
AUSTRALASIAN JOURNAL OF COMBINATORICS
Volume 69(1) (2017), Pages 130–144

Computational results on invertible matrices with
the maximum number of invertible 2× 2

submatrices

Navid Nasr Esfahani Douglas R. Stinson∗

David R. Cheriton School of Computer Science
University of Waterloo

Waterloo, Ontario N2L 3G1
Canada

Abstract

A linear 2-All-or-Nothing Transform can be considered as an invertible
matrix with all 2 × 2 submatrices invertible. It is known [P. D’Arco,
N. Nasr Esfahani and D.R. Stinson, Electron. J. Combin. 23(4) (2016),
#P4.10] that there is no binary s×s matrix that satisfies these conditions,
for s > 2. In this paper, different computational methods for generating
invertible binary matrices with close to the maximum number of invertible
2 × 2 submatrices have been implemented and compared against each
other. We also study the ternary matrices with such properties.

1 Introduction

All-or-nothing transforms were first introduced by Rivest [7] as a mode of operation,
for block ciphers, that slows down brute force attacks proportionally to the number
of blocks. To achieve that, he defines an all-or-nothing transform (AONT) as a
reversible transformation, from message blocks to output blocks, that both itself
and its inverse are “efficiently computable”, and obtaining any information about
any message block without the knowledge of all output blocks is “computationally
infeasible”. Stinson [8] extended the definition and introduced unconditionally secure
AONTs. Since this paper uses the unconditionally secure AONTs, we will start with
their definition.

Definition 1.1. Let Σ be a finite set of size q. For a positive integer s, φ : Σs → Σs

is an unconditionally secure all-or-nothing transform if

1. φ is a bijection.

∗ D. Stinson’s research is supported by NSERC discovery grant #RGPIN-03882.

N.N. ESFAHANI AND D.R. STINSON/AUSTRALAS. J. COMBIN. 69 (1) (2017), 130–144 131

2. Given any output subset Y ⊂ {y1, y2, . . . , ys} where |Y| = s−1, no information
about any single input element xi, 1 ≤ i ≤ s can be obtained.

Stinson [8] also focuses on linear AONTs, which are transforms that can be
represented by invertible matrices, and studies Hadamard matrices and orthogonal
arrays as instances of such AONTs. Besides the initial application, AONTs have
been used in exposure-resilient functions [1], network coding [2, 5, 9], anti-jamming
techniques [6], query anonymization[11], etc.

D’Arco et al. [3] discuss the information theoretical security of more than one
input block and more specifically focus on the case of two input blocks. Following
from Definition 1.1, t-AONTs are defined as below.

Definition 1.2. Let Σ be a finite set of size q. For a positive integer s, φ : Σs → Σs

is an unconditionally secure t-all-or-nothing transform if

1. φ is a bijection.

2. Given any output subset Y ⊂ {y1, y2, . . . , ys} where |Y| = s− t, no information
about any input subset X ⊂ {x1, x2, . . . , xs}, |X | = t can be obtained.

The authors prove that for s > 2, there is no binary 2-AONT, and thus they
define N2(s) and R2(s) as measures for how “close” a transform can be to an s × s
2-AONT. Nt(s) is the maximum possible number of invertible t × t submatrices of
an invertible s× s matrix, and

Rt(s) =
Nt(s)(
s
t

)2 .
Then they continue by presenting different constructions, as well as an upper bound
on maximum observed values of R2(s) based on quadratic programming. Zhang et
al. [12] further studied the t = 2 case and showed that R2(s) converges to 0.5 as s
increases. In this paper, we will denote N s

t in conjunction with an algorithm as the
maximum number of t × t submatrices found by the algorithm, e.g. “Cyclic N s

2”
refers to the maximum number of invertible 2× 2 submatrices in an invertible s× s
matrix found by the algorithm which searches the cyclic matrices, and

Rs
t =

N s
t(

s
t

)2 .
It follows from the definitions that “Exhaustive N s

t ” is equal to Nt(s).

As mentioned above, in addition to the analytical work on invertible matrices with
the maximum number of invertible 2 × 2 submatrices, different constructions have
been presented based on balanced incomplete block designs [3], cyclotomy [3, 12],
random constructions [3], solving integer-programming models [12], and exhaustive
search [3]. In this paper, three search algorithms for transforms “close to” AONTs
are presented, as well as the computational results of those algorithms. First, the
exhaustive search used in [3] is explained, then the exhaustive search on cyclic ma-
trices is considered, and finally we discuss a search for matrices that are one entry
off from being cyclic.

