Nested unimodality

Yan-Ting Xie Shou-Jun Xu*
School of Mathematics and Statistics
Gansu Key Laboratory of Applied Mathematics and Complex Systems
Lanzhou University
Lanzhou, Gansu 730000
China

Abstract

Let $P(x)$ be a unimodal polynomial of degree m with nonnegative coefficients and a mode n for nonnegative integers $n \leqslant m$. We study the unimodality of $P(x+z)$ for real numbers $z=1$ or $z \geqslant 2$ and show that: if $z=1, P(x+z)$ is unimodal provided that $m-n \leqslant 4$; if $z \geqslant 2$, then $P(x+z)$ is unimodal provided that $m-n \leqslant\lfloor 2 z\rfloor+1$; and we also show that the given conditions are best possible. Additionally, we explore the location of modes of $P(x+z)$, and show $P(x+z)$ has a mode $\left\lceil\frac{m-z}{z+1}\right\rceil$ or $\left\lceil\frac{m-z}{z+1}\right\rceil-1$ or $\left\lceil\frac{m-z}{z+1}\right\rceil-2$, which are reachable.

1 Introduction

A finite sequence of real numbers $\left\{a_{0}, a_{1}, \ldots, a_{m}\right\}$ is said to be unimodal if there exists an index k satisfying $0 \leqslant k \leqslant m$, called a mode of the sequence, such that a_{i} increases up to $i=k$ and decreases from then on; that is, $a_{0} \leqslant a_{1} \leqslant \cdots \leqslant a_{k}$ and $a_{k} \geqslant a_{k+1} \geqslant \cdots \geqslant a_{m}$. It is said to be logarithmically concave (or log-concave for short) if $a_{i}^{2} \geqslant a_{i-1} a_{i+1}$ for $i=1,2, \ldots, m-1$. It is said to have no internal zeros if whenever $a_{i}, a_{k} \neq 0$ and $0 \leqslant i<j<k \leqslant m$ then $a_{j} \neq 0$. A polynomial $P(x)=\sum_{i=0}^{m} a_{i} x^{i}$ is said to be unimodal (respectively, log-concave, with no internal zeros, nondecreasing) if the sequence $\left\{a_{0}, a_{1}, \ldots, a_{m}\right\}$ has the corresponding property. A mode of the sequence is also called a mode of the corresponding polynomial. In fact, a nonnegative log-concave sequence with no internal zeros is unimodal (see [9] for instance). Unimodal and log-concave polynomials arise often in combinatorics, geometry and algebra. The reader is referred to [4, 9] for surveys of the diverse techniques, problems, and results about unimodality and log-concavity.

It is well-known that if a polynomial $P(x)$ is \log-concave with no internal zeros, then $P(x+1)$ is log-concave, which leads to the log-concavity of $P(x+z)$ for all positive integers z (see [4, Corollary 8.4] or [7, Theorem 2]). If $P(x)$ is nonnegative

[^0]and nondecreasing, then $P(x+1)$ is unimodal in [3], which was implied by a result due to Chen, Yang, Zhou [6], and $P(x+n)$ is unimodal for any positive integer n [1]. Finally, Wang and Yeh [10] obtained a stronger result that $P(x+t)$ is unimodal for all real numbers $t>0$. Llamas and Martínez-Bernal [8] proved that $P(x+t)$ is \log-concave for all real numbers $t \geqslant 1$.

In this paper, we study an analogous problem: under what condition does a unimodal polynomial $P(x)$ guarantee the unimodality of $P(x+z)$ for positive real numbers z ? It is obvious that if a polynomial $P(x)$ is unimodal, then $P(x+z)$ is not necessarily unimodal for positive real numbers z, even for positive integers z. For instance, $P(x)=12+x+x^{2}+x^{3}+x^{4}+x^{5}$ is unimodal, but $P(x+1)=$ $17+15 x+20 x^{2}+15 x^{3}+6 x^{4}+x^{5}$ is not. Therefore, it is interesting to investigate the conditions mentioned above. We show that for a unimodal polynomial $P(x)$ of degree m with a mode n and real number z, if $z=1, P(x+z)$ is unimodal provided that $m-n \leqslant 4$; if $z \geqslant 2$, then $P(x+z)$ is unimodal provided that $m-n \leqslant\lfloor 2 z\rfloor+1$, and we also give an example to prove that the given conditions are best possible. Additionally, we explore the location of modes of $P(x+z)$, and also show $P(x+z)$ has a mode $\left\lceil\frac{m-z}{z+1}\right\rceil$ or $\left\lceil\frac{m-z}{z+1}\right\rceil-1$ or $\left\lceil\frac{m-z}{z+1}\right\rceil-2$, all of which are reachable.

