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Abstract

The block intersection graph of a combinatorial design with block set B
is the graph with B as its vertex set such that two vertices are adjacent
if and only if their associated blocks are not disjoint. The chromatic
index of a graph G is the least number of colours that enable each edge
of G to be assigned a single colour such that adjacent edges never have
the same colour. A graph G for which the chromatic index equals the
maximum degree is called Class 1; otherwise the chromatic index exceeds
the maximum degree by one and G is called Class 2. We conjecture that
whenever a Steiner triple system has a block intersection graph with an
even number vertices, the graph is Class 1. We prove this to be true for
Kirkman triple systems and cyclic Steiner triple systems of order v ≡ 9
(mod 12). We also prove that the conjecture holds for cyclic Steiner triple

systems of order v ≡ 1 (mod 12) for which ϕ(v)
v−1

� 2
3
, where ϕ is Euler’s

totient function.

1 Introduction

A balanced incomplete block design of order v, block size k and index λ, denoted as
a BIBD(v, k, λ), consists of a v-set V accompanied by a block set B which itself is
a set (or multiset) of k-subsets of V such that each 2-subset of V is contained by
exactly λ of the blocks of B. A Steiner triple system of order v is a BIBD(v, 3, 1),
and is typically denoted by the notation STS(v). It is a classic result of Kirkman
that a STS(v) exists if and only if v ≡ 1 or 3 (mod 6) [16]. For more information on
Steiner triple systems and their properties, see [10].
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Given a block design (V,B), its associated block intersection graph is the graph on
vertex set B for which two vertices B1 and B2 are adjacent if and only if |B1∩B2| �
1. In [5] Graham is attributed with having asked whether STS block intersection
graphs have Hamilton cycles, a question that was subsequently affirmatively an-
swered (see [5] and [14]). In addition to being Hamiltonian, block intersection graphs
of BIBDs are also pancyclic [4, 19]. Even more recently they have been shown to
be cycle extendable, which in turn has enabled a polynomial-time algorithm to be
developed for finding cycles of arbitrary specified length in them [1].

The chromatic index χ′ of a graphG is the least number of colours that are needed
when colouring its edges under the restriction that no two adjacent edges receive the
same colour. Vizing’s Theorem asserts that a simple graph G with maximum degree
Δ either has chromatic index χ′ = Δ or χ′ = Δ + 1 [12, 25]. A simple graph G
is described as Class 1 (resp. Class 2) if its chromatic index is Δ (resp. Δ + 1),
although determining which is the case is in general an NP-complete problem [13].
Nevertheless, for some types of graphs the situation is less difficult; for instance, a
century-old result of König confirms that all bipartite graphs are Class 1 [17].

If G is a Δ-regular Class 1 graph of even order, then the edges of G can be parti-
tioned into Δ 1-factors (i.e., 1-regular spanning subgraphs); such a partition is called
a 1-factorisation of G. A Hamilton decomposition of a Δ-regular graph G consists
of a set of Hamilton cycles (plus a 1-factor if Δ is odd) that partition the edges of
G. Results pertaining to Hamilton decompositions date back to the nineteenth cen-
tury when Walecki is described as having found elegant Hamilton decompositions of
complete graphs [18]. For a survey paper about Hamilton decompositions of graphs,
see [3]. In the event that G is a Hamilton decomposable graph of even order, then
it is clear that G admits a 1-factorisation and hence G is Class 1. However, the
converse does not hold as there are graphs with 1-factorisations but which do not
admit Hamilton decompositions (for an example, refer to Figure 1).

Figure 1: A Class 1 graph that has no Hamilton decomposition

The line graph L(G) of a graph G is the graph having the edge set of G as its
vertex set, with two vertices of L(G) being adjacent if and only if their corresponding
edges in G are adjacent. Line graphs can be viewed as a special case of block
intersection graphs, or, alternatively, block intersection graphs can be viewed as
a generalisation of line graphs. There are a number of results in the literature
concerning 1-factorisations and line graphs. For instance, Alspach proved that any
complete graph Kn with an even number of edges has a Class 1 line graph [2]. More



I. DARIJANI ET AL. /AUSTRALAS. J. COMBIN. 69 (1) (2017), 145–158 147

generally, Jaeger has established that if G is a Hamilton decomposable graph with
an even number of edges then L(G) is Class 1 [15].

