Equitable block colourings for 8-cycle systems

Paola Bonacini Lucia Marino
Università degli Studi di Catania
Dipartimento di Matematica e Informatica
Viale A. Doria 6, 95125 Catania
Italy
bonacini@dmi.unict.it lmarino@dmi.unict.it

Abstract

Let $\Sigma=(X, \mathcal{B})$ be an 8 -cycle system of order $v=1+16 k$. A c-colouring of type s is a $\operatorname{map} \phi: \mathcal{B} \rightarrow \mathcal{C}$, with \mathcal{C} set of colours, so that exactly c colours are used and for every vertex x all the blocks containing x are coloured with exactly s colours. Let $8 k=q s+r$, with $q, r \geq 0$. The colouring ϕ is called equitable if for every vertex x the set of the $8 k$ blocks containing x is partitioned into r colour classes of cardinality $q+1$ and $s-r$ colour classes of cardinality q. This paper deals with a study of bicolourings, tricolourings and quadricolourings with $s=2,3,4$.

1 Introduction

Block colourings of 4-cycle systems have been introduced and studied in $[3,4,7,8]$, and in $[1,2]$ block colourings were also studied for 6 -cycle systems and systems of 4 -kites. The purpose of this paper is to study block colourings of 8 -cycle systems.

Let K_{v} be the complete simple graph on v vertices. The graph on vertex set $\left\{a_{1}, a_{2}, \ldots, a_{k}\right\}$ with edge set $\left\{\left\{a_{1}, a_{k}\right\},\left\{a_{i}, a_{i+1}\right\} \mid 1 \leq i \leq k\right\}$ is called a k-cycle, and it is denoted by $\left(a_{1}, a_{2}, \ldots, a_{k}\right)$. An n-cycle system of order v, briefly $n C S(v)$, is a pair $\Sigma=(X, \mathcal{B})$, where X is the set of vertices of K_{v} and \mathcal{B} is a set of n-cycles, called blocks, that partitions the edges of K_{v}.

A colouring of an $n C S(v) \Sigma=(X, \mathcal{B})$ is a mapping $\phi: \mathcal{B} \rightarrow \mathcal{C}$, where \mathcal{C} is a set of colours. A c-colouring is a colouring where c colours are used. The set of blocks coloured with a colour of \mathcal{C} is a colour class. A c-colouring of type s is a colouring in which, for every vertex x, all of the blocks containing x are coloured with s colours.

Let $\Sigma=(X, \mathcal{B})$ be an $n C S(v)$, let $\phi: \mathcal{B} \rightarrow \mathcal{C}$ be a c-colouring of type s, and let $\frac{v-1}{2}=q s+r$ with $q \geq 0$ and $0 \leq r<s$. Each vertex of an $n C S(v)$ is contained in $\frac{v-1}{2}$ blocks. The mapping ϕ is equitable if for every vertex x the set of the $\frac{v-1}{2}$ blocks containing x is partitioned into r colour classes of cardinality $q+1$ and $s-r$ colour classes of cardinality q. A bicolouring, tricolouring or quadricolouring is an equitable colouring of type 2,3 or 4 , respectively.

The colour spectrum of $\Sigma=(X, \mathcal{B})$ is the set:

$$
\Omega_{s}^{(n)}(\Sigma)=\{c \mid \text { there exists a } c \text {-block-colouring of type } s \text { of } \Sigma\} .
$$

The focus of our study is the set:

$$
\begin{aligned}
\Omega_{s}^{(n)}(v) & =\bigcup \Omega_{s}^{(n)}(\Sigma) \\
& =\{c \mid \text { there exists a } c \text {-block-colouring of type } s \text { of some } n C S(v) \Sigma\}
\end{aligned}
$$

where Σ varies in the set of all the $n C S(v)$.
The lower s-chromatic index is defined as:

$$
\chi_{s}^{(n)}(\Sigma)=\min \Omega_{s}^{(n)}(\Sigma)
$$

and the upper s-chromatic index is

$$
\bar{\chi}_{s}^{(n)}(\Sigma)=\max \Omega_{s}^{(n)}(\Sigma)
$$

If $\Omega_{s}^{(n)}(\Sigma)=\emptyset$, then we say that Σ is uncolourable.
In the same way we define

$$
\chi_{s}^{(n)}(v)=\min \Omega_{s}^{(n)}(v) \text { and } \bar{\chi}_{s}^{(n)}(v)=\max \Omega_{s}^{(n)}(v)
$$

Block colourings for $s=2, s=3$ and $s=4$ of $4 C S$ have been studied in $[3,7,8]$. The problem arose as a consequence of colourings of Steiner systems studied in $[6,9,10,15]$.

This paper deals with $n C S$ of odd order v, with n even. In Section 2 we will look more closely at bicolourings with $v=2 k n+1$, and we completely give the spectrum in such a case. In particular, the complete spectrum of bicolourings for $8 C S$ is shown. The following result is known (see [11] and [5, p. 374]):

Theorem 1.1. There exists an $8 C S(v)$ if and only if $v=1+16 k$ for some $k \in \mathbb{N}$.
In Sections 3, 4 and 5 the block colourings for $8 C S$ with $s=3$ and $s=4$ are studied.

From now on, we construct 8 -cycle systems from difference methods. This means that we fix the vertex set \mathbb{Z}_{v}, and define a base block $B=\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}, a_{7}, a_{8}\right)$; its translates will be all the blocks of type $B+i=\left(a_{1}+i, a_{2}+i, a_{3}+i, a_{4}+\right.$ $i, a_{5}+i, a_{6}+i, a_{7}+i, a_{8}+i$, for every $i \in \mathbb{Z}_{v}$. Then, given $x, y \in X, x \neq y$, the edge $\{x, y\}$ will belong to one of the blocks $B+i$ for some i if and only if $|x-y| \in\left\{\left|a_{i}-a_{i+1}\right|: i=1, \ldots, 8\right\}$, where the indices are taken modulo 8 .