2 Mode of $P(x+z)$ for nondecreasing polynomial $P(x)$ and the real numbers $z=1$ or $z \geqslant 2$

We first introduce a lemma.
Lemma 2.1. [10] Let $P(x)$ be a polynomial of degree m with nonnegative coefficients. Suppose that $P(x)$ is nondecreasing and z is a positive real number. Then $P(x+z)$ is unimodal.

The locations of modes in Lemma 2.1, however, are uncertain [10]. If we restrict z to $z=1$ or $z \geqslant 2$, then there is a result about the locations of modes. Before proving the result, we give a lemma.

Lemma 2.2. Let m be a nonnegative integer and z a positive real number. We let $\bar{m}(z)=\left\lceil\frac{m-z}{z+1}\right\rceil$ and $\underline{m}(z)=\left\lfloor\frac{m}{z+1}\right\rfloor$. Then

$$
\bar{m}(z)-1 \leqslant \underline{m}(z) \leqslant \bar{m}(z) .
$$

In particular, if z is a positive integer, then $\bar{m}(z)=\underline{m}(z)$.
Proof. First of all, note that $0<\frac{m}{z+1}-\frac{m-z}{z+1}=\frac{z}{z+1}<1$. If the closed interval between $\frac{m-z}{z+1}$ and $\frac{m}{z+1}$ contains an integer, then $\underline{m}(z)=\bar{m}(z)$; otherwise $\bar{m}(z)-1=\underline{m}(z)$. So $\bar{m}(z)-1 \leqslant \underline{m}(z) \leqslant \bar{m}(z)$.

Suppose now that z is a positive integer.
Claim: $(z+1) \underline{m}(z)-1<m \leqslant(z+1) \underline{m}(z)+z$.
The definition of $\underline{m}(z)$ yields the inequalities

$$
\frac{m}{z+1}-1<\underline{m}(z) \leqslant \frac{m}{z+1}
$$

and it follows directly that $m \geqslant(z+1) \underline{m}(z)>(z+1) \underline{m}(z)-1$ and $m<(z+1) \underline{m}(z)+$ $z+1$. Since z is an integer, $m \leqslant(z+1) \underline{m}(z)+z$.

By the Claim, we have

$$
(z+1)(\underline{m}(z)-1)<m-z \leqslant(z+1) \underline{m}(z),
$$

and after dividing the inequalities above by $z+1$, we obtain

$$
\underline{m}(z)-1<\frac{m-z}{z+1} \leqslant \underline{m}(z) .
$$

Hence

$$
\bar{m}(z)=\left\lceil\frac{m-z}{z+1}\right\rceil=\underline{m}(z) .
$$

Lemma 2.3. Let $P(x)=\sum_{k=0}^{m} a_{k} x^{k}$ be a polynomial of degree m with nonnegative and nondecreasing coefficients, and let z be a real number $z=1$ or $z \geqslant 2$. Then the polynomial $P(x+z)$ is unimodal with mode $\bar{m}(z)$ or $\underline{m}(z)$, defined as in Lemma 2.2. In particular, if z is a positive integer, then $P(x+z)$ is unimodal with mode $\underline{m}(z)$.
Proof. We give a similar proof as the proof of Theorem 2.3 in [1]. The binomial theorem yields

$$
P(x+z)=\sum_{k=0}^{m} a_{k} \sum_{i=0}^{k}\binom{k}{i} z^{k-i} x^{i} .
$$

Now we exchange the two sums and thus obtain

$$
P(x+z)=\sum_{i=0}^{m}\left(\sum_{k=i}^{m} a_{k}\binom{k}{i} z^{k-i}\right) x^{i}=\sum_{i=0}^{m} q_{i} x^{i} .
$$

So it is sufficient to prove the sequence $\left\{q_{i}=\sum_{k=i}^{m} a_{k}\binom{k}{i} z^{k-i}\right\}_{i=0}^{m}$ is unimodal with mode $\bar{m}(z)$ or $\underline{m}(z)$ for real numbers $z=1$ or $z \geqslant 2$; i.e., by Lemma 2.2, to show that (a) $q_{j}-q_{j+1} \geqslant 0$ when $\bar{m}(z) \leqslant j \leqslant m-1$, i.e., $q_{\bar{m}(z)} \geqslant q_{\bar{m}(z)+1} \geqslant \cdots \geqslant q_{m}$ and (b) $q_{j+1}-q_{j} \geqslant 0$ when $0 \leqslant j \leqslant \underline{m}(z)-1$. Wang and Yeh have shown (a) [10, Lemma 2.2]. It is sufficient to show (b). Note that

$$
\begin{align*}
(j+1)\left(q_{j+1}-q_{j}\right) & =(j+1)\left(\sum_{k=j+1}^{m} a_{k}\binom{k}{j+1} z^{k-j-1}-\sum_{k=j}^{m} a_{k}\binom{k}{j} z^{k-j}\right) \\
& =\sum_{k=j}^{m} a_{k}\binom{k}{j} z^{k-j-1}[k-j-(j+1) z] \tag{1}
\end{align*}
$$

Assume now that $0 \leqslant j \leqslant \bar{m}(z)-1$. To show that $q_{j+1}-q_{j} \geqslant 0$, we divide the sum (1) into two parts: one part includes all negative terms, (denote the inverse of
the part by T_{1}) and the other includes nonnegative terms, denoted by T_{2}. Then it is sufficient to prove that $T_{1} \leqslant T_{2}$.

