Letting t = j − b, and u = i− a, dividing by d,

and observing that αk | n gives

t
m

d
+ u

n

αk
≡ 0 (mod

m

d
n). (2)

Now observe that gcd
(
m
d
, d

)
= α implies α2 | m. Therefore, α � n

αk since otherwise,
α | n

αk implies αk+1 | n. Then if k = 1, we have α2 | n and α2 � d implies that α | n
d

which in turn implies gcd(m
d
, n
d
) > 1, contradicting the assumption, gcd(m,n) = d.

While if k = 2, we have α3 | n implies gcd(m
d
, n
α2 ) > 1, a contradiction of Observation

7. Then since α | m
d
but α � n

αk , we have that α | u from (2). But also, m
d
| u n

αk . By
(2) and Observations 6 and 7, gcd

(
m
d
, n
αk

)
= 1 which implies m

d
| u. Therefore, both

α and m
d
must divide u. Similarly, n

αk must divide tm
d
, which implies that n

αk | t. This
allows us to provide a full description of the pairs (u, t) satisfying (2). Let S be the
set of all such pairs. Then for all p ∈ [

d
αk

]
, we have

S = {(m
d
αkp, 0), (m

d
αkp− m

d
, n
αk ), (

m
d
αkp− 2m

d
, 2n
αk ),

. . . , (m
d
αkp− (αk − 1)m

d
, (α

k−1)n
αk )}.

Note that there are exactly αk · d
αk = d pairs in S. Therefore, we have established

that exactly d ordered pairs in V share the same value under g′αk . Now it remains
to show that these ordered pairs have distinct values under R. For ease of notation,
let x = R(−m

d
αk), y = R( n

αk ), and z = R(m
d
). Furthermore, let H = 〈x〉 � Zd.

Then, |H| = ordZd
(x) = d

gcd(x,d)
= d

αk , by Observations 6 and 7. Applying R to each
member of S defines the multiset,

R(S) =
{
H + 0, H + (y + z), H + 2(y + z), . . . , H + (αk − 1)(y + z)

}
.

It remains to show that the cosets of H in R(S) partition [d]. First observe that
y + z �≡ 0 (mod d) since otherwise we have α | n

αk which we have already established
is a contradiction. Secondly, suppose (y + z) ∈ H . Then n

αk + m
d
≡ −m

d
αkq (mod d)

for some q ∈ [
d
αk

]
. But since α | m

d
, it must be the case that α | n

αk , which leads to
the same contradiction as before. Therefore, (y+ z) /∈ H . Hence R(S) = [d], and so
gαk is an injection, hence bijection.

Lemma 10. Let m be even and n be odd. If gcd(λ, d) = 1, then the mapping

g : V �−→ Zmn given by g(i, j) =

{
jm+ in+R(j − i), i even
(j − 1)m+ (i− 1)n+ d+R(j − i), i odd

is a

bijection.
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Proof. Suppose that g′ (i, j) = g′ (a, b) for some (i, j), (a, b) ∈ V . It cannot be the
case that i and a have different parities. For the sake of contradiction, suppose i is
even and a is odd. Then we have jm + in ≡ d + (b − 1)m + (a − 1)n (modmn).
Therefore, (j− b+1)m+(i−a+1)n ≡ d (modmn). But this is a contradiction since
(j− b+1)m and (i− a+1)n are both even and d is necessarily odd. So it cannot be
the case that i is even and a is odd. Essentially the same argument shows it cannot
be the case that i is odd and a is even. Therefore, i and a must be of the same
parity. If i and a are both even, then g′ (i, j) = g′ (a, b) implies equation (1) from
Lemma 8, while if i and a are both odd, then we have d + (j − 1)m + (i − 1)n ≡
d + (b − 1)m + (a − 1)n (modmn), which also is equivalent with (1). Thus g is a
bijection by the same argument as in Lemma 8.

Lemma 11. Let m be even and n be odd. If gcd(λ, d) > 1, let k = 1 when α2 � d,
and let k = 2 when α2 | d. Then the mapping gαk : V �−→ Zmn given by

gαk(i, j) =

{
jm+ in d

αk +R(j − i), i even
(j − 1)m+ (i− 1)n d

αk + d+R(j − i), i odd
is a bijection.