2 Bicolourings

This section deals with the study of block colourings of type 2 for n-cycle systems, where n is even. It begins by determining an upper bound on the number of colours used in such colourings.

Theorem 2.1. Let $\Sigma=(V, \mathcal{B})$ be an $n C S(2 k n+1)$, with $n \in \mathbb{N}$, n even, and $k \in \mathbb{N}$, and let $\phi: \mathcal{B} \rightarrow C$ be a c-bicolouring of Σ. Then $c \leq 3$.

Proof. Let $|C|=c$ and let $\gamma \in C$. Any element $v \in V$ is incident with $k n$ blocks, and if it is incident with blocks colored γ, then it must be incident with precisely $\frac{k n}{2}$ blocks colored γ. This implies that there are at least $k n+1$ vertices incident with blocks colored γ. Thus

$$
c(1+k n) \leq 2(1+2 k n)
$$

so that $c \leq 3$.
In this section we completely determine the colour spectrum of bicolourings for $n C S(v)$, with $v=2 k n+1$. In order to do this, the following lemma must first be proven. Given a graph $G=(V, E)$ and given two disjoint sets $X, Y \subset V$, let $e_{G}(X, Y)$ denote the number of edges in G incident to one vertex in X and one in Y.

Lemma 2.2. Let C_{m} be a cycle of length m whose vertices belong to two disjoint sets X and Y. Then $e_{C_{m}}(X, Y)$ is even.

Proof. The statement is proven by induction on m. If $m=3$, it is trivial.
So let $m \geq 4$. If $e_{C_{m}}(X, Y)=0$, then the statement is proved. Suppose that $\left\{x_{1}, x_{2}\right\}$ is an edge of C_{m} so that $x_{1} \in X$ and $x_{2} \in Y$. If $C_{m}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)$, let $C=\left(x_{1}, x_{3} \ldots, x_{m}\right)$. So C has length $m-1$ and

$$
E(C)=E\left(C_{m}\right) \cup\left\{\left\{x_{1}, x_{3}\right\}\right\} \backslash\left\{\left\{x_{1}, x_{2}\right\},\left\{x_{2}, x_{3}\right\}\right\} .
$$

By induction on m we can say that $e_{C}(X, Y)$ is even. At this point there are two possibilities. If $x_{3} \in X$, then $e_{C_{m}}(X, Y)=e_{C}(X, Y)+2$. If $x_{3} \in Y$, then $e_{C_{m}}(X, Y)=$ $e_{C}(X, Y)$. Since $e_{C}(X, Y)$ is even, the statement is proven.

We can now formulate our main results of this section.
Theorem 2.3. If k is odd, then $\Omega_{2}^{(n)}(2 k n+1)=\emptyset$.
Proof. Let $\Sigma=(V, \mathcal{B})$ be an $n C S(v)$, where $v=2 k n+1$, and let $\phi: \mathcal{B} \rightarrow C$ be a 2-bicolouring of Σ. Let $\gamma \in C$ and let \mathcal{B}_{γ} be the set of blocks of \mathcal{B} colored γ. Then any vertex of V belongs to $\frac{k n}{2}$ blocks of \mathcal{B}_{γ}. Thus

$$
\left|\mathcal{B}_{\gamma}\right|=\frac{v \cdot \frac{k n}{2}}{n}=\frac{v \cdot k}{2} .
$$

Since k is odd, we get a contradiction.
Now suppose that $\Sigma=(V, \mathcal{B})$ is an $n C S(v)$, where $v=2 k n+1$, and let $\phi: \mathcal{B} \rightarrow C$ be a 3 -bicolouring of Σ. In this case we proceed as in [7, Lemma 2.1]. We can assume that $C=\{1,2,3\}$ and let X denote the set of vertices incident with blocks of colour 1 and 2 , and Y denote the set of vertices incident with blocks of colour 1 and 3 , and Z denote the set of vertices incident with blocks of colour 2 and 3. Let $x=|X|$, $y=|Y|$ and $z=|Z|$.

We note that these sets are pairwise disjoint and that in each block there are vertices belonging to at most two of the sets X, Y and Z. Moreover, by Lemma 2.2 a block cannot contain an odd number of edges having vertices incident to two different sets. This implies that the products $x y, x z$ and $y z$ are even. It follows that among x, y and z at most one is odd. However, since $x+y+z=v$, one of them is odd, while the others are even. Since

$$
\begin{aligned}
& \left|B_{1}\right|=\frac{\frac{k n}{2} \cdot(x+y)}{n}=\frac{k(x+y)}{2}, \\
& \left|B_{2}\right|=\frac{\frac{k n}{2} \cdot(x+z)}{n}=\frac{k(x+z)}{2}, \\
& \left|B_{3}\right|=\frac{\frac{k n}{2} \cdot(y+z)}{8}=\frac{k(y+z)}{2},
\end{aligned}
$$

we obtain a contradiction, because k is odd. This shows that $3 \notin \Omega_{2}^{(n)}(2 k n+1)$ and so $\Omega_{2}^{(n)}(2 k n+1)=\emptyset$ by Theorem 2.1.

Now let us recall two results:
Theorem 2.4 ([11, 13],[5, p. 382]). For any $n \in \mathbb{N}$, n even, and $k \in \mathbb{N}$, there exists a cyclic decomposition of $K_{2 k n+1}$ into n-cycles.
Theorem 2.5 ([14, Theorem B]). The complete bipartite graph $K_{m, n}$ can be decomposed into $2 k$-cycles if and only if m and n are even, $m \geq k, n \geq k$ and $2 k$ divides $m n$.