N.N. ESFAHANI AND D.R. STINSON/AUSTRALAS. J. COMBIN. 69 (1) (2017), 130–144 132

2 Search Algorithms

D’Arco et al. [3] presented a quadratic programming (QP) formulation for 2-AONTs,
given below:

Maximize 1
2
zCzT

subject to
∑15

i=1 zi ≤ 1,
zi ≥ 0, 1 ≤ i ≤ 15.

The matrix C is defined such that cij is the number of invertible 2×2 submatrices
formed by considering binary representations of i and j as two rows. Thus, the main
diagonal of C is all zeros. Since the trace of C equals 0 and C is not an all-zero
matrix, it has both positive and negative eigenvalues. Therefore, the matrix C is not
positive/negative semi-definite for any value of s. According to Vavasis [10, p. 81],
the above-mentioned QP problem is NP-hard for such matrices. Consequently, an
exhaustive search algorithm was used to search for an instance of invertible s × s
matrices with the maximum possible number of invertible 2 × 2 submatrices, for
4 ≤ s ≤ 9. The algorithm used a branch-and-bound technique that branches by
iterating over different possible combinations for each row, in nested loops, and
bounds the search as soon as the rows of the matrix become linearly dependent.

Based on the idea of constructing matrices “close to” 2-AONTs using cyclotomy
in [3] and [12], and also due to computational limitations of enumerating all possible
cases of matrices, we decided to limit the search to cyclic matrices. The algorithm
for this search iterates over different possible values for the first row of the matrix,
and each of the other rows will be generated by applying a cyclic shift to the row
above.

Although cyclic matrices give optimum or near optimum results in most of the
cases that are possible to check, the case s = 3 illustrates their weakness. In this
case, going from a cyclic matrix to a matrix that is only one element away from
being cyclic increases the ratio from 0.3̄ to 0.7̄. This improvement encouraged us to
consider applying the “adjusting step” suggested by Zhang et al. [12].

These search algorithms will be discussed in detail in the following subsections.

2.1 Exhaustive Search

In total, there are 2n
2

different binary n × n matrices; however many of them can
be skipped because either they are not invertible, or a permutation of their rows
and columns has already been considered. In the search algorithm, each for loop
iterates over the possible values for a row. At each iteration, if a row is a linear
combination of the rows above it, that row will not be considered, i.e., the search
will be bounded by this linear dependency check. Besides, since any permutation of
rows and columns does not effect either the singularity, or the number of invertible
2 × 2 submatrices of a matrix, we want to enumerate as few matrices of each class
as possible. Therefore, the search algorithm only generated matrices in which each

N.N. ESFAHANI AND D.R. STINSON/AUSTRALAS. J. COMBIN. 69 (1) (2017), 130–144 133

row has at least as many 1’s as the number of 1’s in the row above it. Also, if two
rows have the same number of 1’s, the row representing a smaller number in binary,
should appear higher. These two rules enabled us to search only a 1

s!
fraction of the

search domain. Finally, we partially restricted column permutations by fixing all
the 1’s in the first row to be the right-most coordinates. This constraint helped the
algorithm to skip repeated computations over different permutations of the first row,
for a fixed number of 1’s.

Example 2.1. Let s = 4. Then following the bounding constraints in the exhaus-
tive algorithm search, the first row can only be chosen from: (0, 0, 0, 1), (0, 0, 1, 1),
(0, 1, 1, 1), (1, 1, 1, 1). Suppose (0,0,1,1) is the chosen first row, then neither (0, 0, 0, 1),
(0, 0, 1, 0), (0, 1, 0, 0), nor (1, 0, 0, 0) can be chosen as the second row because their
weights are smaller than that of the first row. Now, if the second row is (1, 0, 0, 1),
then the third row cannot be (0, 1, 1, 0) as it represents 6 in binary which is smaller
than 9, which is represented by the second row; also, it cannot be (1, 0, 1, 0) because
it is a linear combination of the first two rows.

Another restriction was added for the case when s = 9: for the first 5 rows, if
two coordinates in a row have different values, but in all the rows above them, those
coordinates were identical, in this row the value 0 should appear on the left side of
the value 1.

The computations for 4 ≤ s ≤ 8 were executed on one node on a server of the
Cheriton School of Computer Science, linux.cs.uwaterloo.ca, with a 64 bit AMD
CPU, having a 2.6 GHz clock rate. We also attempted to use the same algorithm
distributed over 256 processors on grex.westgrid.ca. But 14 of those processes did
not terminate by the end of the 96 hour time limit. The search domain, corresponding
to those processes, was distributed again among 266 processes. In total, the whole
computation took approximately 10000 CPU hours.