Now we analyze the sign of terms in the sum (1). Since a_{k}, z^{k-j-1} and the binomial coefficient $\binom{k}{j}$ are nonnegative, the term $a_{k}\binom{k}{j} z^{k-j-1}[k-j-(j+1) z] \geqslant 0$ if and only if $k-j-(j+1) z \geqslant 0$, i.e., $k \geqslant(j+1) z+j$. For the sake of simplicity, we let $c=\lceil(j+1) z+j\rceil$. Note that $c<m$. (Since $(z+1) \underline{m}(z)=(z+1)\left\lfloor\frac{m}{z+1}\right\rfloor \leqslant m$, $(z+1)(\underline{m}(z)-1)+z \leqslant m-1$. Combined with $j \leqslant \underline{m}(z)-1$, we have $(j+1) z+j=$ $(z+1) j+z \leqslant m-1$. So $c=\lceil(j+1) z+j\rceil<m$.) Then

$$
\begin{aligned}
T_{1} & =-\sum_{k=j}^{c-1} a_{k}\binom{k}{i} z^{k-j-1}[k-j-(j+1) z] \\
& =\sum_{k=j}^{c-1} a_{k}\binom{k}{j} z^{k-j-1}[(j+1) z+j-k]
\end{aligned}
$$

and

$$
\begin{equation*}
\left.T_{2}=\sum_{k=c}^{m} a_{k}\binom{k}{j} z^{k-j-1}[k-j-(j+1) z)\right] . \tag{2}
\end{equation*}
$$

In what follows, we estimate the values of T_{1}.
Observe that

$$
\begin{align*}
T_{1} & =\sum_{k=j}^{c-1} a_{k}\binom{k}{j} z^{k-j-1}[((j+1) z+j-k] \\
& \leqslant a_{c+1} \sum_{k=j}^{c-1}\binom{k}{j} z^{k-j-1}[(j+1) z+j-k] \\
& \leqslant a_{c+1} z^{c-j-2} \sum_{k=j}^{c-1}\binom{k}{j}[(j+1) z+j-k] \\
& \leqslant a_{c+1} z^{c-j-2} \sum_{k=j}^{c-1}\binom{k}{j}(c-k) \\
& =a_{c+1} z^{c-j-2}\binom{c+1}{j+2} . \tag{3}
\end{align*}
$$

The monotonicity of the coefficients of $P(x)$ was used in the first inequality and the definition of c was used in the last inequality. The last equality can be proved as follows: $\sum_{k=j}^{c-1}\binom{k}{j}(c-k)$ can be written as $\sum_{i=1}^{c-j} \sum_{k=j}^{c-i}\binom{k}{j}$. Using the formula (see [2, Theorem 4.5]) $\sum_{i=a}^{b}\binom{i}{a}=\binom{b+1}{a+1}$ twice, we obtain the result.

Claim: $\quad \frac{1}{z^{2}}\binom{c+1}{j+2} \leqslant\binom{ c+1}{j}[(c+1)-(j+(j+1) z)]$.

We first show that the claim holds for $z \geqslant 2$.

$$
\begin{align*}
\frac{1}{z^{2}} \frac{\binom{c+1}{j+2}}{\binom{c+1}{j}} & =\frac{1}{z^{2}} \frac{\frac{(c+1)!}{(j+2)!(c-j-1)!}}{\frac{(c+1)!}{j!(c-j+1)!}} \\
& =\frac{(c-j+1)(c-j)}{z(j+2) z(j+1)} \tag{5}
\end{align*}
$$

By the definition of c,

$$
\begin{align*}
c-j+1 & =\lceil(j+1) z+j\rceil-j+1 \\
& <(j+1) z+j+1-j+1 \\
& =z j+z+2 \leqslant z(j+2) . \tag{6}
\end{align*}
$$

The last inequality follows from the fact that $z \geqslant 2$. Substituting Eq. (6) into Eq. (5), we have

$$
\begin{aligned}
\frac{1}{z^{2}} \frac{\binom{c+1}{j+2}}{\binom{c+1}{j}} & <\frac{c-j}{z(j+1)} \\
& =\frac{c-j-z(j+1)}{z(j+1)}+1 \\
& <c-j-z(j+1)+1 \\
& =(c+1)-(j+(j+1) z)
\end{aligned}
$$