One-factorisations are widely used within graph theory as well as in areas such
as scheduling. For an in-depth review about the theory and application of 1-factoris-
ations, readers can consult [26]. Among the various problems about 1-factorisations,
particularly noteworthy is the 1-Factorisation Conjecture, one of the earliest refer-
ences to which is [7]:

Conjecture 1.1 If G is a simple Δ-regular graph on 2k vertices and k � Δ then G
is Class 1.

A stronger conjecture that implies the 1-Factorisation Conjecture was given by
Nash-Williams [20]:

Conjecture 1.2 If G is a simple Δ-regular graph on n vertices and n � 2Δ then G
has a Hamilton decomposition.

Both of these conjectures have recently been solved when the number of ver-
tices is sufficiently large [11]. However, with regard to block intersection graphs of

Steiner triple systems, the block intersection graph of a STS(v) has v(v−1)
6

vertices
and is regular of degree 3v−9

2
. Hence it is only for v ∈ {9, 13} (resp. admissible

v � 15) that the block intersection graph of a STS(v) satisfies the hypothesis of the
1-Factorisation Conjecture (resp. Nash-Williams’ Conjecture). In [23] it is reported
that every STS(v) with order v � 15 has a Hamilton decomposable block intersection
graph, but for admissible orders v � 19 the status remains undetermined.

Since the property of being Hamilton decomposable is (for graphs of even order) a
stronger property than having a 1-factorisation, it is natural to initially consider the
potentially easier question of deciding whether 1-factorisations exist for STS block
intersection graphs. Any graph of order n and maximum degree Δ such that the
number of edges exceeds Δ�n

2
� is called overfull and is necessarily Class 2 [8]. Every

regular graph of odd order is overfull and hence every STS(v) for which v ≡ 3 or 7
(mod 12) must have a Class 2 block intersection graph. We therefore only consider
v ≡ 1 or 9 (mod 12) for the remainder of this paper, for which we offer this conjecture:

Conjecture 1.3 Every STS(v) with v ≡ 1 or 9 (mod 12) has a Class 1 block inter-
section graph.

A Kirkman triple system of order v, denoted KTS(v), is a STS(v) for which the
blocks can be partitioned into v−1

2
sets called parallel classes, each of which consists

of v
3
pairwise disjoint blocks. In Section 2 we show that Conjecture 1.3 is satisfied

by every Kirkman triple system of order v ≡ 9 (mod 12).

A Steiner triple system of order v is said to be cyclic if its automorphism group
contains a cyclic subgroup of order v. In Section 3 we consider cyclic Steiner triple
systems of order v ≡ 1 (mod 12) and we prove that Conjecture 1.3 holds for every
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such STS with ϕ(v)
v−1

� 2
3
, where ϕ denotes Euler’s totient function. In Section 4 we

establish that Conjecture 1.3 is true for all cyclic Steiner triple systems of order v ≡ 9
(mod 12).

2 Kirkman triple systems

Ray-Chaudhuri and Wilson proved in 1971 that a KTS(v) exists if and only if v ≡ 3
(mod 6) [24]. Here we show that each Kirkman triple system for which v ≡ 9 (mod
12) gives rise to a block intersection graph that admits a 1-factorisation. Before
proving the main result of this section, we state the following theorem which will be
used throughout this paper.

Theorem 2.1 (König [17]) If G is a bipartite graph, then χ′(G) = Δ(G).

We now show that Conjecture 1.3 holds for KTS of order v ≡ 9 (mod 12).

Theorem 2.2 A KTS(v) has a Class 1 block intersection graph if and only if v ≡
9 (mod 12).

Proof. It has already been observed that every STS(v) with v ≡ 3 (mod 12) has
a Class 2 block intersection graph, so we only need to now consider Kirkman triple
systems with v ≡ 9 (mod 12). Suppose that B is the block set of a KTS(v) with
v ≡ 9 (mod 12). Hence v = 6m + 3 where m is an odd integer, and the KTS has
v−1
2

= 3m+ 1 parallel classes. Let P1,P2, . . . ,P3m+1 be the parallel classes.

There are
(
3m+1

2

)
pairs of parallel classes, and we wish to partition these pairs

into 3m sets S1, S2, . . . , S3m so that within the pairs of each set Si each parallel class
occurs exactly once. Such a partition can be easily obtained by making use of a
1-factorisation of K3m+1 on the vertex set {P1,P2, . . . ,P3m+1}.