Some information about the resultant matrices is provided below. Also, the
pseudocode in Algorithm 1 illustrates the general algorithm used in the processes.
For the s = 9 case, different iterations of the second for loop were distributed among
256 processes, two iterations per process.

Table 1 presents the number of 1’s, their density, and minimum weight of a row
in the resultant matrices, along with the values for s, N2(s), and R2(s).

N.N. ESFAHANI AND D.R. STINSON/AUSTRALAS. J. COMBIN. 69 (1) (2017), 130–144 134

Algorithm 1 Exhaustive search

1: currSoln: an array of length s (Stores the solution under consideration)
2: soln: an array of length s (Stores the best solution so far)
3: Mats: an array of length s (Stores the number of invertible 2× 2 matrices up to

this level)
4: weight: an array of length 2s (Stores the number of ones in the binary expansion

of its index plus one)
5: for î : 1→ s− 1 do
6: i : 2î − 1
7: currSoln[0]← i+ 1 (+1 because indices start from 0)
8: for j : i+ 1→ 2s − s+ 2 (−s+ 2 because these many more rows are needed)

do
9: if weight[i] ≤ weight[j] then

10: currSoln[1]← j
11: Mats[1]← C[i][j]
12: for k : j + 1→ 2s − s+ 3 do
13: if weight[j] ≤ weight[k] then
14: currSoln[2]← k
15: Mats[2]←Mats[1] + C[i][k] + C[j][k]
16: if Chosen rows are linearly independent then
17: . . .
18: for ` : prev. counter + 1→ 2s do
19: if weight[prev. counter] ≤ weight[`] then
20: currSoln[s− 1]← `+ 1
21: Mats[s− 1]←Mats[s− 2] + C[i][`] + C[j][`] + . . .
22: if Mats[s − 1] > max AND Chosen rows are linearly inde-

pendent then
23: max←Mats[s− 1]
24: soln← currSoln
25: end if
26: end if
27: end for
28: . . .
29: end if
30: end if
31: end for
32: end if
33: end for
34: end for
35: return soln

N.N. ESFAHANI AND D.R. STINSON/AUSTRALAS. J. COMBIN. 69 (1) (2017), 130–144 135

s N2(s) R2(s) 1’s in the matrix density of 1’s Min.weight of a row

3 7 0.7̄ 7 0.7̄ 2

4 30 0.83̄ 12 0.75 3

5 70 0.7 17 0.68 3

6 150 0.6̄ 25 0.694̄ 4

7 287 ≈ 0.651 35 ≈ 0.714 5

8 485 ≈ 0.618 47 ≈ 0.734 5

9 783 ≈ 0.604 55 ≈ 0.679 6

Table 1: Number and density of 1’s in the invertible matrices with maximum number
of invertible 2× 2 submatrices for s = 3, . . . , 9.

2.2 Search for Cyclic Matrices

In order to search all the invertible s×s cyclic matrices for the one with the greatest
R2(s) value, it suffices to iterate through all possible combinations for the first row.
This is because the order of rows does not affect the value of R2(s). It also guarantees
that the first row can be substituted by any of its cyclic shifts. Hence, only one
representative of each class of rows, resulting by shifting the first row, need to be
examined. For each choice of the first row, the number of invertible 2×2 submatrices
generated by that row and any of its shifts are counted and multiplied by s

2
, in order

to compute the total number of invertible 2 × 2 submatrices for that cyclic matrix.
The algorithm keeps the row resulting in the best ratio found so far, and reports
that row at the end of the search.

The cyclic search program, for 3 ≤ s ≤ 36, was sequentially executed on a node
on linux.cs.uwaterloo.ca in about 14 hours. Table 2 demonstrates the results
of the cyclic search and the exhaustive search, as far as possible, for the sake of
comparison.

As Table 2 shows, s = 2, s = 4, and s = 7 are the only cases, as far as we can
compare, where both algorithms generate similar results.

2.3 Search for Almost Cyclic Matrices

As previously mentioned, a cyclic search may fail to find some solutions near optimal
solution. This limitation can be attributed to restriction on the matrices to be cyclic.
Since being cyclic is not an intrinsic property of AONTs, the condition can be relaxed
so that the search considers matrices that are almost cyclic and have large 2-density.
To do so, we developed a modification of the adjusting step by Zhang et al. [12]. The
algorithm searches the matrices that are cyclic or off-by-one from being cyclic, i.e.,
a cyclic matrix with one entry altered from 0 to 1 or from 1 to 0, from the matrix
with the maximum 2-density.