Hence the claim holds for $z \geqslant 2$.
If $z=1$, we easily obtain $c=2 j+1$. So

$$
\begin{aligned}
\binom{c+1}{j}[(c+1)-(j+(j+1) z)] & =\binom{2 j+2}{j} \\
& =\binom{2 j+2}{j+2} \\
& =\frac{1}{z^{2}}\binom{c+1}{j+2}
\end{aligned}
$$

Hence the claim holds for $z=1$.
Combining Eqs. (3) and (4), we have

$$
\begin{align*}
T_{1} & \leqslant a_{c+1} z^{c-j}\binom{c+1}{j}[(c+1)-(j+(j+1) z)] \\
& =a_{c+1} z^{(c+1)-j-1}\binom{c+1}{j}[(c+1)-(j+(j+1) z)] \tag{7}
\end{align*}
$$

The term in Eq. (7) is exactly the second term in the sum (2) by substituting k for $c+1$. So $T_{1} \leqslant T_{2}$.

In particular, if z is a positive integer, by Lemma $2.2, \bar{m}(z)=\underline{m}(z)$. So $P(x+z)$ has a mode $\underline{m}(z)$.

Two possible distinct values of modes in Lemma 2.3 are available as in the following examples.

Example 2.4. Let $P(x)=x+x^{2}+x^{3}, z=2.5$. Since $m=3, \bar{m}(z)=1$ and $\underline{m}(z)=0$, the mode of $P(x+2.5)=24.375+24.75 x+8.5 x^{2}+x^{3}$ is $\bar{m}(z)$, If $P(x)=1+x+x^{2}+x^{3}$, then the mode of $P(x+2.5)=25.375+24.75 x+8.5 x^{2}+x^{3}$ is $\underline{m}(z)$.
Corollary 2.5. [1] Let $P(x)=\sum_{i=0}^{m} a_{i} x^{i}$ be a polynomial of degree m with nonnegative and nondecreasing coefficients, and let z be a positive integer. Then the polynomial $P(x+z)$ is unimodal with mode $\left\lfloor\frac{m}{z+1}\right\rfloor$.

In fact, a similar result as Lemma 2.3 was obtained by Wang and Yeh [10, Corollary 4.1]: $P(x+z)$ has at most two modes $\bar{m}(z)$ and $\bar{m}(z)+1$ if $P(x)=a x^{m}$ for some positive real number a, or $\bar{m}(z)-1$ and $\bar{m}(z)$ otherwise. But there is a small difference between them. For example, if $\bar{m}(z)=\underline{m}(z)$, it follows from Lemma 2.3 that $\bar{m}(z)$ must be a mode of $P(x+z)$.

3 Layer decomposition and main results

First, we give a new notion about unimodal polynomials: layer decomposition.
Definition Let $P_{1}(x)=\sum_{i=i_{1}}^{j_{1}} a_{1 i} x^{i}$ be a unimodal polynomial with positive coefficients and mode n for nonnegative integers $i_{1} \leqslant j_{1}$. Let $\alpha_{1}=\min \left\{a_{1 i_{1}}, a_{1 j_{1}}\right\}$ and $P_{2}(x)=$ $P_{1}(x)-\alpha_{1} \sum_{i=i_{1}}^{j_{1}} x^{i}$. Obviously, $P_{2}(x)$ is still unimodal with nonnegative coefficients and mode n. If $P_{2}(x)$ is nonzero, suppose $P_{2}(x)=\sum_{i=i_{2}}^{j_{2}} a_{2 i} x^{i}$ with $a_{2 i}>0$ for $i_{2} \leqslant i \leqslant j_{2}$. Note that $i_{1} \leqslant i_{2} \leqslant n \leqslant j_{2} \leqslant j_{1}$. Likewise, let $\alpha_{2}=\min \left\{a_{2 i_{2}}, a_{2 j_{2}}\right\}$ and $P_{3}(x)=$ $P_{2}(x)-\alpha_{2} \sum_{i=i_{2}}^{j_{2}} x^{i}$. We can do such decomposition until we reach the zero polynomial. So $P_{1}(x)$ can be decomposed as the form $P_{1}(x)=\alpha_{1} \sum_{i=i_{1}}^{j_{1}} x^{i}+\alpha_{2} \sum_{i=i_{2}}^{j_{2}} x^{i}+\cdots+\alpha_{k} \sum_{i=i_{k}}^{j_{k}} x^{i}$ for some integer k with $i_{1} \leqslant i_{2} \leqslant \cdots \leqslant i_{k} \leqslant n \leqslant j_{k} \leqslant \cdots \leqslant j_{2} \leqslant j_{1}$. We call such a decomposition the layer decomposition of a unimodal polynomial $P_{1}(x)$ with positive coefficients.

It is obvious that every unimodal polynomial has a unique layer decomposition. An example follows.