Consider two parallel classes, say Px and Py, that are together as a pair in some
set Si. The blocks of these two parallel classes induce a subgraph Gx,y of the block
intersection graph G of the KTS such that Gx,y is a 3-regular bipartite graph with
2m+ 1 vertices in each of its two parts. Recalling that bipartite graphs are Class 1
by Theorem 2.1, we can therefore edge-colour this cubic bipartite graph with the
three colours 3i−2, 3i−1 and 3i. Moreover, we can use these same three colours for
each subgraph of G induced by a pair of parallel classes in Si, since each such pair
induces a subgraph of G that is disjoint from the subgraphs induced by the other
pairs of Si.

We have now exhibited a proper colouring of the edges of the block intersection
graph that uses only 9m colours, and hence we conclude that the KTS has a Class 1
block intersection graph. �
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3 Cyclic Steiner triple systems of order v ≡ 1 (mod 12)

In this section we investigate Steiner triple systems of order v ≡ 1 (mod 12) for which
the block set B can be generated from a set of v−1

6
base blocks through the repeated

application of a permutation σ of the points of V . More succinctly, we consider
Steiner triple systems that are cyclic, which are known to exist if and only if v ≡ 1
or 3 (mod 6) and v �= 9 [21]. Without loss of generality we may assume that V = Zv

and that the permutation σ is (0, 1, 2, . . . , v− 1). We prefer an additive notation for
this permutation, so that for any block B, we define B+ i = {x+ i (mod v) : x ∈ B}.

Here we will prove that many cyclic Steiner triple systems of order v ≡ 1 (mod
12) have Class 1 block intersection graphs. As with the Kirkman triple systems
of Section 2 we will find a means of decomposing the block intersection graph into
several subgraphs that themselves are Class 1. Many of these subgraphs will be
bipartite, but there is another type of subgraph that will also be helpful to us.

Given positive integers n and k, we denote by P (n, k) the generalised Petersen
graph on 2n vertices and 3n edges. Specifically, the vertex set of P (n, k) is {w0, w1,
. . . , wn−1} ∪ {x0, x1, . . . , xn−1}, and for each i ∈ Zn let {wi, wi+1}, {wi, xi} and
{xi, xi+k} be edges. The familiar Petersen graph is therefore P (5, 2). Although
the Petersen graph is Class 2, Castagna and Prins have shown that it is the unique
generalised Petersen graph with this property [6].

Given a block B in a cyclic STS(v), we will refer to the set of blocks {B,B +
1, B + 2, . . . , B + (v − 1)} as its orbit. Note that if, in the block intersection graph
of a cyclic STS, B is adjacent to B + i then B is also adjacent to B − i; the edges
{B,B + i} and {B,B − i} are said to have difference i with respect to the orbit
of B. If the six neighbours that a block B has within its orbit are B ± i, B ±
j and B ± k then we will refer to the three least positive elements of the 6-set
{±i (mod v),±j (mod v),±k (mod v)} as the orbital differences for the orbit of B.

Lemma 3.1 Given two orbits of size v in a cyclic STS(v), if one of them has an
orbital difference d that is co-prime to v and e is an orbital difference for the other
orbit, then a P (v, d−1e) is formed by the edges of difference d in the first orbit, the
edges of difference e in the second orbit and a suitably chosen 1-factor between the
two orbits.

Proof. Let B0 be a block having an orbit with a difference d that is co-prime to v. For
each i ∈ Zv let Bi = B0+ i. Then there exists a v-cycle (B0, Bd, B2d, . . . , B(v−1)d). B0

is adjacent to nine vertices in the other orbit of the lemma’s hypothesis. Let A0 be one
of these nine neighbours of B0. We now obtain a set of v edges of the form {Bi, Ai},
yielding the spokes of a generalised Petersen graph. Since e is an orbital difference
for the orbit of A0, there exists an edge {Aie, A(i+1)e} for each i ∈ Zv. Relabel
B0, Bd, B2d, . . . , B(v−1)d (resp. A0, Ad, A2d, . . . , A(v−1)d) as w0, w1, w2, . . . , wv−1 (resp.
x0, x1, x2, . . . , xv−1), respectively. Then we find that xj is adjacent to xj+k if and
only if Aj is adjacent to Aj+kd. In the graph that we have constructed, the three
neighbours of Aj are Aj+e, Aj−e and Bj and so we obtain e ≡ kd (mod v). Hence
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Figure 2: A P (13, 5) subgraph in the block intersection graph of a cyclic STS(13)

k ≡ d−1e (mod v) and thus the edges that we have described constitute a P (v, d−1e)
that is a subgraph of the block intersection graph of the cyclic STS(v). �

As an example of such a design, let v = 13 and observe that B =
{{0, 1, 4}+ i :

i ∈ Z13

}∪{{0, 2, 7}+ i : i ∈ Z13

}
is the block set of a cyclic STS(13) having {0, 1, 4}

and {0, 2, 7} as base blocks. For each i ∈ Z13, let Ai be the block {4, 6, 11} + i
and similarly let Bi = {0, 1, 4} + i. The orbital differences arising from A0 are 2, 5
and 6, while those arising from B0 are 1, 3 and 4. Using orbital difference d = 3
(which is co-prime to v and has multiplicative inverse d−1 ≡ 9) we obtain a 13-cycle
(B0, B3, B6, . . . , B10). B0 is adjacent to nine vertices in the orbit of A0, one of which
is A0 itself. We thus have a set of 13 edges of the form {Bi, Ai}, yielding the spokes
of a generalised Petersen graph. Since e = 2 is an orbital difference for the orbit of
A0, we include in our graph the edge {A2i, A2(i+1)} for each i ∈ Z13. The result is
the P (13, 5) shown in Figure 2.

To foreshadow results that are yet to come, we can continue with this example
and demonstrate how to obtain a 1-factorisation of the block intersection graph of
this cyclic STS(13). Since P (13, 5) is a generalised Petersen graph other than the
Petersen graph, then we can properly colour its edges with three colours, say 1, 2
and 3. Using orbital differences d = 1 and e = 6, along with a 1-factor of spokes
such as edges of the form {Ai, Bi+3} we obtain a P (13, 6) which we can edge-colour
with colours 4, 5 and 6. The orbital differences d = 4 and e = 5, along with edges of
the form {Ai, Bi+7} produce another P (13, 6) which we can edge-colour with colours
7, 8 and 9. The remaining uncoloured edges from the block intersection graph of
the cyclic STS(13) induce a 6-regular bipartite graph, which can be properly edge-
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coloured with colours 10 through 15.

Observe that any cyclic STS(v) for which v ≡ 1 (mod 12) has {1, 2, . . . , v−1
2
} as

its set of orbital differences. We will want to partition these v−1
2

differences into v−1
4

pairs of differences, and for each such pair we will want to construct a generalised
Petersen graph of order 2v. The hypothesis of Lemma 3.1 requires that one of the
two orbital differences of the pair be co-prime to v. If we let ϕ denote Euler’s totient
function then the proportion of the orbital differences that are co-prime to v is ϕ(v)

v−1
.

It is necessary that ϕ(v)
v−1

be at least one half in order for our approach to showing
that a cyclic STS(v) has a Class 1 block intersection graph to work. We are able to

show that ϕ(v)
v−1

� 2
3
is sufficient.

Theorem 3.1 Any cyclic STS(v) with v ≡ 1 (mod 12) and ϕ(v)
v−1

� 2
3
has a Class 1

block intersection graph.

Proof. First note that when v ≡ 1 (mod 12) the blocks of a cyclic STS(v) give rise
to N = v−1

6
distinct orbits. Observe that N is even and consider the complete graph

KN in which each vertex denotes an orbit of the STS. Since N is even, KN admits
a 1-factorisation in which each 1-factor consists of a set of pairs of orbits.

If, for just one of these 1-factors, say F0, it is the case that each pair of orbits
has at least three (of its six) orbital differences that are co-prime to v then we can
use the technique of Lemma 3.1 to construct three edge-disjoint generalised Petersen
graphs for each pair of orbits corresponding to an edge of the 1-factor. For the first
of the three generalised Petersen graphs constructed from each such pair of orbits, a
proper edge-colouring with colours 1, 2 and 3 is possible. For the second (resp. third)
generalised Petersen graph arising from each of these pair of orbits, colours 4, 5 and
6 (resp. 7, 8 and 9) can be used in a proper edge-colouring. The remaining edges
between these pairs of orbits induce a 6-regular bipartite graph, which is Class 1
by Theorem 2.1 and hence can be properly edge-coloured with colours 10 through
15. Let F1,F2, . . . ,FN−2 denote the remaining 1-factors in the 1-factorisation of
KN . Since all edges that join vertices of the same orbit have already been coloured
(with one of the colours in the set {1, 2, . . . , 9}), then each edge of these 1-factors
corresponds to a pair of orbits for which the uncoloured edges induce a 9-regular
bipartite graph. For each i ∈ {1, 2, . . . , N − 2} and each edge of Fi, we use the
colours of {9i+7, 9i+8, . . . , 9i+ 15} to properly colour the edges of these 9-regular
bipartite graphs. The result is a Class 1 colouring for the block intersection graph
of the STS.