N.N. ESFAHANI AND D.R. STINSON/AUSTRALAS. J. COMBIN. 69 (1) (2017), 130–144 136

s 1’s / row 1 Frq Max Cyc N2 Max Cyc R2 N2(s) R2(s)

2 1 0.5 1 1 1 1

3 1 0.3̄ 3 0.3̄ 7 0.7̄

4 3 0.75 30 0.83̄ 30 0.83̄

5 3 0.6 65 0.65 70 0.7

6 5 0.83̄ 135 0.6 150 0.6̄

7 5 ≈ 0.714 287 ≈ 0.651 287 ≈ 0.651

8 5 0.625 468 ≈ 0.597 485 ≈ 0.619

9 7 0.7̄ 765 ≈ 0.590 783 ≈ 0.604

10 7 0.7 1215 0.6 – –

11 7 ≈ 0.636 1716 ≈ 0.567 – –

12 9 0.75 2502 ≈ 0.574 – –

13 9 ≈ 0.692 3510 ≈ 0.577 – –

14 9 ≈ 0.643 4557 ≈ 0.550 – –

15 11 0.73̄ 6210 ≈ 0.563 – –

16 11 ≈ 0.688 8040 ≈ 0.558 – –

17 13 ≈ 0.765 10030 ≈ 0.542 – –

18 13 0.72̄ 12933 ≈ 0.552 – –

19 13 ≈ 0.684 16017 ≈ 0.548 – –

20 15 0.75 19510 ≈ 0.540 – –

21 15 ≈ 0.714 24045 ≈ 0.545 – –

22 15 ≈ 0.681 28831 ≈ 0.540 – –

23 17 ≈ 0.739 34385 ≈ 0.537 – –

24 17 ≈ 0.708 41124 ≈ 0.540 – –

25 17 0.68 48100 ≈ 0.534 – –

26 19 ≈ 0.731 56433 ≈ 0.534 – –

27 19 ≈ 0.704 65934 ≈ 0.535 – –

28 19 ≈ 0.679 75726 ≈ 0.530 – –

29 21 ≈ 0.724 87638 ≈ 0.532 – –

30 21 0.7 100485 ≈ 0.531 – –

31 21 ≈ 0.677 113863 ≈ 0.527 – –

32 23 ≈ 0.719 130128 ≈ 0.529 – –

33 23 0.6̄9 147213 ≈ 0.528 – –

34 25 ≈ 0.735 165087 ≈ 0.525 – –

35 25 ≈ 0.714 186445 ≈ 0.527 – –

36 25 ≈ 0.694 208530 ≈ 0.525 – –

Table 2: Number of ones in a row of cyclic matrices, and density of ones in them
are provided. Also the number of invertible 2× 2 submatrices and their ratio to the
total number of all 2× 2 submatrices in cyclic matrices can be compared with those
values in maximum cases for s = 2, . . . , 8.