Theorem 2.4 and Theorem 2.5 are used to prove the following:
Theorem 2.6. If k and n are even, then $\Omega_{2}^{(n)}(2 k n+1)=\{2,3\}$.
Proof. Let $V=\mathbb{Z}_{2 k n+1}$. From Theorem 2.4, let us consider a cyclic decomposition of the complete graph over $\mathbb{Z}_{2 k n+1}$ with base blocks A_{i} for $i \in\{1, \ldots, k\}$. If $k=2 h$, assign colour 1 to the blocks A_{i} and all of their translated forms for $i \in\{1, \ldots, h\}$. Also assign colour 2 to the blocks A_{i} and all their translated forms for $i \in\{h+$ $1, \ldots, 2 h\}$. Let \mathcal{B} be the set of all these blocks; then $\Sigma=\left(\mathbb{Z}_{2 k n+1}, \mathcal{B}\right)$ is an $n C S(2 k n+$ $1)$ and the previous assignment determines a 2 -bicolouring of Σ. In particular, any vertex is contained in $2 h n$ blocks, $h n$ of them colored 1 and $h n$ colored 2.

We now prove that $3 \in \Omega_{2}^{(n)}(2 k n+1)$. Let $k=2 h$ and consider two disjoint sets A and B, with $|A|=|B|=2 h n$, and a vertex $\infty \notin A \cup B$. By Theorem 2.4 let us consider two $n C S(2 h n+1), \Sigma_{1}=\left(A \cup\{\infty\}, \mathcal{B}_{1}\right)$ and $\Sigma_{2}=\left(B \cup\{\infty\}, \mathcal{B}_{2}\right)$. According to Theorem 2.5 it is possible to take an $n C S \Sigma_{3}=\left(K_{A, B}, \mathcal{B}_{3}\right)$ on the bipartite graph $K_{A, B}$. Then $\Sigma=\left(A \cup B \cup\{\infty\}, \mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \mathcal{B}_{3}\right)$ is an $n C S(2 k n+1)$. By assigning colour i to the blocks of \mathcal{B}_{i}, for $i=1,2,3$, we get a 3 -bicolouring of Σ.

This implies that $3 \in \Omega_{2}^{(n)}(2 k n+1)$ and by Theorem 2.1 the statement is proved.

Note that if $n=2^{r}$ for some $r \geq 2$ then an $n C S(v)$ exists if and only if $v=2 k n+1$ for some $k \geq 1$ (see [5, p. 374]). Thus the previous results provide the complete spectrum of $n C S$ in this particular case.

3 Lower 3-chromatic index for an $8 C S$

In this section we treat an $8 C S$, and only in the case $s=3$ since the case $s=2$ has been covered completely in Section 2.
Theorem 3.1. $\chi_{3}^{(8)}(16 k+1)=3$ for any $k \geq 1$.
In the proof of Theorem 3.1 we need to distinguish between the cases $k \equiv 0,1,2$ $\bmod 3$. Theorem 3.1 will be proven for $k=1$ and $k=2$.
Theorem 3.2. $\chi_{3}^{(8)}(17)=3$.
Proof. Let us consider the following blocks on \mathbb{Z}_{17} :

$$
\begin{aligned}
A_{1} & =(0,1,3,5,8,6,4,2) \\
A_{2} & =(0,3,6,10,9,5,1,4) \\
A_{3} & =(0,5,7,4,3,2,1,6) \\
A_{4} & =(11,14,13,16,12,9,15,8) \\
A_{5} & =(9,13,12,7,14,15,11,16) \\
A_{6} & =(7,8,16,14,10,15,12,11) \\
A_{7} & =(0,7,1,12,2,11,3,8) \\
A_{8} & =(0,9,1,8,2,7,3,10) \\
A_{9} & =(0,11,1,10,2,9,3,12) \\
A_{10} & =(4,13,5,16,7,15,6,14) \\
A_{11} & =(4,15,5,14,8,13,6,16) \\
A_{12} & =(9,11,13,15,16,10,12,14) \\
A_{13} & =(0,13,1,16,3,15,2,14) \\
A_{14} & =(0,15,1,14,3,13,2,16) \\
A_{15} & =(2,5,4,8,10,13,7,6) \\
A_{16} & =(4,9,8,12,6,11,5,10) \\
A_{17} & =(4,11,10,7,9,6,5,12)
\end{aligned}
$$

The system $\Sigma=\left(\mathbb{Z}_{17}, \bigcup_{i=1}^{17} A_{i}\right)$ is an $8 C S$ of order 17. Let $\phi: \bigcup A_{i} \rightarrow\{1,2,3\}$ be the colouring assigning the colour 1 to the blocks A_{i}, for $i=1, \ldots, 6$, the colour 2 to the blocks A_{i}, for $i=7, \ldots, 12$ and the colour 3 to the blocks A_{i} for $i=13, \ldots, 17$. Then ϕ is a 3 -tricolouring of Σ. In particular, all vertices occur in exactly three blocks coloured 1 , except for vertices 2,10 and 13 , which belong to two blocks colored 1 ; all vertices occur in exactly three blocks coloured 2 , except for vertices 4,5 and 6 , which belong to two blocks colored 2 ; the vertices $0,1,3,7,8,9,11,12,14,15,16$ occur in exactly two blocks colored 3 while the remaining ones belong to three blocks colored 3. This proves the statement.

Let us now consider the case $k=2$.