Proof. Suppose that g′αk (i, j) = g′αk (a, b) for some (i, j), (a, b) ∈ V . As in Lemma
10, i and a must be of the same parity. If i and a are both even, then necessarily
jm+ in d

αk ≡ bm+ an d
αk (modmn). Whereas, if i and a are both odd, then we have

that d + (j − 1)m + (i − 1)n d
αk ≡ d + (b − 1)m + (a − 1)n d

αk (modmn). However,
letting t = j − b, u = i − a, dividing by d, and observing that αk | n, we see that
both equations are equivalent to (2) from Lemma 9. Hence in either case, gαk is a
bijection by the same argument used in Lemma 9.

In the next three lemmas, assume m and n are even. Then let V2 = {(i, j) ∈ V :
i ≡ j (mod 2)} ⊆ V . Let 2Zmn = {2h : h ∈ Zmn} denote the subgroup of Zmn

consisting of the even integers contained in Zmn. Similarly, let 2 [d] = {2h : h ∈ Zd}.
Also note that since m and n are both even, then at most one of m

d
and n

d
may be

even. So assume without loss of generality that n
d
is always odd.

Lemma 12. Let m and n be even. If gcd(λ, d) = 1, then the mapping g : V2 �−→
2Zmn given by

g(i, j) =

{
jm+ in +R(j − i), for i ≡ j ≡ 0 (mod 2)
(j − 1)m+ (i− 1)n+ d+R(j − i), for i ≡ j ≡ 1 (mod 2)

is a bijection.

Proof. Suppose g′ (i, j) = g′ (a, b) for some (i, j), (a, b) ∈ V . Observe that it cannot
be the case that i, j are both even and a, b are both odd, since otherwise (j −
b + 1)m + (i − a + 1)n = kmn + d for some integer k would imply (j − b + 1)m

d
+

(i − a + 1)n
d
= kmn

d
+ 1, a contradiction since the left hand side of the equation is

even and the right hand side is odd (recall that n
d
is odd). For the same reason,

it cannot be the case that i, j are both odd while a, b are both even. Therefore,
i, j, a, and b are all of the same parity. Consequently, g′ (i, j) = g′ (a, b) implies
equation (1) from Lemma 8. With no restriction on the parities of x = j − b and
y = i − a, this equation was found to have the d solutions (xr, yr) =

(
n
d
r,−m

d
r
)
for
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each r ∈ [d] in the proof of Lemma 8. However, in the present case we require that
x and y both be even. Recall that n

d
is odd. Therefore, the d

2
solutions to (1) are

(xr, yr) =
(
n
d
2r,−m

d
2r
)
for each r ∈ [

d
2

]
. We have now established that there are

exactly d
2
ordered pairs in V2 having the same value under g′. This means that in

order for g to be a bijection, we must show that the set
{R(yr − xr) : r ∈

[
d
2

]}
= 2[d].

To this end, observe R (yr − xr) ≡ (yr−xr) ≡ −m
d
2r− n

d
2r ≡ −2rλ (mod d) for each

r ∈ [
d
2

]
. Since gcd (λ, d) = 1, we have 〈λ〉 ∼= Zd, hence 〈−λ〉 ∼= Zd . Therefore,{R(xr, yr) : r ∈

[
d
2

]}
= 2[d]. Therefore, the d

2
ordered pairs of V2 having the same

value under g′ have distinct and even values under R. Hence, g : V2 �−→ 2Zmn is an
injection, hence bijection.

Lemma 13. Let m and n both be even. If gcd(λ, d) > 1, let k = 1 when α2 � d, and
let k = 2 when α2 | d. Then the mapping gαk : V2 �−→ 2Zmn given by

gαk(i, j) =

{
jm+ in d

αk +R(j − i), for i ≡ j ≡ 0 (mod 2)
(j − 1)m+ (i− 1)n d

αk + d+R(j − i), for i ≡ j ≡ 1 (mod 2)
is a bi-

jection.

Proof. Suppose g′αk (i, j) = g′αk (a, b) for some (i, j), (a, b) ∈ V . As in Lemma 12, it
must be the case that i, j, a, and b are all of the same parity. Then letting u = i−a,
t = j − b, dividing by d, and observing that αk | n we have that g′αk (i, j) = g′αk (a, b)
implies equation (2) from Lemma 9. With no restriction on the parities of u and
t, we observed in the proof of Lemma 9 that a full description of the d pairs (u, t)
satisfying (2) is given by

S = {(m
d
αkp, 0), (m

d
αkp− m

d
, n
αk ), (

m
d
αkp− 2m

d
, 2n
αk ),

. . . , (m
d
αkp− (αk − 1)m

d
, (α

k−1)n
αk )},

for all p ∈ [
d
αk

]
. However, in this case we are restricted to the pairs in S such that

u and t are both even.