N.N. ESFAHANI AND D.R. STINSON/AUSTRALAS. J. COMBIN. 69 (1) (2017), 130–144 137

s Cyc N2 Cyc R2 Adj Cyc N2 Adj Cyc R2

2 1 1 1 1

3 3 0.3̄ 7 0.7̄

4 30 0.83̄ 30 0.83̄

5 65 0.65 69 0.69

6 135 0.6 148 ≈ 0.658

7 287 ≈ 0.651 287 ≈ 0.651

8 468 ≈ 0.597 485 ≈ 0.619

9 765 ≈ 0.590 781 ≈ 0.603

10 1215 0.6 1215 0.6

11 1716 ≈ 0.567 1777 ≈ 0.587

12 2502 ≈ 0.574 2503 ≈ 0.575

13 3510 ≈ 0.577 3510 ≈ 0.577

14 4557 ≈ 0.550 4707 ≈ 0.568

15 6210 ≈ 0.563 6210 ≈ 0.563

16 8040 ≈ 0.558 8040 ≈ 0.558

17 10030 ≈ 0.542 10288 ≈ 0.556

18 12933 ≈ 0.552 12933 ≈ 0.552

19 16017 ≈ 0.548 16017 ≈ 0.548

20 19510 ≈ 0.540 19746 ≈ 0.547

21 24045 ≈ 0.545 24045 ≈ 0.545

22 28831 ≈ 0.540 28905 ≈ 0.542

23 34385 ≈ 0.537 34584 ≈ 0.540

24 41124 ≈ 0.540 41124 ≈ 0.540

25 48100 ≈ 0.534 48364 ≈ 0.537

26 56433 ≈ 0.534 56544 ≈ 0.535

27 65934 ≈ 0.535 65934 ≈ 0.535

28 75726 ≈ 0.530 76225 ≈ 0.533

29 87638 ≈ 0.532 87638∗ ≈ 0.537∗

30 100485 ≈ 0.531 100485∗ ≈ 0.531∗

31 113863 ≈ 0.527 114642∗ ≈ 0.530∗

32 130128 ≈ 0.529 130128∗ ≈ 0.529∗

33 147213 ≈ 0.528 147213∗ ≈ 0.528∗

34 165087 ≈ 0.525 166026∗ ≈ 0.528∗

35 186445 ≈ 0.527 186445∗ ≈ 0.527∗

36 208530 ≈ 0.525 208530∗ ≈ 0.525∗

Table 3: Comparison of N2 and R2 values for cyclic matrices and matrices with
one element adjustment for s = 2, . . . , 36 and the maximum of number of 2 × 2
submatrices possible in a binary cyclic matrix as an upper bound for q = 2. For
29 ≤ s ≤ 36 the adjusting step algorithm was unable to find an answer, thus a
simpler modification of the algorithm was used, which does not check all the matrices
that are one entry away from being cyclic. The results from the modified algorithm
are marked with ∗.

N.N. ESFAHANI AND D.R. STINSON/AUSTRALAS. J. COMBIN. 69 (1) (2017), 130–144 138

The search algorithm enumerates the matrices in the same method that the cyclic
search does; however, it does not consider the independence of the rows as a necessary
condition if the rank of the resultant matrix is n − 1. Instead, the algorithm tries
flipping each of the entries in the last row of the matrix, one at a time, and checks the
independence of the rows and the number of invertible 2× 2 submatrices of each of
the new matrices. The 2-densities of these matrices are then compared, first among
themselves and then to best 2-density found so far. It should be noted that any
entry can be moved to the last row without changing the values of the other entries
through cyclic shifts of the rows1 followed by cyclic shifts of the columns; therefore,
it is sufficient to flip entries only in the last row of the matrix because the matrix is
cyclic.

The computations were executed sequentially, on a node on linux.cs.uwaterloo

.ca, in about 16 hours.

Table 3 compares the results of cyclic search to those of cyclic search with adjust-
ing step. It can be seen from the table that the adjusting step improves the results
in 18 out of 35 cases, and for the case s = 8 the algorithm performs as well as the
exhaustive search. The rate of improvement is the most significant for s = 3, where
the adjusting step improves the result by more than 130%. This rate decreases to
less than 1% for s = 34, where flipping one entry increases the number of invertible
2× 2 submatrices by 939.

3 Invertible Matrices with q = 3 Symbols

3.1 Random Construction

In this section we consider invertible matrices with entries from {0, 1, 2}. First,
we will consider the random construction of such matrices. In this case, there are
(32 − 1)(32 − 3) = 48 invertible 2× 2 matrices, as listed below.(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 1
1 0

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 1

)
,

(
2 0
0 2

)
,

(
0 2
2 0

)
,

(
2 2
2 0

)
,

(
2 2
0 2

)
,

(
2 0
2 2

)
,

(
0 2
2 2

)
,

(
1 1
1 2

)
,

(
1 1
2 1

)
,(

1 2
1 1

)
,

(
2 1
1 1

)
,

(
2 2
2 1

)
,

(
2 2
1 2

)
,

(
2 1
2 2

)
,

(
1 2
2 2

)
,

(
1 0
0 2

)
,(

0 1
2 0

)
,

(
0 2
1 0

)
,

(
2 0
0 1

)
,

(
0 1
1 2

)
,

(
0 1
2 1

)
,

(
0 2
1 1

)
,

(
1 1
0 2

)
,(

1 1
2 0

)
,

(
1 0
1 2

)
,

(
1 0
2 1

)
,

(
1 2
0 1

)
,

(
1 2
1 0

)
,

(
2 0
1 1

)
,

(
2 1
0 1

)
,

1Rows and columns are shifted as a whole, not the entries in them

N.N. ESFAHANI AND D.R. STINSON/AUSTRALAS. J. COMBIN. 69 (1) (2017), 130–144 139

(
2 1
1 0

)
,

(
0 2
2 1

)
,

(
0 2
1 2

)
,

(
0 1
2 2

)
,

(
2 2
0 1

)
,

(
2 2
1 0

)
,

(
2 0
2 1

)
,(

2 0
1 2

)
,

(
2 1
0 2

)
,

(
2 1
2 0

)
,

(
1 0
2 2

)
,

(
1 2
0 2

)
,

(
1 2
2 0

)
A random 2×2 matrix A = {ai,j} that is generated by randomly assigning its entries
to 0, 1, and 2, with the following probabilities

Pr(ai,j = 1) = α, Pr(ai,j = 2) = β, Pr(ai,j = 0) = γ, α + β + γ = 1

is therefore invertible with probability

f(α, β, γ) = 2(α2γ2 + β2γ2) + 4(α3γ + β3γ)

+4(α3β + β3α) + 12(α2βγ + β2αγ) + 4αβγ2.
(1)

To maximize f we use the Lagrange multiplier method. First, define g as follows:

g(α, β, γ, λ) = f(α, β, γ)− λ(1− α− β − γ) = 2(α2γ2 + β2γ2)

+4(α3γ + β3γ) + 4(α3β + β3α) + 12(α2βγ + β2αγ) + 4αβγ2

−λ(1− α− β − γ).