Example 3.1. Let $P(x)=2+5 x+7 x^{2}+8 x^{3}+8 x^{4}+2 x^{5}+x^{6}+x^{7}$. Then the layer decomposition of $P(x)$ is

$$
P(x)=\sum_{i=0}^{7} x^{i}+\sum_{i=0}^{5} x^{i}+3 \sum_{i=1}^{4} x^{i}+2 \sum_{i=2}^{4} x^{i}+\sum_{i=3}^{4} x^{i}
$$

Theorem 3.2. Let $P(x)=\sum_{i=0}^{m} a_{i} x^{i}$ be a unimodal polynomial of degree m with nonnegative coefficients and mode n. Suppose $P(x+z)=\sum_{i=0}^{m} b_{i} x^{i}$ for real numbers $z=1$ or $z \geqslant 2$. Then $b_{0} \leqslant b_{1} \leqslant \cdots \leqslant b_{\left\lfloor\frac{n}{z+1}\right\rfloor}$ and $b_{\left\lceil\frac{m-z}{z+1}\right\rceil} \geqslant b_{\left\lceil\frac{m-z}{z+1}\right\rceil+1} \geqslant \cdots \geqslant b_{m}$.
Proof. Suppose the layer decomposition of $P(x)$ is

$$
P(x)=\alpha_{1} \sum_{i=i_{1}}^{j_{1}} x^{i}+\alpha_{2} \sum_{i=i_{2}}^{j_{2}} x^{i}+\cdots+\alpha_{k} \sum_{i=i_{k}}^{j_{k}} x^{i}
$$

for some k with $i_{1} \leqslant i_{2} \leqslant \cdots \leqslant i_{k} \leqslant n \leqslant j_{k} \leqslant \cdots \leqslant j_{2} \leqslant j_{1}=m$. By Lemma 2.3, for any $1 \leqslant l \leqslant k$ and any real number z satisfying $z=1$ or $z \geqslant 2$, a mode of $\alpha_{l} \sum_{i=i_{l}}^{j_{l}}(x+z)^{i}$ is $\overline{j_{l}}(z)$ or $\underline{j_{l}}(z)$, which are not less than $\underline{n}(z)=\left\lfloor\frac{n}{z+1}\right\rfloor$ and not greater than $\bar{m}(z)=\left\lceil\frac{m-z}{z+1}\right\rceil$. So $b_{0} \leqslant b_{1} \leqslant \cdots \leqslant b_{\left\lfloor\frac{n}{z+1}\right\rfloor}$ and $b_{\left\lceil\frac{m-z}{z+1}\right\rceil} \geqslant b_{\left\lceil\frac{m-z}{z+1}\right\rceil+1} \geqslant \cdots \geqslant b_{m}$.

From Theorem 3.2, we can obtain some corollaries as follows.
Corollary 3.3. Let $P(x)$ be a unimodal polynomial of degree m with nonnegative coefficients and mode n, $z=1$ or $z \geqslant 2$. If $z \geqslant m-n$, then $P(x+z)$ is unimodal with mode $\bar{m}(z)$ or $\underline{n}(z)$.

Proof. By $z \geqslant m-n, n \geqslant m-z$, and further $\frac{n}{z+1} \geqslant \frac{m-z}{z+1}$. So $\left\lceil\frac{m-z}{z+1}\right\rceil-\left\lfloor\frac{n}{z+1}\right\rfloor \leqslant 1$. By Theorem 3.2, $P(x+z)$ is unimodal with mode $\bar{m}(z)$ or $\underline{n}(z)$.

Corollary 3.4. Let $P(x)$ be a unimodal polynomial of degree m with mode n and nonnegative coefficients. Then, for any positive integer $z \geqslant m-n-1, P(x+z)$ is unimodal with mode $\left\lfloor\frac{m}{z+1}\right\rfloor$ or $\left\lfloor\frac{n}{z+1}\right\rfloor$.

Proof. By $z \geqslant m-n-1, \frac{m-n}{z+1} \leqslant 1$ and further $\left\lfloor\frac{m}{z+1}\right\rfloor-\left\lfloor\frac{n}{z+1}\right\rfloor \leqslant 1$. Combining with Lemma 2.2, we have $\left\lceil\frac{m-z}{z+1}\right\rceil-\left\lfloor\frac{n}{z+1}\right\rfloor=\left\lfloor\frac{m}{z+1}\right\rfloor-\left\lfloor\frac{n}{z+1}\right\rfloor \leqslant 1$. It follows from Theorem 3.2 that $P(x+z)$ is unimodal with mode $\left\lfloor\frac{m}{z+1}\right\rfloor$ or $\left\lfloor\frac{n}{z+1}\right\rfloor$.

In fact, we can show a stronger result than Corollaries 3.3 and 3.4. First, we give a lemma.

Lemma 3.5. [10] Suppose that the polynomial $P(x)$ is unimodal and positive real number z. Then $(x+z) P(x)$ is unimodal.