Theorem 3.3. $\chi_{3}^{(8)}(33)=3$.
Proof. On the set $X=\left\{x_{i}: x \in \mathbb{Z}_{11}, i=1,2,3\right\}$, consider the following blocks:

$$
\begin{aligned}
& A_{i}=\left(0_{i}, 1_{i}, 3_{i}, 6_{i}, 2_{i}, 7_{i}, 1_{i+1}, 1_{i+2}\right) \\
& B_{i}=\left(0_{i+1}, 1_{i+2}, 10_{i+1}, 2_{i+2}, 9_{i+1}, 7_{i+2}, 1_{i+1}, 8_{i+2}\right),
\end{aligned}
$$

where we take indices modulo 3 , so that $x_{4}:=x_{1}$ and $x_{5}:=x_{2}$ for any $x \in \mathbb{Z}_{11}$. Let \mathcal{B}_{i} be the set of blocks A_{i} and B_{i} and their translated forms, for any $i=1,2,3$, where i is kept fixed. So this means that

$$
A_{i}+j=\left(j_{i},(j+1)_{i},(j+3)_{i},(j+6)_{i},(j+2)_{i},(j+7)_{i},(j+1)_{i+1},(j+1)_{i+2}\right)
$$

and

$$
\begin{aligned}
& \quad B_{i}+j= \\
& \left(j_{i+1},(j+1)_{i+2},(j+10)_{i+1},(j+2)_{i+2},(j+9)_{i+1},(j+7)_{i+2},(j+1)_{i+1},(j+8)_{i+2}\right)
\end{aligned}
$$

for any $j \in \mathbb{Z}_{11}$. Then $\Sigma=\left(X, \mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \mathcal{B}_{3}\right)$ is an $8 C S$ of order 33. Moreover, the colouring $\phi: \mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \mathcal{B}_{3} \rightarrow\{1,2,3\}$ which assigns colour i to the blocks of \mathcal{B}_{i} is a 3 -tricolouring of Σ. The statement is proven because for a fixed $i=1,2,3$ the vertices $0_{i}, \ldots, 10_{i}$ belong to six blocks colored i, while the other vertices $0_{j}, \ldots, 10_{j}$, with $j \neq i$, belong to five blocks colored i.

Let us now proceed to the proof of Theorem 3.1.
Proof of Theorem 3.1. We distinguish three cases.
(1) Let $k \equiv 0 \bmod 3$, so that $k=3 h$ for some $h \geq 1$. If $v=16 k+1=48 h+1$ we need to consider three pairwise disjoints sets A_{1}, A_{2}, A_{3} so that $\left|A_{i}\right|=16 h$ for any i, and take $\infty \notin A_{i}$ for any i. According to Theorem 1.1 it is possible to consider three $8 C S \Sigma_{i}=\left(A_{i} \cup\{\infty\}, \mathcal{B}_{i}\right)$ for $i=1,2,3$. By Theorem 2.5 we can decompose the complete bipartite graph $K_{A_{1}, A_{2}}$ into 8 -cycles $C_{i}, i=1, \ldots, 32 h^{2}$, the complete bipartite graph $K_{A_{1}, A_{3}}$ into 8 -cycles $D_{i}, i=1, \ldots, 32 h^{2}$, and the complete bipartite graph $K_{A_{2}, A_{3}}$ into 8 -cycles $E_{i}, i=1, \ldots, 32 h^{2}$. If

$$
\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \mathcal{B}_{3} \cup \bigcup_{i=1}^{32 h^{2}}\left(C_{i} \cup D_{i} \cup E_{i}\right),
$$

then the system $\Sigma=\left(A_{1} \cup A_{2} \cup A_{3} \cup\{\infty\}, \mathcal{B}\right)$ is an $8 C S$ of order v. Let us define a colouring assigning the colour 1 to the blocks of \mathcal{B}_{1} and to the blocks E_{i}, the colour 2 to the blocks of \mathcal{B}_{2} and to the blocks of D_{i}, and the colour 3 to the blocks of \mathcal{B}_{3} and to the blocks C_{i}. Thus this is a 3 -tricolouring of Σ, because any element of $A_{1} \cup A_{2} \cup A_{3} \cup\{\infty\}$ belongs to precisely $8 h$ blocks colored i, for $i=1,2,3$.
(2) Let $k \equiv 1 \bmod 3$, so that $k=3 h+1$ for some $h \geq 0$, and let $v=48 h+17$. According to Theorem 3.2 it is possible to suppose that $h \geq 1$. Let us consider
pairwise disjoint sets $X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}$, i with $\left|X_{1}\right|=4,\left|X_{2}\right|=\left|X_{3}\right|=6$, $\left|Y_{1}\right|=\left|Y_{2}\right|=\left|Y_{3}\right|=16 h$, and consider an element $\infty \notin \bigcup X_{i} \cup \bigcup Y_{j}$.

By Theorem 3.2 we can consider an $8 C S \Sigma_{1}=\left(X_{1} \cup X_{2} \cup X_{3} \cup\{\infty\}, \mathcal{B}_{1}\right)$ with a 3 -tricolouring. The blocks of \mathcal{B}_{1} are divided into three subsets $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$, where the blocks of \mathcal{C}_{i} are colored i.

Similarly, as seen in the case $k \equiv 0 \bmod 3$, it is possible to consider an $8 C S$ $\Sigma_{2}=\left(Y_{1} \cup Y_{2} \cup Y_{3} \cup\{\infty\}, \mathcal{B}_{2}\right)$ with a 3 -tricolouring. The blocks of \mathcal{B} are divided inito three subsets $\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}$, where the blocks of \mathcal{D}_{i} are colored i. Moreover, by Theorem 2.5 the bipartite graphs $K_{X_{i}, Y_{j}}$, for any $i, j=1,2,3$, can be decomposed into a family $\mathcal{E}_{i j}$ of 8 -cycles.