(2)

Computing all four partial derivatives of g, we get

∂g

∂α
= 4αγ2 + 12α2γ + 12α2β + 4β3 + 24αβγ + 12β2γ + 4βγ2 − λ (3)

∂g

∂β
= 4βγ2 + 12βγ + 12β2α + 4α3 + 24αβγ + 12α2γ + 4αγ2 − λ (4)

∂g

∂γ
= 4α2γ + 4β2γ + 4α3 + 4β3 + 12α2β + 12β2α + 8αβγ − λ (5)

∂g

∂λ
= −α− β − γ + 1 = 0. (6)

We used Maple to solve ∂g
∂α

= 0, ∂g
∂β

= 0, ∂g
∂γ

= 0, ∂g
∂λ

= 0, and the only solution that

maximizes g, and therefore f , and which satisfies α, β, γ ∈ [0, 1] is α = β = 1√
6
, γ =

1− 2√
6
, λ = 8

3
, from which we obtain g(1√

6
, 1√

6
, 1− 2√

6
, 8
3
) = 2

3
.

For each value of s, 3 ≤ s ≤ 13, 10000 random matrices with the distribution
above were generated. For each value of s, the number of invertible 2×2 submatrices
was counted for any of the resulting invertible random matrices. The invertible
matrices, found by the random search, with the maximum number of invertible 2×2
submatrices are provided in [4]. Table 4 shows the largest number of invertible 2× 2
submatrices found, in the invertible random matrices.

N.N. ESFAHANI AND D.R. STINSON/AUSTRALAS. J. COMBIN. 69 (1) (2017), 130–144 140

s N2 R2 0 Frq 1 Frq 2 Frq

3 9 1 0.2̄ 0.4̄ 0.2̄

4 34 0.94̄ 0.25 0.25 0.5

5 86 0.86 0.20 0.48 0.32

6 185 0.82̄ 0.16̄ 0.4̄ 0.38̄

7 343 0.7̄ ≈ 0.204 ≈ 0.388 ≈ 0.408

8 591 ≈ 0.754 ≈ 0.156 ≈ 0.391 ≈ 0.453

9 965 ≈ 0.745 ≈ 0.173 ≈ 0.395 ≈ 0.432

10 1479 ≈ 0.730 0.18 0.43 0.39

11 2189 ≈ 0.724 ≈ 0.190 ≈ 0.397 ≈ 0.413

12 3090 ≈ 0.709 ≈ 0.188 ≈ 0.382 ≈ 0.431

13 4306 ≈ 0.708 ≈ 0.172 ≈ 0.402 ≈ 0.426

Table 4: The maximum number of invertible 2× 2 submatrices and their 2-densities
in invertible s× s random matrices where s ∈ {3, . . . , 13}, for q = 3.

3.2 Exhaustive Search and Search for Cyclic and Almost Cyclic Matrices

Similar to the q = 2 case, the exhaustive search algorithms and the algorithms for
finding cyclic and almost cyclic matrices were used to generate the ternary invertible
matrices with the maximum number of invertible 2× 2 submatrices. The algorithms
are the same as those described in the previous section, only modified to fit the q = 3
case. Specifically, the linear independence of the rows of the matrix cannot be checked
by means of boolean functions any more. In the exhaustive search, eliminating search
branches based on the permutations of columns is limited. In the search for cyclic
and almost cyclic matrices on the other hand, in addition to cyclic shifts of each row,
multiples of all its cyclic shifts, including itself, were also omitted from the search.

The algorithms were executed on a node on linux.cs.uwaterloo.ca, for 3 ≤
s ≤ 5 for the exhaustive search and 3 ≤ s ≤ 20 for the other two. The exhaustive
search for s = 6 was computed on 160 cores of a node on RIPPLE server. Tables 5
and 6 present the results.

Table 5 shows, that in most cases, the frequencies of 0’s, 1’s, and 2’s of the cyclic
matrices found by the search do not exactly follow the results of the probabilistic
analysis. To address this difference, it is required to consider the behavior of function
f . Figure 1 demonstrates that the value of function f is mostly sensitive to the
changes in the value of γ, rather than changes in the values of α or β. This explains
why the frequency of 0’s in the cyclic matrices is around 20%, yet the frequencies of
1’s and 2’s vary considerably.