In what follows we give the main result.
Theorem 3.6. Let $P(x)$ be a unimodal polynomial of degree m with nonnegative coefficients and mode n. Then $P(x+z)$ is unimodal with a mode $\bar{m}(z)$ or $\bar{m}(z)-1$ or $\bar{m}(z)-2$ provided that either
(1) $z \geqslant 2$ and $m-n \leqslant\lfloor 2 z\rfloor+1$; or
(2) $z=1$ and $m-n \leqslant 4$.

Proof. Let $P(x)=\sum_{i=0}^{m} a_{i} x^{i}$ be a unimodal polynomial of degree m with nonnegative coefficients and mode n, and $B(x)=\sum_{i=0}^{m-1} a_{i+1} x^{i}$. Then $P(x)=a_{0}+x B(x)$. For notational simplicity, we let $P(x+z)=\sum_{i=0}^{m} d_{i} x^{i}$.

We first prove the unimodality of $P(x+z)$ under the conditions by induction on n.

First of all, we prove the result under condition (1). It is sufficient to prove that, for a nonnegative integer n and $z \geqslant 2$, a unimodal polynomial $P(x)$ with nonnegative coefficients and mode n, of degree m satisfying

$$
\begin{equation*}
m \leqslant n+\lfloor 2 z\rfloor+1 \tag{8}
\end{equation*}
$$

$P(x+z)$ is unimodal.
The initial step: If $n=0$, from the condition $m \leqslant n+\lfloor 2 z\rfloor+1$, we get $m \leqslant\lfloor 2 z\rfloor+1$ and therefore $\left\lceil\frac{m-z}{z+1}\right\rceil \leqslant\left\lceil\frac{2 z+1-z}{z+1}\right\rceil=1$. It follows from Theorem 3.2 that $P(x+z)$ is unimodal.

The inductive step: Now we assume that the result holds for less than n and prove it for $n(\geqslant 1)$.
Case 1. $(1 \leqslant) n \leqslant\lceil z\rceil$.
In this case $m \leqslant n+\lfloor 2 z\rfloor+1 \leqslant 3 z+2$, so $\left\lceil\frac{m-z}{z+1}\right\rceil \leqslant 2$. By Theorem 3.2, we have

$$
\begin{equation*}
d_{2} \geqslant d_{3} \geqslant \cdots \geqslant d_{m} \tag{9}
\end{equation*}
$$

By the definition of $B(x), B(x)$ is a unimodal polynomial of degree $m-1$ with mode $n-1$. By the condition $m \leqslant n+\lfloor 2 z\rfloor+1$, we get $(m-1) \leqslant(n-1)+\lfloor 2 z\rfloor+1$ satisfying Eq. (8) for $B(x)$. So $B(x+z)=\sum_{i=0}^{m-1} b_{i} x^{i}$ is unimodal by the inductive hypothesis. Since $m \leqslant 3 z+2$, we have $\left\lceil\frac{m-1-z}{z+1}\right\rceil \leqslant 2$. Combining with Theorem 3.2, we get $b_{2} \geqslant b_{3} \geqslant \cdots \geqslant b_{m-1}$. Hence, either

$$
b_{1} \geqslant b_{0}
$$

or

$$
b_{0}>b_{1} \geqslant b_{2}
$$

Since $P(x+z)=a_{0}+(x+z) B(x+z)$,

$$
\begin{align*}
d_{2} & =b_{1}+z b_{2}, \tag{10}\\
d_{1} & =b_{0}+z b_{1}, \tag{11}\\
d_{0} & =a_{0}+z b_{0} . \tag{12}
\end{align*}
$$

Subcase $2.1 b_{1} \geqslant b_{0}$.
Since $n \geqslant 1, a_{1} \geqslant a_{0}$. Therefore $b_{0}=B(z)=\sum_{i=0}^{m-1} a_{i+1} z^{i}=\sum_{i=1}^{m-1} a_{i+1} z^{i}+a_{1} \geqslant$ $a_{1} \geqslant a_{0}$. Combining with Eqs. (11) and (12), we have $d_{1} \geqslant d_{0}$. Hence we prove that $P(x+z)$ is unimodal by Eq. (9).

Subcase 2.2. $b_{0}>b_{1} \geqslant b_{2}$.