If m
d
is odd, then gcd(m

d
, d) = α is odd, since d is even. So αk is also odd, and hence

n
αk is even, since n is even. Then for all p ∈ {0, 2, . . . , d

αk } and all l ∈ {1, 3, . . . , d
αk −1},

S1 ⊂ S where

S1 = {(m
d
αkp, 0), (m

d
αkl − m

d
, n
αk ), (

m
d
αkp− 2m

d
, 2n
αk ),

. . . ., (m
d
αkl − (αk − 2)m

d
, (αk−2)n

αk ), (m
d
αkp− (αk − 1)m

d
, (αk−1)n

αk )},

is the full set of d
2
solutions to (2) in this case.

On the other hand, if m
d
is even we have gcd(m

d
, d) = α is even, so αk is also even.

Then since gcd
(
m
d
, d
αk

)
= 1 by Observations 6 and 7, we have that d

αk is odd and
hence n

αk = d
αk · n

d
is odd, since n

d
is odd. Then for all p ∈ [

d
αk

]
, S2 ⊂ S where

S2 = {(m
d
αkp, 0), (m

d
αkp− 2m

d
, 2n
αk ), (

m
d
αkp− 4m

d
, 4n
αk ),

. . . , (m
d
αkp− (αk − 2)m

d
, (αk−2)n

αk )},

is the full set of d
2
solutions to (2) in this case. Therefore, in either case we have

established that exactly d
2
ordered pairs in V2 share the same value under g′αk . Now
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we will show that these ordered pairs have distinct values under R. We have already
observed that R(S) = [d] in the proof of Lemma 9. Then since S1, S2 ⊆ S and
|S1|
|S| = |S2|

|S| = 1
2
and both S1 and S2 contain ordered pairs of the form (u, t) where u

and t are both even, we conclude that R(S1) = R(S2) = 2[d]. Hence, the mapping
gαk : V2 �−→ 2Zmn is an injection, hence bijection.

3 Cartesian product of two cycles

We begin with a construction for the case when one cycle length is a multiple of the
other.

Theorem 14. The Cartesian product Cm�Ckm is orientable Zkm2-distance magic
for all m ≥ 3 and k ≥ 1.

Proof. Let G = Cm = {g0, g1, . . . , gm−1, g0} and H = Ckm = {h0, h1, . . . , hkm−1, h0}.
Then orient each copy of G�H as follows. Fix j ∈ [km]. Then for all i ∈ [m], orient
counter-clockwise each cycle of the form {(gi, hj) , (gi+1, hj) , . . . , (gi−1, hj) , (gi, hj)},
where the arithmetic in the subscript is performed modulo m. Similarly, fix i ∈ [m].
Then for all j ∈ [km], orient counter-clockwise each cycle of the form

{(gi, hj) , (gi, hj+1) , . . . , (gi, hj−1) , (gi, hj)} ,
where the arithmetic in the subscript is performed modulo km. Since the graph G�H
can be edge-decomposed into cycles of those two forms, we have oriented every edge
in G�H . Let xj

i denote the vertex (gi, hj) ∈ V (G�H) for i ∈ [m], j ∈ [km]. Define−→
l : V → Zkm2 by

�l(xj
i ) = mj +R(i− j).

Expressing �l(xj
i ) in the following alternative way,

�l(xj
i ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

mj,

mj + 1,

mj + 2,
...

mj + (m− 1),

for i ≡ j (modm)

for i ≡ j + 1 (modm)

for i ≡ j + 2 (modm)
...

for i ≡ j − 1 (modm)

,

we see that �l is clearly bijective.