Comparing the results provided in Table 6 to those provided in Table 3, it can
be seen that applying the adjusting step improves the results of cyclic search less

N.N. ESFAHANI AND D.R. STINSON/AUSTRALAS. J. COMBIN. 69 (1) (2017), 130–144 141

often and by smaller values for the q = 3 case as it does for the q = 2 case. While
changing one entry of the binary cyclic matrices can improves the value of N2 in
10 cases out of first 20 cases and by up to 236, this technique only changes N2 in
only 3 cases out of the first 20 cases in the ternary cyclic matrices. That the ternary
matrices have more flexibility than the binary ones and the maximum value of N2 is
naturally higher for them can be explanations for this difference in the performance
of this technique on two different sets of matrices.

s Cyc N2 Cyc R2 0 Frq 1 Frq 2 Frq N2(s) R2(s) 1 Frq 2 Frq

3 9 1 0.3̄ 0.6̄ 0 9 1 0.6̄ 0

4 34 0.94̄ 0.25 0.5 0.25 34 0.94̄ 0.625 0.125

5 90 0.9 0.2 0.6 0.2 90 0.9 0.56 0.24

6 189 0.84 0.16̄ 0.5 0.3̄ 195 0.86̄ 0.527̄ 0.27̄

7 357 ≈ 0.810 ≈ 0.143 ≈ 0.571 ≈ 0.286 – – – –

8 600 ≈ 0.765 0.25 0.5 0.25 – – – –

9 1008 0.7̄ 0.2̄ 0.3̄ 0.4̄ – – – –

10 1550 ≈ 0.765 0.2 0.3 0.5 – – – –

11 2288 ≈ 0.756 0.1̄8 0.4̄5 0.3̄6 – – – –

12 3264 ≈ 0.749 0.16̄ 0.583̄ 0.25 – – – –

13 4498 ≈ 0.739 ≈ 0.154 ≈ 0.466 ≈ 0.385 – – – –

14 6069 ≈ 0.733 ≈ 0.214 ≈ 0.357 0≈ 0.429 – – – –

15 8085 0.73̄ 0.2 0.53̄ 0.26̄ – – – –

16 10456 ≈ 0.726 ≈ 0.188 ≈ 0.566 0.25 – – – –

17 13413 ≈ 0.725 0.177 ≈ 0.471 ≈ 0.353 – – – –

18 16839 ≈ 0.719 0.16̄ 0.38̄ 0.4̄ – – – –

19 20938 ≈ 0.716 ≈ 0.211 0.421 0.368 – – – –

20 25840 ≈ 0.716 0.2 0.5 0.3 – – – –

Table 5: The maximum number of invertible 2× 2 submatrices and their 2-densities
for q = 3 for exhaustive and cyclic search.

N.N. ESFAHANI AND D.R. STINSON/AUSTRALAS. J. COMBIN. 69 (1) (2017), 130–144 142

Figure 1: The value of function f for different values of α and γ

4 Conclusion

In the previous sections, different methods were presented for generating close to
2-AONT matrices with entries from alphabets {0, 1} and {0, 1, 2}. In this section,
we will compare the results of these methods among themselves and with the results
from theoretical analysis.

First, we consider the frequencies of 0 and 1 in the binary case, and those of 0, 1,
and 2 in the ternary case. For the binary case, it can be observed that the frequency
of 1’s in the matrices generated by the exhaustive search, or by the search among
the cyclic matrices is mostly close to 1√

2
, which is the number that maximizes the

expected number of invertible 2× 2 submatrices, as calculated by D’Arco et al. [3].
However, for the ternary case, it is only the frequency of 0’s that follows the results
of calculations for maximizing the expected number of invertible 2× 2 submatrices,
and stays around 1 − 2√

6
≈ 0.1835. On the other hand, it can be noted that the

best results found by generating matrices randomly for the ternary case, using the
calculated probability distributions for each symbol to occur, achieves R2 values 0.03
to 0.04 smaller than the corresponding R2 values of the results among cyclic matrices.