In this case, by Eqs. (10) and (11), $d_{1}=b_{0}+z b_{1}>b_{1}+z b_{2}=d_{2}$. Combining with Eq. (9), we get $P(x+z)$ is unimodal regardless of relative magnitude of d_{0} and d_{1}.
Case 2. $n \geqslant\lceil z\rceil+1$.
In this case $\left\lfloor\frac{n}{z+1}\right\rfloor \geqslant\left\lfloor\frac{z+1}{z+1}\right\rfloor=1$. By Theorem 3.2, $d_{0} \leqslant d_{1}$. Similar to the proof in Case 1, we can show that $B(x)$ is a unimodal polynomial with mode $n-1$ of degree $m-1$ satisfying Eq. (8). By the inductive hypothesis, $B(x+z)$ is unimodal. Combining with Lemma 3.5, $(x+z) B(x+z)=\sum_{i=0}^{m} c_{i} x^{i}$ is unimodal. Note that $d_{0}=a_{0}+c_{0}, d_{i}=c_{i}$ for $1 \leqslant i \leqslant m$. It follows from $d_{0} \leqslant d_{1}$ that $c_{0} \leqslant c_{1}$. So there is some positive integer $1 \leqslant k \leqslant m$ such that $c_{0} \leqslant c_{1} \leqslant \cdots \leqslant c_{k} \geqslant c_{k+1} \geqslant \cdots \geqslant c_{m}$ by the unimodality of $(x+z) B(x+z)$. Therefore $d_{1} \leqslant \cdots \leqslant d_{k} \geqslant d_{k+1} \geqslant \cdots \geqslant d_{m}$. Combining with $d_{0} \leqslant d_{1}$, we get $d_{0} \leqslant d_{1} \leqslant \cdots \leqslant d_{k} \geqslant d_{k+1} \geqslant \cdots \geqslant d_{m}$. Hence $P(x+z)$ is unimodal.

Now, we prove $P(x+z)$ is unimodal under the condition (2): $z=1$ and $m-n \leqslant 4$. Similarly, it is sufficient to prove that, for nonnegative integer n and a unimodal polynomial $P(x)$ with mode n of degree m satisfying $m \leqslant n+4, P(x+1)$ is unimodal. i.e., it is sufficient to prove $P(x+z)$ is unimodal provided that $m \leqslant n+2 z+2$ and $z=1$. In order to reduce the proof by repeating the proof above, we make this treatment.

The initial step. If $n=0$, then $m \leqslant 4$. If $m \leqslant 3$, then $\left\lceil\frac{m-z}{z+1}\right\rceil \leqslant\left\lceil\frac{2}{2}\right\rceil=1$. By Theorem 3.2, $P(x+z)=P(x+1)$ is unimodal with mode 0 or 1 . If $m=4$, then $P(x)=\sum_{i=0}^{4} a_{i} x^{i}=a_{4} \sum_{i=0}^{4} x^{i}+C(x)$, where $C(x)$ is a unimodal polynomial of degree $\leqslant 3$ with mode $n=0$. Similar to the proof above in the case $m \leqslant 3$, $C(x+z)=C(x+1)$ is unimodal with mode 0 or 1 . Combining with $a_{4} \sum_{i=0}^{4}(x+1)^{i}=$ $a_{4}\left(5+10 x+10 x^{2}+5 x^{3}+x^{4}\right)$, we get $P(x+1)$ is unimodal.

The induction step. We can give the parallel proof as the case under condition (1) by substituting $\lfloor 2 z\rfloor+1$ for $2 z+2=4$, and $n+\lfloor 2 z\rfloor+1$ in Eq. (8) for $n+\lfloor 2 z\rfloor+2=n+4$.

We now prove the locations of modes of $P(x+z)$. If the condition (1) is satisfied, then $\frac{m-z}{z+1}-\frac{n}{z+1} \leqslant \frac{\lfloor 2 z\rfloor+1-z}{z+1} \leqslant 1$ and further $\left\lceil\frac{m-z}{z+1}\right\rceil-\left\lfloor\frac{n}{z+1}\right\rfloor \leqslant 2$ by simple analysis. Hence $P(x+z)$ has a mode $\bar{m}(z)$ or $\bar{m}(z)-1$ or $\bar{m}(z)-2$ by Theorem 3.2. Likewise, if the condition (2) is satisfied, then $\frac{m}{2}-\frac{n}{2} \leqslant 2$. Therefore $\left\lfloor\frac{m}{2}\right\rfloor-\left\lfloor\frac{n}{2}\right\rfloor \leqslant 2$. Note that $\bar{m}(1)=\left\lfloor\frac{m}{2}\right\rfloor$ and $\underline{n}(1)=\left\lfloor\frac{n}{2}\right\rfloor$ in this case. Hence $P(x+1)$ has a mode $\bar{m}(z)$ or $\bar{m}(z)-1$ or $\bar{m}(z)-2$ by Theorem 3.2.

In fact, the condition given in Theorem 3.6 is sharp, i.e., if $z=1$ and $m-n=5$, or $z \geqslant 2$ and $m-n=\lfloor 2 z\rfloor+2$, we cannot guarantee that $P(x+z)$ is unimodal.

Example 3.7. Let $P(x)=12+x+x^{2}+x^{3}+x^{4}+x^{5}$, which is unimodal with $m=5, n=0$. Then $P(x+1)=17+15 x+20 x^{2}+15 x^{3}+6 x^{4}+x^{5}$ is not unimodal.

Lemma 3.8. [10] Let $P(x)=\sum_{i=0}^{m} x^{i}$ for some nonnegative integer m and $z>1$. If $z \bar{m}(z)$ is an integer, then $P(x+z)$ has the unique mode $\bar{m}(z)$.