Then for all xj
i we have N+

(
xj
i

)
= {xj+1

i , xj
i+1} and N− (

xj
i

)
= {xj−1

i , xj
i−1}

where the arithmetic is performed modulo km in the superscript and modulo m in
the subscript. Therefore,

w(xj
i ) = �l(xj+1

i ) +�l(xj
i+1)− [�l(xj

i−1) +
�l(xj−1

i )]
= m(j + 1) +mj −mj −m(j − 1)

+[R(i− j − 1) +R(i− j + 1)−R(i− j − 1)−R(i− j + 1)]

=

{
m(2− km), j ∈ {0, km− 1}
m · 2, j ∈ {1, . . . , km− 2}

= 2m,
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since m(2 − km) ≡ 2m (mod km2).

Thus, �l is an orientable Zkm2-distance magic labeling.

Each case in the proof of the next theorem uses a directed labeling which was
shown to be a bijection from the vertex set of the graph to the appropriate group in
Section 2.

Theorem 15. The Cartesian product Cm�Cn is orientable Zmn-distance magic for
all m,n ≥ 3.

Proof. Let m,n ≥ 3 be given and let gcd(m,n) = d. Then define λ = m+n
d

and let
gcd(m

d
, d) = α. If d = 1, we are done by Theorem 5. If d = min{m,n} (i.e. one

cycle length is a multiple of the other), we are done by Theorem 14. So assume
1 < d < min{m,n}. Notice this is the same assumption used to prove the lemmas in
Section 2. Let G = Cm = {g0, g1, . . . , gm−1, g0} and H = Cn = {h0, h1, . . . , hn−1, h0}.
Then orient each copy of G�H as in Theorem 14. Now let xj

i denote the vertex
(gi, hj) ∈ V (G�H) for all i ∈ [m] and j ∈ [n]. We proceed in three cases based on
the parity of m and n. Since we will define a different directed labeling for each
case, we first pause to make the following observation. For any directed labeling
�l : V (G�H) → Zmn of

−−−→
G�H , we have

w(xj
i ) =

∑
y∈N+(xj

i )
�l(y)−∑

y∈N−(xj
i )
�l(y)

= �l(xj+1
i ) +�l(xj

i+1)− [�l(xj
i−1) +

�l(xj−1
i )],

for every vertex xj
i ∈ V (G�H), where the arithmetic is performed modulo n in the

superscript and modulo m in the subscript. However, it should be emphasized that
the weight calculation is performed in the group Zmn.

Case 1.1. m and n both odd and gcd (λ, d) = 1.

For all xj
i ∈ V (G�H), define �l : V (G�H) → Zmn where

�l
(
xj
i

)
= jm+ in+R (j − i) .

Then �l is a bijection by Lemma 8 and

w(xj
i ) = (j + 1)m+ in + jm+ (i+ 1)n

− [jm+ (i− 1)n+ (j − 1)m+ in]
+ R (j − i+ 1)−R (j − i+ 1) +R (j − i− 1)−R (j − i− 1)
= sm+ rn,

where s ∈ {2, 2− n} and r ∈ {2, 2−m}. But, sm+ rn ≡ 2m+ 2n (modmn), so

w(xj
i ) = 2m+ 2n.

In the remaining cases we will omit the equality involving s and r above and only
show the final congruence modulo mn.
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Case 1.2. m and n both odd and gcd (λ, d) > 1.

Let k = 1 when α2 � d and let k = 2 when α2 | d. Then for all xj
i ∈ V (G�H),

define �lαk : V (G�H) → Zmn where

�lαk

(
xj
i

)
= jm+ in

d

αk
+R (j − i) .

Then �lαk is a bijection by Lemma 9 and

w(xj
i ) = (j + 1)m+ in d

αk + jm+ (i+ 1)n d
αk

− [
jm+ (i− 1)n d

αk + (j − 1)m+ in d
αk

]
+ R (j − i+ 1)−R (j − i+ 1) +R (j − i− 1)−R (j − i− 1)
= 2m+ 2n d

αk .

Suppose exactly one of m and n is odd. Since the Cartesian product is commu-
tative, we may assume without loss of generality that m is even and n is odd. Then
as in the previous case, gcd (λ, d) establishes two subcases.

Case 2.1. m even, n odd, and gcd (λ, d) = 1.

For all xj
i ∈ V (G�H), define �l : V (G�H) → Zmn where

�l(xj
i ) =

{
jm+ in +R(j − i), i even
(j − 1)m+ (i− 1)n+ d+R(j − i), i odd

.