Now let us consider the system

$$
\Sigma=\left(\bigcup_{i=1}^{3} X_{i} \cup \bigcup_{j=1}^{3} Y_{j} \cup\{\infty\}, \bigcup_{i=1}^{3} \mathcal{C}_{i} \cup \bigcup_{j=1}^{3} \mathcal{D}_{j} \cup \bigcup_{i, j=1,2,3} \mathcal{E}_{i j}\right) .
$$

It easily follows that Σ is an $8 C S$ of order $v=48 h+17$. We can determine a 3 -tricolouring of Σ in the following way:

- assign the colour 1 to the blocks of $\mathcal{C}_{1}, \mathcal{D}_{1}, \mathcal{E}_{1,1}, \mathcal{E}_{2,2}$ and $\mathcal{E}_{3,3} ;$
- assign the colour 2 to the blocks of $\mathcal{C}_{2}, \mathcal{D}_{2}, \mathcal{E}_{1,2}, \mathcal{E}_{2,3}$ and $\mathcal{E}_{3,1}$;
- assign the colour 3 to the blocks of $\mathcal{C}_{3}, \mathcal{D}_{3}, \mathcal{E}_{1,3}, \mathcal{E}_{2,1}$ and $\mathcal{E}_{3,2}$.

In particular, any vertex is contained in $24 h+8$ blocks, $8 h+3$ colored with one color, another $8 h+3$ colored with a second color and the remaining $8 h+2$ colored with the third color. This proves the statement in the case $k \equiv 1 \bmod 3$.
(3) Let $k \equiv 2 \bmod 3$, so that $k=3 h+2$ for some $h \geq 0$, and let $v=48 h+33$. By Theorem 3.3 it is possible to suppose that $h \geq 1$. Let us consider pairwise disjoint sets $X_{1}, X_{2}, X_{3}, Y_{1}, Y_{2}, Y_{3}$, with $\left|X_{1}\right|=12,\left|X_{2}\right|=\left|X_{3}\right|=10,\left|Y_{1}\right|=\left|Y_{2}\right|=\left|Y_{3}\right|=16 h$, and consider an element $\infty \notin \bigcup X_{i} \cup \bigcup Y_{j}$.

According to Theorem 3.3, we can consider an $8 C S \Sigma_{1}=\left(X_{1} \cup X_{2} \cup X_{3} \cup\{\infty\}, \mathcal{B}_{1}\right)$ with a 3 -tricolouring. The blocks of \mathcal{B}_{1} are divided into three subsets $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$, where the blocks of \mathcal{C}_{i} are colored with the colour i.

Similarly, as seen in the case $k \equiv 0 \bmod 3$, we can consider an $8 C S \Sigma_{2}=$ $\left(Y_{1} \cup Y_{2} \cup Y_{3} \cup\{\infty\}, \mathcal{B}_{2}\right)$ with a 3 -tricolouring. The blocks of \mathcal{B}_{2} are divided into three subsets $\mathcal{D}_{1}, \mathcal{D}_{2}, \mathcal{D}_{3}$, where the blocks of \mathcal{D}_{i} are colored i. Moreover, by Theorem 2.5 we can decompose the bipartite graphs $K_{X_{i}, Y_{j}}$, for any $i, j=1,2,3$, into a family $\mathcal{E}_{i j}$ of 8 -cycles.

Now let us consider the system

$$
\Sigma=\left(\bigcup_{i=1}^{3} X_{i} \cup \bigcup_{j=1}^{3} Y_{j} \cup\{\infty\}, \bigcup_{i=1}^{3} \mathcal{C}_{i} \cup \bigcup_{j=1}^{3} \mathcal{D}_{j} \cup \bigcup_{i, j=1,2,3} \mathcal{E}_{i j}\right)
$$

It easily follows that Σ is an $8 C S$ of order $v=48 h+33$. We can determine a 3 -tricolouring of Σ in the following way:

- assign the colour 1 to the blocks of $\mathcal{C}_{1}, \mathcal{D}_{1}, \mathcal{E}_{1,1}, \mathcal{E}_{2,2}$ and $\mathcal{E}_{3,3} ;$
- assign the colour 2 to the blocks of $\mathcal{C}_{2}, \mathcal{D}_{2}, \mathcal{E}_{1,2}, \mathcal{E}_{2,3}$ and $\mathcal{E}_{3,1}$;
- assign the colour 3 to the blocks of $\mathcal{C}_{3}, \mathcal{D}_{3}, \mathcal{E}_{1,3}, \mathcal{E}_{2,1}$ and $\mathcal{E}_{3,2}$.

In particular, any vertex is contained in $24 h+16$ blocks, $8 h+6$ colored with one color, another $8 h+5$ colored with a second color and the final $8 h+5$ colored with the third color. The result is now proved in the case $k \equiv 2 \bmod 3$.

4 Upper 3-chromatic index

This section indicates upper bounds for the upper 3-chromatic index. Our aim is to find its exact value in the case $v=16 k+1$ and $k \equiv 0 \bmod 3$.

Let $\Sigma=(X, \mathcal{B})$ be an $8 C S$ of order v and suppose that a c-colouring of type s of Σ is given. Let us denote by \mathcal{B}_{i} the set of blocks colored i and by X_{i} the set of vertices belonging to blocks of \mathcal{B}_{i}.

Lemma 4.1. Let $\Sigma=(X, \mathcal{B})$ be an $8 C S$ of order v with a c-tricolouring. Then:

1. $c \leq 8$ if $k \equiv 0 \bmod 3$;
2. $c \leq 9$ if $k \equiv 1,2 \bmod 3$, with $k>1$;
3. $c \leq 10$ if $k=1$.

Proof. Let $v=16 k+1$. Then any $x \in X$ belongs to $8 k$ blocks. Then, following the notation, $\left|X_{i}\right| \geq 2\left\lfloor\frac{8 k}{3}\right\rfloor+1$. So we must have

$$
c\left(2\left\lfloor\frac{8 k}{3}\right\rfloor+1\right) \leq 3(16 k+1) .
$$

This inequality implies the lemma.
Using the previous notation we need the following technical lemma, which will determine an upper bound for $\bar{\chi}_{3}^{(8)}(16 k+1)$ for any k. The idea comes from [8, Lemma 5.3].