All that now remains is to prove that there is some partition of the N orbits into
N
2
pairs such that at least three of the orbital differences of each of these pairs are

co-prime to v (i.e., we need to prove that there is a way to select the initial 1-factor
F0 of KN).

For each j ∈ {0, 1, 2, 3} let cj denote the number of orbits having exactly j orbital
differences that are co-prime to v. Clearly c0 + c1 + c2 + c3 = N . Since each orbit
with no differences that are co-prime to v must be paired with an orbit having three
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differences that are co-prime to v, and each orbit with one such difference must be
paired with an orbit having at least two, it is readily evident that the following two
conditions are necessary for a suitable 1-factor F0 to exist:

c3 � c0 (1)

c2 + (c3 − c0) � c1 (2)

Moreover, these two conditions are sufficient since the c0 orbits having no differences
that are co-prime to v can be arbitrarily paired with c0 of the c3 orbits having
three co-prime differences. The c1 orbits with one co-prime difference can then be
arbitrarily paired with c1 of the remaining c2+(c3− c0) unpaired orbits that have at
least two co-prime differences. And lastly, all of the remaining unpaired orbits can
be arbitrarily paired together, yielding a suitable 1-factor F0.

Recall that ϕ(v)
v−1

equals the proportion of orbital differences that are co-prime to

v, and thus c1+2c2+3c3
3N

= ϕ(v)
v−1

. And since ϕ(v)
v−1

� 2
3
, it follows that

c3 � 2c0 + c1 (3)

Clearly 2c0+c1 � c0, and so condition (1) is satisfied. Statement (3) also implies that
c1 − c3 � −2c0, and by observing that −2c0 � c2 − c0 holds if and only if 0 � c2 + c0
(which is always true), we find that c1− c3 � c2− c0 and so condition (2) is satisfied.

�

While Theorem 3.1 shows that Conjecture 1.3 holds for any cyclic STS(v) with

v ≡ 1 (mod 12) and ϕ(v)
v−1

� 2
3
, we note that our technique of decomposing the block

intersection graph of a cyclic STS into generalised Petersen graphs and bipartite
graphs can also often be used when 1

2
� ϕ(v)

v−1
< 2

3
. The crucial requirement is that

the orbital differences be distributed among the orbits of the STS in such a manner
that conditions (1) and (2) are satisfied. Cyclic Steiner triple systems for which
1
2
� ϕ(v)

v−1
< 2

3
do exist, although they appear to be somewhat sporadic. The smallest

order v ≡ 1 (mod 12) for which ϕ(v)
v−1

< 2
3
is v = 385, for which ϕ(v)

v−1
= 5

8
.

Cyclic Steiner triple systems for which our technique is certain to fail also exist,
namely those for which fewer than half of the orbital differences are co-prime to v.
The smallest such order v ≡ 1 (mod 12) is v = 37182145, for which ϕ(v)

v−1
= 95040

193657
.

If Conjecture 1.3 holds in general, then there must be some means of obtaining a
Class 1 edge-colouring of the block intersection graph of a cyclic STS(37182145)
other than by the method that we have described.

Interestingly, both 385 and 37182145 are products of consecutive prime numbers.
We now investigate some of the conditions on v that pertain to when ϕ(v)

v−1
satisfies

the hypothesis of Theorem 3.1. Note in particular that if ϕ(v)
v

� 2
3
then ϕ(v)

v−1
> 2

3
. If

v has prime factorisation v = pα1
1 pα2

2 · · ·pαt
t then ϕ(v)

v
= (1 − 1

p1
)(1 − 1

p2
) · · · (1 − 1

pt
),

which is independent of the exponents α1, α2, . . . , αt of the prime factorisation. We
can therefore concentrate our attention on the prime factors of v.
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Corollary 3.1 If v ≡ 1 (mod 12) is a prime power, then any cyclic STS(v) has a
Class 1 block intersection graph.