Then �l is a bijection by Lemma 10, and if i is even we have

w(xj
i ) = (j + 1)m+ in + (j − 1)m+ in + d

− [(j − 1)m+ (i− 2)n+ d+ (j − 1)m+ in]
+ R (j − i+ 1)−R (j − i+ 1) +R (j − i− 1)−R (j − i− 1)
= 2m+ 2n.

While if i is odd we have

w(xj
i ) = jm+ (i− 1)n+ d+ jm+ (i+ 1)n

− [jm+ (i− 1)n+ (j − 2)m+ (i− 1)n+ d]
+ R (j − i+ 1)−R (j − i+ 1) +R (j − i− 1)−R (j − i− 1)
= 2m+ 2n.

Case 2.2. m even, n odd, and gcd (λ, d) > 1.

As in Case 1.2, let k = 1 when α2 � d and let k = 2 when α2 | d. For all

xj
i ∈ V (G�H), define �lαk : V (G�H) → Zmn where

�lαk(xj
i ) =

{
jm+ in d

αk +R(j − i), i even
(j − 1)m+ (i− 1)n d

αk + d+R(j − i), i odd
.

Then �lαk is a bijection by Lemma 11, and if i is even we have

w(xj
i ) = (j + 1)m+ in d

αk + (j − 1)m+ in d
αk

− [
(j − 1)m+ (i− 2)n d

αk + d+ (j − 1)m+ in d
αk

]
+ R (j − i+ 1)−R (j − i+ 1) +R (j − i− 1)−R (j − i− 1)
= 2m+ 2n d

αk .
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While if i is odd we have

w(xj
i ) = jm+ (i− 1)n d

αk + d+ jm+ (i+ 1)n d
αk

− [
jm+ (i− 1)n d

αk + (j − 2)m+ (i− 1)n d
αk + d

]
+ R (j − i+ 1)−R (j − i+ 1) +R (j − i− 1)−R (j − i− 1)
= 2m+ 2n d

αk .

Now suppose that both m and n are even. Since gcd (m,n) = d, at most one
of m

d
and n

d
is even. Since the Cartesian product is commutative, if one of m

d
and

n
d
is even, we may assume without loss of generality that n

d
is odd. Then as in the

previous cases, gcd (λ, d) establishes two subcases.

Case 3.1. m
d
even, n

d
odd, and gcd (λ, d) = 1.

For all xj
i ∈ V (G�H), define �f : V (G�H) → Zmn and �l : V (G�H) → Zmn

where

�f(xj
i ) =

{
jm+ in +R(j − i), for i ≡ j ≡ 0 (mod 2)
(j − 1)m+ (i− 1)n+ d+R(j − i), for i ≡ j ≡ 1 (mod 2)

,

and

�l(xj
i ) =

{
�f(xj

i ), for i ≡ j (mod 2)
�f(xj−1

i ) + 1, for i �≡ j (mod 2)
.

By Lemma 12, �f maps the vertices {xj
i : i ≡ j (mod 2)} bijectively to 2Zmn. Then

clearly �f + 1 maps the vertices {xj−1
i : i �≡ j (mod 2)} bijectively to 2Zmn + 1.

Therefore, �l : V (G�H) → Zmn is a bijection since Zmn
∼= 2Zmn ∪ 2Zmn + 1. If

i ≡ j (mod 2) we have

w(xj
i ) = �l(xj+1

i ) +�l(xj
i+1)− [�l(xj

i−1) +
�l(xj−1

i )]

= �f(xj
i ) + 1 + �f(xj−1

i+1 ) + 1−
[
�f(xj−1

i−1 ) + 1 + �f(xj−2
i ) + 1

]
= �f ′(xj

i ) +
�f ′(xj−1

i+1 )−
[
�f ′(xj−1

i−1 ) +
�f ′(xj−2

i )
]

+ R(j − i) +R(j − i− 2)−R(j − i)−R(j − i− 2)
= 2m+ 2n.

While if i �≡ j (mod 2) we have

w(xj
i ) = �l(xj+1

i ) +�l(xj
i+1)− [�l(xj

i−1) +
�l(xj−1

i )]

= �f(xj+1
i ) + �f(xj

i+1)−
[
�f(xj

i−1) +
�f(xj−1

i )
]

= �f ′(xj+1
i ) + �f ′(xj

i+1)−
[
�f ′(xj

i−1) +
�f ′(xj−1

i )
]

+ R(j − i+ 1) +R(j − i− 1)−R(j − i+ 1)−R(j − i− 1)
= 2m+ 2n.