N.N. ESFAHANI AND D.R. STINSON/AUSTRALAS. J. COMBIN. 69 (1) (2017), 130–144 143

s Cyc N2 Cyc R2 Adj Cyc N2 Adj Cyc R2

3 9 1 9 1.0

4 34 0.94̄ 34 0.94̄

5 90 0.9 90 0.9

6 189 0.84 189 0.84

7 357 ≈ 0.810 357 ≈ 0.810

8 600 ≈ 0.765 608 ≈ 0.776

9 1008 0.7̄ 1008 0.7̄

10 1550 ≈ 0.765 1550 ≈ 0.765

11 2288 ≈ 0.756 2288 ≈ 0.756

12 3264 ≈ 0.749 3264 ≈ 0.749

13 4498 ≈ 0.739 4498 ≈ 0.739

14 6069 ≈ 0.733 6080 ≈ 0.734

15 8085 0.73̄ 8085 0.73̄

16 10456 ≈ 0.726 10482 ≈ 0.728

17 13413 ≈ 0.725 13413 ≈ 0.725

18 16839 ≈ 0.719 16839 ≈ 0.719

19 20938 ≈ 0.716 20938 ≈ 0.716

20 25840 ≈ 0.716 25840 ≈ 0.716

Table 6: Comparison of N2 and R2 values for cyclic matrices and matrices with
one element adjustment for s = 3, . . . , 20 and the maximum of number of 2 × 2
submatrices possible in a binary cyclic matrix as an upper bound for q = 3.

The next observation is about the behavior of R2 for the cyclic matrices and
R2(s). In the binary case, the results of the exhaustive search algorithm show that
the R2(s) decreases to about 0.6 as soon as s reaches 9. However, the maximum
cyclic R2 values, that were closely following R2(s), approach 0.52, which agrees with
the result by Zhang et al. [12], that the upper limit of R2(s) converges to 0.5, as we
increase s. This result is also consistent with the expected value of R2 when we set
the frequency of 1 to be 1√

2
[3] . Although there is not enough data for the ternary

case, the results do not rule out the possibility of R2 converging to 2
3

when q = 3.

Finally, we will discuss the effect of the adjusting step. As mentioned in Section
2, the relative impact of one adjusting step is reduced as s grows. The effect of
multiple adjusting steps is open to be studied. Also, the pattern in which it will
have no impact, i.e., cyclic matrices are the local maxima in the neighborhood of
being 1 entry away, can be further investigated.

N.N. ESFAHANI AND D.R. STINSON/AUSTRALAS. J. COMBIN. 69 (1) (2017), 130–144 144

Acknowledgements

This work benefitted from the use of the CrySP RIPPLE Facility at the University of
Waterloo. Also, N. N. Esfahani thanks Matin Azadmanesh for his helpful comments.

References

[1] R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz and A. Sahai, Exposure-resilient
functions and all-or-nothing transforms, Adv. in Cryptology, EUROCRYPT 2000,
Springer, (2000), 453–469.

[2] R. G. Cascella, Zh. Cao, M. Gerla, B. Crispo and R. Battiti, Weak data secrecy
via obfuscation in network coding based content distribution, Wireless Days, 2008.
WD’08. 1st IFIP, IEEE, (2008), 1–5.

[3] P. D’Arco, N. Nasr Esfahani and D. R. Stinson, All or nothing at all, Electron. J.
Combin. 23(4) (2016), #P4.10.

[4] N. Nasr Esfahani and D. R. Stinson, A list of close to AONT matrices found by
computer search,
http://cacr.uwaterloo.ca/techreports/2016/cacr2016-08.pdf, (2016).

[5] Q. Guo, M. Luo, L. Li and Y. Yang, Secure network coding against wiretapping and
Byzantine attacks, EURASIP J. on Wireless Commun. and Networking, (2010), 1–5.

[6] A. Proano and L. Lazos. Packet-hiding methods for preventing selective jamming
attacks, IEEE Trans. on Dependable and Secure Comput. 9 (2010), 101–114.

[7] R. L. Rivest, All-or-nothing encryption and the package transform, In “Fast Software
Encryption 1997”, E. Biham, ed., Lect. Notes Comput. Sci. 1267 (1997), 210–218.

[8] D. R. Stinson, Something about all or nothing (transforms), Des. Codes Cryptogr. 22
(2001), 133–138.

[9] R. Vasudevan, A. Abraham and S. Sanyal, A novel scheme for secured data transfer
over computer networks. J.UCS 11-1 (2005), 104–121.

[10] S. A. Vavasis, Nonlinear optimization: complexity issues, Oxford University Press Inc.,
(1991).

[11] Q. Zhang and L. Lazos, Collusion-resistant query anonymization for location-based
services, IEEE International Conf. Commune. (2014), 768–774.

[12] Y. Zhang, T. Zhang, X. Wang and G. Ge, Invertible binary matrix with maximum
number of 2-by-2 invertible submatrices, Discrete Math. 340-2, (2017), 201–208.

(Received 20 Oct 2016; revised 23 June 2017)