Lemma 4.2. Let $\Sigma=(X, \mathcal{B})$ be an $8 C S$ of order v with a c-colouring of type s, for some $s \geq 2$. Then

$$
\left|X_{i} \cup X_{j}\right| \geq 4\left\lfloor\frac{8 k}{s}\right\rfloor+1
$$

for any $i \neq j$.

Proof. Let $v=16 k+1$, for some $k \geq 1$. Then $\left|X_{i}\right| \geq 2\left\lfloor\frac{8 k}{s}\right\rfloor+1$ for any i. Let $\left|X_{i}\right|=2\left\lfloor\frac{8 k}{s}\right\rfloor+1+k_{i}$ for some $k_{i} \geq 0$ and for any i.

Let $x \in X_{i} \cap X_{j}$ for $i \neq j$. Let us suppose that $y \in X_{i} \cap X_{j}$ for $y \neq x$. Either y is not adjacent to x in the blocks of \mathcal{B}_{i} (which are at most k_{i}) or in the blocks of \mathcal{B}_{j} (which are at most k_{j}). This means that $\left|X_{i} \cap X_{j}\right| \leq k_{i}+k_{j}+1$. So

$$
\left|X_{i} \cup X_{j}\right|=4\left\lfloor\frac{8 k}{s}\right\rfloor+2+k_{i}+k_{j}-\left|X_{i} \cap X_{j}\right| \geq 4\left\lfloor\frac{8 k}{s}\right\rfloor+1
$$

It is now possible to prove the first of the two main results of this section.
Theorem 4.3. $\bar{\chi}_{3}^{(8)}(16 k+1) \leq 7$ for any $k \geq 2$ and $\bar{\chi}_{3}^{(8)}(17) \leq 6$.
Proof. Let us use the fixed notation. Given $v=16 k+1$, we consider an $8 C S$ $\Sigma=(X, \mathcal{B})$ of order v with a c-tricolouring.

Now let $v=17$, so that $k=1$. Clearly we must have $\left|X_{i}\right| \geq 8$ for any i. So

$$
51=3 \cdot|X|=\sum_{i=1}^{c}\left|X_{i}\right| \geq 8 c
$$

This implies that $c \leq 6$ and so $\bar{\chi}_{3}^{(8)}(17) \leq 6$. We can now suppose that $k \geq 2$. By Lemma 4.2,

$$
\left|X_{i} \cup X_{j}\right| \geq 4\left\lfloor\frac{8 k}{3}\right\rfloor+1
$$

for any $i \neq j$. Since any vertex belongs to three of the sets X_{1}, \ldots, X_{c}, we get

$$
\left[\binom{c}{2}-\binom{c-3}{2}\right](16 k+1)=\sum_{i \neq j}\left|X_{i} \cup X_{j}\right| \geq\binom{ c}{2}\left(4\left\lfloor\frac{8 k}{3}\right\rfloor+1\right)
$$

and so

$$
\begin{equation*}
(3 c-6)(16 k+1) \geq \frac{c(c-1)}{2}\left(4\left\lfloor\frac{8 k}{3}\right\rfloor+1\right) . \tag{1}
\end{equation*}
$$

Let $c=9$. Then by (1) we get:

$$
112 k-5 \geq 48\left\lfloor\frac{8 k}{3}\right\rfloor \geq 48 \frac{8 k-2}{3} \Rightarrow 16 k-27 \leq 0
$$

The only possibility is that $k=1$, so that $|\mathcal{B}|=17$. However, since $c=9$, we would have $\left|\mathcal{B}_{i}\right|=1$ for some i, which is not possible, because we should have $\left|\mathcal{B}_{i}\right| \geq 2$ for any i. Together with Lemma 4.1 this proves that $c \leq 8$ for any k. It must be noted that if $c=8$ a contradiction is obtained, impling that we must have $c \leq 7$.

Let us suppose $c=8$. By (1) we have

$$
\begin{aligned}
9(16 k+1) & \geq 14\left(4\left\lfloor\frac{8 k}{3}\right\rfloor+1\right) \\
& \geq 14\left(4 \frac{8 k-2}{3}+1\right), \\
\text { which implies } 16 k-97 & \leq 0
\end{aligned}
$$

It is clear that the only possibility is that $k \leq 6$.
If $k=2$, then any $x \in X$ belongs to 16 blocks, six coloured with a first colour, five coloured with a second colour and five coloured with a third colour. So $\left|X_{i}\right|=11+k_{i}$ for any $i=1, \ldots, 8$, and

$$
3 \cdot 33=\sum_{i=1}^{8}\left|X_{i}\right| \Rightarrow \sum_{i=1}^{8} k_{i}=11 .
$$

If $k_{i}=0$ for some i, then the blocks of \mathcal{B}_{i} are a decomposition of the complete graph on X_{i} in 8 -cycles. However, this is not possible, because $\left|\mathcal{B}_{i}\right|=\frac{5 \cdot 11}{8} \notin \mathbb{N}$. Then $k_{i}=1$ for at least one i, so that $\left|X_{i}\right|=12$. In this case any element of X_{i} must belong to five blocks of \mathcal{B}_{i}. Therefore this is not possible, because $\left|\mathcal{B}_{i}\right|=\frac{5 \cdot 12}{8} \notin \mathbb{N}$. So $k \neq 2$.