Proof. As already observed, it suffices to prove that ϕ(v)
v

� 2
3
. Let v = pα and note

that since v ≡ 1 (mod 12) then p �= 2 and p �= 3. Hence ϕ(v)
v

= 1− 1
p
� 1− 1

5
> 2

3
. �

Corollary 3.2 If v ≡ 1 (mod 12) has only two prime divisors, then any cyclic
STS(v) has a Class 1 block intersection graph.

Proof. Suppose v = pα1
1 pα2

2 where p1 < p2. Then p1 � 5 and p2 � 7. Therefore
ϕ(v)
v

� (1− 1
5
)(1− 1

7
) > 2

3
. �

Corollary 3.3 If v ≡ 1 (mod 12) has only three prime divisors, and these three divi-
sors are not one of the trios in the set T =

{{5, 7, 11}, {5, 7, 13}, {5, 7, 17}, {5, 7, 19},
{5, 7, 23}, {5, 7, 29}, {5, 7, 31}}, then any cyclic STS(v) has a Class 1 block intersec-
tion graph.

Proof. Observe that if v were to equal pα1
1 pα2

2 pα3
3 where {p1, p2, p3} ∈ T, then ϕ(v)

v

would be less than 2
3
, which would not imply the hypothesis of Theorem 3.1. However,

with these cases excluded from consideration then ϕ(v)
v

> 2
3
. �

4 Cyclic Steiner triple systems of order v ≡ 9 (mod 12)

In this section we will prove that all cyclic Steiner triple systems of order v ≡ 9 (mod
12) have Class 1 block intersection graphs. Similar to cyclic Steiner triple systems of
order v ≡ 1 (mod 12), we will find a decomposition of the block intersection graph
into several subgraphs that themselves are Class 1.

Cyclic Steiner triple systems of order v ≡ 9 (mod 12) can be generated from
a set of base blocks which are a solution of Heffter’s second difference problem,
through the repeated application of a permutation of the points of V . Recall that
Heffter’s second difference problem is as follows: given v = 6n + 3 is it possible to
partition the set {1, 2, . . . , v−1

2
= 3n+ 1} \ {2n+ 1} into n triples {x, y, z} such that

x + y = ±z (mod v)? For n ∈ Z such a partition is always possible [21] . Given a
solution to Heffter’s second difference problem, one can construct a difference triple
{0, x, x+ y} from each triple {x, y, z}, and then the set of all difference triples along
with {0, 2n+1, 4n+ 2} serve as a collection of base blocks. If B(v) is a collection of
base blocks obtained from a solution of Heffter’s second difference problem, then a
cyclic STS(v) ({0, 1, . . . , v− 1},T) of order v ≡ 9 (mod 12) is constructed as follows:

T =
{
{i, x+ i, x+ y + i} | 0 � i � v − 1, {0, x, x+ y} ∈ B(v)

}
⋃{

{i, 2n+ 1 + i, 4n+ 2 + i} | 0 � i � 2n
}
.

For each base block B ∈ B(v), we call the set of blocks it generates a full orbit
and for the base block {0, 2n + 1, 4n + 2}, the set of blocks it generates is called a
short orbit.
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Given a set of blocks B, we denote by GB the block intersection graph induced
by the blocks of B. If B̂ ⊆ B, then GB[B̂] denotes the subgraph of GB induced by

B̂.

Lemma 4.1 Let (V,B) be a cyclic STS(v) of order v ≡ 9 (mod 12) and d be an
orbital difference of the full orbit O =

{
B0, B1, . . . , Bv−1

}
. Then any cycle in GB[O]

of the form (Bi, Bi+d, . . . , Bi+(�−1)d), where Bi+�d = Bi, is of length � = v
gcd(v,d)

and

the number of cycles of this form is gcd(v, d).