Figure 3 provides an example of this case.
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Case 3.2. m
d
even, n

d
odd, and gcd (λ, d) > 1.

As in the previous cases, let k = 1 when α2 � d, let k = 2 when α2 | d, and for all

xj
i ∈ V (G�H), define �fαk : V (G�H) → Zmn and �lαk : V (G�H) → Zmn where

�fαk(xj
i ) =

{
jm+ in d

αk +R(j − i), for i ≡ j ≡ 0 (mod 2)
(j − 1)m+ (i− 1)n d

αk + d+R(j − i), for i ≡ j ≡ 1 (mod 2)
,

and

�lαk(xj
i ) =

{
�fαk(xj

i ), for i ≡ j (mod 2)
�fαk(xj−1

i ) + 1, for i �≡ j (mod 2)
.

By Lemma 13 and essentially the same argument used in Case 3.1, we conclude that
�lαk : V (G�H) → Zmn is a bijection. Finally, if i ≡ j (mod 2) we have

w(xj
i ) = �lαk(xj+1

i ) + �lαk(xj
i+1)− [�lαk(xj

i−1) +
�lαk(xj−1

i )]

= �fαk(xj
i ) + 1 + �fαk(xj−1

i+1 ) + 1−
[
�fαk(xj−1

i−1 ) + 1 + �fαk(xj−2
i ) + 1

]
= �f ′

αk(x
j
i ) +

�f ′
αk(x

j−1
i+1 )−

[
�f ′
αk(x

j−1
i−1 ) +

�f ′
αk(x

j−2
i )

]
+ R(j − i) +R(j − i− 2)−R(j − i)−R(j − i− 2)
= 2m+ 2n d

αk .

While if i �≡ j (mod 2) we have

w(xj
i ) = �lαk(xj+1

i ) +�lαk(xj
i+1)− [ �lαk(xj

i−1) +
�lαk(xj−1

i )]

= �fαk(xj+1
i ) + �fαk(xj

i+1)−
[
�fαk(xj

i−1) +
�fαk(xj−1

i )
]

= �f ′
αk(x

j+1
i ) + �f ′

αk(x
j
i+1)−

[
�f ′
αk(x

j
i−1) +

�f ′
αk(x

j−1
i )

]
+ R(j − i+ 1) +R(j − i− 1)−R(j − i+ 1)−R(j − i− 1)
= 2m+ 2n d

αk .

In every case, w(xj
i ) is constant for all x

j
i ∈ V (G�H). Hence, Cm�Cn is orientable

Zmn-distance magic.
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Figure 3: Orientable Z24-distance magic labeling of C4�C6
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4 Future work

We have shown that the Cartesian product of any two cycles is orientable Zn-distance
magic. In this paper, we fix the orientation of our cycles. However, because any cycle
can be oriented in a non-unique way, it would be interesting to see if there are other
orientations for which an accompanying orientable Zn-distance magic labeling could
be found.

Hypercubes are an important class of graphs which can be constructed using the
Cartesian product of cycles. In [6] we showed the repeated Cartesian product of
a cycle is orientable Zn-distance magic, proving that even-ordered hypercubes are
orientable Zn-distance magic. A natural direction forward is to generalize to the
Cartesian product of many cycles of various lengths. We pose the following problem.

Problem 16. For what numbers n1, n2, . . . , nk is the Cartesian product Cn1�Cn2�
. . .�Cnk

orientable Zn1,n2,...,nk
-distance magic?

Another possibility for future work is to consider abelian groups other than the
cyclic group.

Problem 17. Determine all abelian groups Γ such that Cm�Cn is orientable Γ-
distance magic.

One may wonder whether an orientable Zn-distance magic graph G of order n
is also Zn-distance magic, or vice versa. Since Zn-distance magic labeling is more
restrictive than orientable Zn-distance magic labeling, intuitively it should not be the
case that orientable Zn-distance magic implies Zn-distance magic. Indeed, Theorems
1 and 15 show that this is not the case.

But perhaps Zn-distance magic implies orientable Zn-distance magic. Theorems
3 and 4 indicate that the contrapositive checks for the case of odd regular graphs on
n ≡ 2 (mod4) vertices. We pose the following conjecture.

Conjecture 18. If a graph G of order n is Zn-distance magic, then it is orientable
Zn-distance magic.
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