If $k=3,5,6$, by (1) and by the fact that $c=8$, we obtain a contradiction.
If $k=4$, then $|X|=65$ and any $x \in X$ belongs to 32 blocks, 11 coloured with a first colour, 11 coloured with a second colour and 10 coloured with a third colour. We know that $\left|X_{i}\right|=21+k_{i}$, where $k_{i} \geq 0$, for any i and moreover:

$$
\begin{align*}
3 \cdot 65 & =\sum_{i=1}^{8}\left|X_{i}\right| \\
\text { which implies } \quad \sum_{i=1}^{8} k_{i} & =27 . \tag{2}
\end{align*}
$$

Let us denote by Y_{i} the set of elements of X_{i} belonging to 11 blocks of \mathcal{B}_{i} and by Z_{i} the set of of elements of X_{i} belonging to 10 blocks of \mathcal{B}_{i}. For any i, j, with $i \neq j$, we have

$$
X_{i} \cap X_{j}=\left(Y_{i} \cap Y_{j}\right) \cup\left(Y_{i} \cap Z_{j}\right) \cup\left(Z_{i} \cap Y_{j}\right)
$$

Taking any $x \in X_{i} \cap X_{j}$, either x belongs to Y_{i} or to Y_{j}. It is possible to suppose that $x \in Y_{i}$, which implies that $k_{i} \geq 2$. Taking any $y \in X_{i} \cap X_{j}, y \neq x$, either $\{x, y\}$ does not belong to any block in \mathcal{B}_{i} or does not belong to any block in \mathcal{B}_{j}. So y either is one of the $k_{i}-2$ elements of X_{i} not adjacent to x in any of the blocks of \mathcal{B}_{i} or is one of the k_{j} elements of X_{j} not adjacent to x in any of the blocks of \mathcal{B}_{j}. This shows that

$$
\left|X_{i} \cap X_{j}\right| \leq k_{i}+k_{j}-1
$$

for any i, j, with $i \neq j$. Therefore

$$
3|X|=\sum_{1 \leq i<j \leq 8}\left|X_{i} \cap X_{j}\right| \leq \sum_{1 \leq i<j \leq 8}\left(k_{i}+k_{j}-1\right)
$$

which implies that

$$
195 \leq-\binom{8}{2}+7 \sum_{i=1}^{8} k_{i}
$$

By (2) we obtain a contradiction, and this proves the theorem.
In the next result we determine the exact value of $\bar{\chi}_{3}^{(8)}(16 k+1)$ in the case that $k \equiv 0 \bmod 3$.
Theorem 4.4. $\bar{\chi}_{3}^{(8)}(16 k+1)=7$ for any $k \equiv 0 \bmod 3$.
Proof. Let $k=3 h$ for some $h \geq 1$. Then, if $v=16 k+1=48 h+1$, let us consider six pairwise disjoints sets A_{i}, for $i=1, \ldots, 6$, so that $\left|A_{i}\right|=8 h$ for any i, and take $\infty \notin A_{i}$ for any i. According to Theorem 1.1 this can be considered as three $8 C S, \Sigma_{j}=\left(A_{2 j-1} \cup A_{2 j} \cup\{\infty\}, \mathcal{B}_{j}\right)$ for $j=1,2,3$. By [12, Theorem 2.15] it is possible to decompose the complete equipartite graphs $K_{A_{1}, A_{3}, A_{5}}$ into 8-cycles C_{i}, $i=1, \ldots, 24 h^{2} ; K_{A_{1}, A_{4}, A_{6}}$ into 8-cycles $D_{i}, i=1, \ldots, 24 h^{2} ; K_{A_{2}, A_{3}, A_{6}}$ into 8-cycles $E_{i}, i=1, \ldots, 24 h^{2}$; and $K_{A_{2}, A_{4}, A_{5}}$ into 8 -cycles $F_{i}, i=1, \ldots, 24 h^{2}$. If:

$$
\mathcal{B}=\mathcal{B}_{1} \cup \mathcal{B}_{2} \cup \mathcal{B}_{3} \cup \bigcup_{i}\left(C_{i} \cup D_{i} \cup E_{i} \cup F_{i}\right),
$$

then the system $\Sigma=\left(\bigcup_{i=1}^{6} A_{i} \cup\{\infty\}, \mathcal{B}\right)$ is an $8 C S$ of order v.
Let $\phi: \mathcal{B} \rightarrow\{1, \ldots, 7\}$ be the colouring assigning the colour 1 to the blocks of \mathcal{B}_{1}, the colour 2 to the blocks of \mathcal{B}_{2}, the colour 3 to the blocks of \mathcal{B}_{3}, the color 4 to the blocks C_{i}, the colour 5 to the blocks D_{i}, the colour 6 to the blocks E_{i}, and the colour 7 to the blocks F_{i}. Then it follows easily that ϕ is 7 -tricolouring of Σ.

5 Quadricolourings for $8 C S$

This section deals with quadricolourings, determining the exact value of $\chi_{4}^{(8)}(16 k+1)$ in the case that $k \equiv 0 \bmod 4$ and giving an upper bound for $\bar{\chi}_{4}^{(8)}(16 k+1)$.

By using the previous notation let us consider an $8 C S, \Sigma=(X, \mathcal{B})$ of order v, with a c-colouring of type s. We will denote by \mathcal{B}_{i} the set of blocks colored i and by X_{i} the set of vertices belonging to blocks of \mathcal{B}_{i}.
Proposition 5.1. $\bar{\chi}_{4}^{(8)}(16 k+1) \leq 14$ for $k \geq 6$, and $\bar{\chi}_{4}^{(8)}(16 k+1) \leq 13$ for $k \leq 5$.
Proof. Let $\Sigma=(X, \mathcal{B})$ be an $8 C S$ of order $v=16 k+1$ and let $\phi: \mathcal{B} \rightarrow\{1, \ldots, c\}$ be a colouring. Then any $x \in X$ belongs to $8 k$ blocks and $\left|X_{i}\right| \geq 4 k+1$. It is easy to check that

$$
c(4 k+1) \leq 4(16 k+1)
$$

This implies that $c \leq 15$. Since $\left|X_{i}\right|=4 k+1+k_{i}$ for any i and for some $k_{i} \geq 0$, we have

$$
4|X|=\sum_{i=1}^{c}\left|X_{i}\right|, \text { which implies } \sum_{i=1}^{c} k_{i}=64 k+4-4 c k-c .
$$