Proof. Without loss of generality we may assume that i = 0 and let B0, Bd, . . . ,
B(�−1)d be distinct elements and B�d be the first element such that B�d = Bjd for
some 0 � j � �− 1. Suppose that B�d = Bjd for some 1 � j � �− 1. Then we have
�d ≡ jd (mod v) and as a result, (� − j)d ≡ 0 (mod v) which yields B(�−j)d = B0

where 0 � �−j � �−1; this is a contradiction. Therefore, B�d = B0 and consequently
�d ≡ 0 (mod v). So � is the least integer such that �d is a multiple of v, which is
clearly v

gcd(v,d)
. Hence the number of cycles of this form is v

�
= gcd(v, d). �

Theorem 4.1 Any cyclic STS(v) with v ≡ 9 (mod 12) has a Class 1 block intersec-
tion graph.

Proof. First, observe that in a cyclic STS(v) with v ≡ 9 (mod 12) the number of
points and the number of blocks are v = 6n+3 and b = n(6n+3)+(2n+1), where n
is an odd integer. Hence we have n full orbits of size v = 6n+ 3 and one short orbit
of size v

3
= 2n+1, which give rise to N = n+1 distinct orbits. Let O0,O1, . . . ,ON−2

be the full orbits and S be the short orbit. We construct a complete graph KN on
N vertices where each vertex represents an orbit of the STS. Since N is even, KN

admits a 1-factorisation and hence we can partition the set of all pairs of orbits into
N − 1 sets F0, . . . ,FN−2 such that each orbit occurs exactly once in each set. For
each one of these 1-factors, we have N

2
− 1 pairs of full orbits and one pair consisting

of a full orbit and a short orbit.

Let F be a 1-factor of KN . If (Oi,Oj) ∈ F, then we define GF[Oi,Oj ] to be the

graph on vertex set Oi ∪ Oj and edge set E(GF[Oi,Oj ]) =
{{B, B̂} | B ∈ Oi, B̂ ∈

Oj , B ∩ B̂ �= ∅}.
Let GF =

( ∑
(Oi,Oj)∈F

GF[Oi,Oj]
)
+GB[O, S], where (O, S) ∈ F. For each F, we show

how to colour GF, starting with GF0 .

Without loss of generality we may assume that F0 = {(O0,O1), . . . , (ON−4,ON−3),
(ON−2, S)}. To colour GF0 , we first properly colour the edges in GF0 [O0,O1], . . . ,
GF0 [ON−4,ON−3], which induce a 9-regular bipartite graph and hence is 9-edge-
colourable by Theorem 2.1, using colours 1, 2, . . . , 9. If it is possible to colour the
9-regular subgraph GB[ON−2, S] using the same nine colours, then we can similarly
colour each GFi

properly, where i ∈ {1, 2, . . . , N − 2} using colours {9i + 1, 9i +
2, . . . , 9i+ 9}. All that remains is to colour GB[ON−2, S] with nine colours.
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Now, suppose that ON−2 = {B0, B1, . . . , Bv−1} with orbital differences d1, d2, and
d3 and S = {A0, A1, . . . , A v

3
−1}. As we showed in Lemma 4.1, for each orbital differ-

ence dk, k ∈ {1, 2, 3}, there exist gcd(v, dk) cycles of length �k =
v

gcd(v,dk)
of the form

(Bi, Bi+dk , . . . , Bi+(�k−1)dk) in GF0 [ON−2]. In GB[ON−2, S], each Bi, i ∈ {0, 1, . . . , v −
1} is adjacent to three vertices in S. Let Ai be one of these three neighbours of Bi.
We then obtain a set of �k edges {Bi, Ai}, {Bi+dk , Ai+dk}, . . . , {Bi+(�k−1)dk ,
Ai+(�k−1)dk}, where the indices of the blocks of the full orbit are reduced modulo v and
the indices of the blocks of the short orbit are reduced modulo v

3
. We call each cycle

(Bi, Bi+dk , . . . , Bi+(�k−1)dk) along with the set of edges {Bi, Ai}, {Bi+dk , Ai+dk}, . . . ,
{Bi+(�k−1)dk , Ai+(�k−1)dk} a configuration. Let Gdk be the subgraph of GB[ON−2, S]
induced by the orbital difference dk, k ∈ {1, 2, 3}. Clearly, we have gcd(v, dk) config-
urations for orbital difference dk which decompose Gdk into edge-disjoint subgraphs.
Since the indices of the blocks of the short orbit are reduced modulo v

3
, each block

of the short orbit occurs thrice among the gcd(v, dk) configurations. Hence Gdk is a
3-regular graph which has a decomposition into edge-disjoint configurations. It now
suffices to properly colour Gd1 using colours 1,2,3 and Gd2 using colours 4,5,6 and
finally Gd3 using colours 7,8,9. Note that

V1 =
{
B0, B1, . . . , Bv−1, A0, A1, . . . , A v

3
−1

}

is the set of vertices and

E1 =
{{B0, A0}, {Bd1, Ad1}, . . . , {B(�1−1)d1 , A(�1−1)d1}, {B1, A1}, {B1+d1 , A1+d1}, . . . ,

{B1+(�1−1)d1 , A1+(�1−1)d1}, . . . , {Bn, An}, {Bn+d1, An+d1}, . . . ,
{Bn+(�1−1)d1 , An+(�1−1)d1}

} ∪ {
(B0, Bd1, . . . , B(�1−1)d1), (B1, B1+d1 , . . . , B1+(�1−1)d1),

. . . , (Bn, Bn+d1, . . . , Bn+(�1−1)d1)
}

is the set of edges of Gd1 , where

(B0, Bd1, . . . , B(�1−1)d1), (B1, B1+d1 , . . . , B1+(�1−1)d1), . . . , (Bn, Bn+d1 , . . . , Bn+(�1−1)d1)

are the gcd(v, d1) cycles of length �1 =
v

gcd(v,d1)
, and n = gcd(v, d1)− 1.

Suppose A0, Ad1 , . . . , A(�′1−1)d1 are distinct elements and A�′1d1 = A0. It is easy to

see that �′1 =
v
3

gcd( v
3
,d1)

. Note that we have two cases: 1) �′1 = �1 and 2) �′1 < �1.

Case 1 (�′1 = �1): If �′1 = �1 = v
3
, then there will be three configurations such

that each Aj , j ∈ {0, 1, . . . , v
3
− 1}, is adjacent to exactly one block in each config-

uration. Since the configuration is a cycle with pendant edges, it is easy to colour
the first configuration using three colours 1, 2, and 3. To colour the second configu-
ration, first colour the edges incident to each Aj, j ∈ {0, 1, . . . , v

3
− 1}. If the edge

incident to Aj is coloured by colour i in the first configuration, then colour the edge
incident to Aj in the second configuration by colour σ(i), where σ is the permutation
(1, 2, 3). The remaining edges in the second configuration can be easily coloured
properly using colours 1, 2, and 3. Similarly, to colour the third configuration, we
permute the colours in the first configuration by σ2 = (1, 3, 2). Since each vertex Ai
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has received a distinct colour in each of the three configurations, then Gd1 has been
properly 3-edge-coloured.

If �′1 = �1 < v
3
, then there will be more than three configurations. Note that

we call the union of configurations in which each block of the short orbit occurs
exactly once a layer. Clearly, there are three layers. Since in every layer, each Aj,
j ∈ {0, 1, . . . , v

3
− 1}, occurs exactly once and a layer is a union of configurations,

we can easily colour the layer using three colours 1, 2, and 3. To colour the second
and the third layers, again permute the colours in the first layer by σ = (1, 2, 3) and
σ2 = (1, 3, 2) respectively.

Case 2 (�′1 < �1): In this case we have n+ 1 configurations C1, . . . ,Cn+1 where
n+1 � 3 and a partition of the set of the blocks of the short orbit into n+1 subsets
A1, . . . ,An+1 such that each block in the set Ai = {Ai1 , . . . , Ai�′

1
} occurs three times

in exactly one of the configurations, say Ci, i ∈ {1, . . . , n}. In other words, each
block in Ai has degree three in Ci and degree zero in the other configurations. To
colour the configuration Ci, first colour the three edges incident to each block in Ai

by colours 1, 2, and 3. It is then straightforward to colour the remaining edges in
the configuration properly using colours 1, 2, and 3.

Similarly, it is possible to colour Gd2 using colours 4, 5, 6 and Gd3 using colours
7, 8, 9. �

5 Closing Remarks

It has long been known that STS block intersection graphs belong to the family
of strongly regular graphs [22]. Specifically, a graph is said to be strongly regular
if it is regular, each pair of adjacent vertices has a constant number λ of common
neighbours and each pair of nonadjacent vertices has a constant number μ of common
neighbours. As noted by Cioabă and Li in [9], chromatic indices of strongly regular
graphs of even order are not yet well understood. Should Conjecture 1.3 be true, then
perhaps a broader conjecture that applies to strongly regular graphs more generally
might also hold.
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