Similarly, as in the proof of Lemma 4.2 we obtain

$$
\left|X_{i} \cap X_{j}\right| \leq k_{i}+k_{j}+1
$$

which implies

$$
6|X|=\sum_{i<j}\left|X_{i} \cap X_{j}\right| \leq\binom{ c}{2}+(c-1) \sum_{i=1}^{c} k_{i},
$$

which implies

$$
\begin{equation*}
96 k+6 \leq\binom{ c}{2}+(c-1)(64 k+4-4 c k-c) \tag{3}
\end{equation*}
$$

Let us consider $c=15$. Then by (3) it can be noted that $40 k+55 \leq 0$, which is not possible. It follows that $c \leq 14$. We now suppose that $c=14$; then by (3) we find that $8 k \geq 45$, so that $k \geq 6$. This proves the statement.

Theorem 5.2. $\chi_{4}^{(8)}(16 k+1)=4$ if and only if $k \equiv 0 \bmod 4$.
Proof. Let $\Sigma=(X, \mathcal{B})$ be an $8 C S$ of order v with a 4 -quadricolouring. Then $X_{i}=X$ and

$$
\left|\mathcal{B}_{i}\right|=\frac{\left|X_{i}\right| \cdot 2 k}{8}=\frac{k(16 k+1)}{4}
$$

for any i. Then we must have $k \equiv 0 \bmod 4$.
Let us now consider $k \equiv 0 \bmod 4$, so that $k=4 h$ for some $h \geq 0$. If $v=$ $16 k+1=64 h+1$, let us consider, on \mathbb{Z}_{v}, the following blocks:

$$
A_{i}=(0, i+4 h, 48 h+1, i+12 h, 32 h+1, i+16 h, 28 h+1, i)
$$

for $i=1, \ldots, 4 h$. Let \mathcal{B} be the set of all the blocks A_{i} and their translated forms. Then $\Sigma=\left(\mathbb{Z}_{v}, \mathcal{B}\right)$ is an $8 C S$ of order v. Let $\phi: \mathcal{B} \rightarrow\{1,2,3,4\}$ be the colouring assigned in the following way:

- the blocks A_{i}, for $i=1, \ldots, h$, and all their translated forms are colored 1 ;
- the blocks A_{i}, for $i=h+1, \ldots, 2 h$, and all their translated forms are colored 2;
- the blocks A_{i}, for $i=2 h+1, \ldots, 3 h$, and all their translated forms are colored 3;
- the blocks A_{i}, for $i=3 h+1, \ldots, 4 h$, and all their translated forms are colored 4.

It follows immediately that this is a 4-quadricolouring of Σ and it shows that $4 \in$ $\Omega_{4}^{(8)}(16 k+1)$ for $k \equiv 0 \bmod 4$.

References

[1] P. Bonacini, M. Gionfriddo and L. Marino, Block colourings of 6-cycle systems, Opuscula Math. 37 (2017), no. 5, 647-664.
[2] P. Bonacini, M. Gionfriddo and L. Marino, Equitable Block Colourings for Systems of 4-Kites, Appl. Math. Sciences 11 (2017), no. 21, 1029-1047.
[3] P. Bonacini and L. Marino, Equitable tricolourings for 4-cycle systems, Appl. Math. Sciences 9 (2015), no. 58, 2881-2887.
[4] P. Bonacini and L. Marino, Equitable block colourings, Ars Combin. 120 (2015), 255-258.
[5] D. Bryant and C. Rodger, Cycle decompositions, in The CRC Handbook of Combinatorial Designs (second ed.), (Eds. C.J. Colbourn and J.H. Dinitz), CRC Press, Boca Raton (2007), pp. 373-382.
[6] C.J. Colbourn and A. Rosa, Specialized block-colourings of Steiner triple systems and the upper chromatic index, Graphs Combin. 19 (2003), 335-345.
[7] L. Gionfriddo, M. Gionfriddo and G. Ragusa, Equitable specialized blockcolourings for 4-cycle systems - I, Discrete Math. 310 (2010), 3126-3131.
[8] M. Gionfridd and G. Ragusa, Equitable specialized block-colourings for 4-cycle systems - II, Discrete Math. 310 (2010), 1986-1994.
[9] M. Gionfriddo, P. Horak, L. Milazzo and A. Rosa, Equitable specialized blockcolourings for Steiner triple systems, Graphs Combin. 24 (2008), 313-326.
[10] M. Gionfriddo and G. Quattrocchi, Colouring 4-cycle systems with equitable coloured blocks, Discrete Math. 284 (2004), 137-148.
[11] A. Kotzig, On the decompositions of complete graphs into $4 k$-gons, Mat. Fyz. Casop. 15 (1965), 229-233.
[12] J. Liu, A Generalization of the Oberwolfach Problem and C_{t}-Factorizations of Complete Equipartite Graphs, J. Combin. Des. 8 (2000), 42-49.
[13] A. Rosa, On cyclic decompositions of the complete graph into $(4 m+2)$-gons, Mat.-Fyz. Cas. 16 (1966), 349-352.
[14] D. Sotteau, Decompositions of $K_{m, n}\left(K_{m, n}^{\star}\right)$ into cycles (circuits) of length $2 k$, J. Comb. Theory Ser. $B 30$ (1981), 75-81.
[15] V. Voloshin, Coloring block designs as mixed hypergraphs: survey, Abstracts of papers, Amer. Math. Soc. (2005) Vol. 26, No. 1, Issue 139, p. 15.
(Received 11 Aug 2016; revised 28 Feb 2017, 10 July 2017)