Example 3.9. Let $P(x)=(c+1)+x+x^{2}+\cdots+x^{\lfloor 2 z\rfloor+2}=c+B(x)$ for nonnegative real numbers c and $z \geqslant 2$. Obviously, $P(x)$ is unimodal of degree $m=\lfloor 2 z\rfloor+2$ with the unique mode $n=0$. Suppose $2 z$ is an integer. Then $z \bar{m}(z)=z\left\lceil\frac{\lfloor 2 z\rfloor+2-z}{z+1}\right\rceil=$ $z\left\lceil\frac{z+2}{z+1}\right\rceil=2 z$. By Lemma 3.8, $B(x+z)$ has the unique mode $\bar{m}(z)=2$. It follows that $P(x+z)=c+B(x+z)$ is not unimodal for a sufficient number c.

In addition, three possible modes of $P(x+z)$ in Theorem 3.6 are reached.
Example 3.10. Suppose $z \geqslant 2$ is an integer and d is a positive integer. Let $P(x)=$ $a \sum_{i=0}^{(d+2)(z+1)} x^{i}+b \sum_{i=0}^{(d+1)(z+1)} x^{i}+c \sum_{i=0}^{d(z+1)+1} x^{i}$ for $a, b, c>0$. It is obvious that $P(x)$ is unimodal of degree $m=(d+2)(z+1)$ with a mode $n=d(z+1)+1$. Then $\bar{m}(z)=\left\lceil\frac{m-z}{z+1}\right\rceil=\left\lceil\frac{(d+2)(z+1)-z}{z+1}\right\rceil=d+2$ and $m-n=2 z+1=\lfloor 2 z\rfloor+1$. It follows from Theorem 3.6 that $P(x+z)$ is unimodal. By Lemma 3.8, $\sum_{i=0}^{(d+2)(z+1)}(x+z)^{i}, \sum_{i=0}^{(d+1)(z+1)}(x+$ $z)^{i}, \sum_{i=0}^{d(z+1)+1}(x+z)^{i}$ have the unique modes $d+2, d+1, d$, respectively. Note that $\overline{(d+1)(z+1)}(z)=d+1, \overline{d(z+1)+1}(z)=d$. Hence $P(x+z)$ has a unique mode $\bar{m}(z)=d+2$ for fixed b, c and sufficient large a. Similarly, $P(x+z)$ has a unique mode $\bar{m}(z)-1=d+1$ for fixed a, c and sufficient large $b, P(x+z)$ has a unique mode $\bar{m}(z)-2=d$ for fixed a, b and sufficient large c.

In addition, from Theorem 3.6, we can directly obtain the following corollary.
Corollary 3.11. Let $P(x)$ be a unimodal polynomial of degree m with nonnegative coefficients and mode n. If $m-n \leqslant 4$, then for any positive integer $z, P(x+z)$ is unimodal with a mode $\bar{m}(z)$ or $\bar{m}(z)-1$ or $\bar{m}(z)-2$.

4 Conclusions

If $P(x)$ is a polynomial with nonnegative and nondecreasing coefficients, then for any positive real number $z, P(x+z)$ is unimodal. Does this fact generalize to a unimodal polynomial $P(x)$ with nonnegative coefficients? Unfortunately, the result does not hold. In this paper we investigate under what conditions $P(x+z)$ is unimodal. If the real number $z=1$ or $z \geqslant 2$, then we give respective sharp conditions for completely answering this problem (i.e. Theoerem 3.6), and we also locate a mode of $P(x+z)$. Hence there is an open question which is worthy of further exploration: is there a corresponding result similar to Theorem 3.6 for real numbers $0<z<1$ and $1<z<2$?

Acknowledgements

We are greatly indebted to Arthur L. B. Yang for his helpful suggestions. The work is partially supported by NSFC (grant No. 11571155).

References

[1] J. Alvarez, M. Amadis, G. Boros, D. Karp, V. H. Moll and L. Rosales, An extension of a criterion for unimodality, Electron. J. Combin. 8 (2001), \#R30.
[2] M. Böna, A walk through combinatorics: an introduction to enumeration and graph theory, World Scientific Publishing Co. Inc., 2011.
[3] G. Boros and V.H. Moll, A criterion for unimodality, Electron. J. Combin. 6 (1999), \#R10.
[4] F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics and geometry: an update, Contemp. Math. 178 (1994), 71-89.
[5] W.Y.C. Chen and E.X. W. Xia, The ratio monotonicity of the q-derangement numbers, Discrete Math. 311 (2011), 393-397.
[6] W. Y. C. Chen, A. L. B. Yang and E. L.F. Zhou, Ratio monotonicity of polynomials derived from nondecreasing sequences, Electron. J. Combin. 17 (2010), \#N37.
[7] S. G. Hoggar, Chromatic polynomials and logarithmic concavity, J. Combin. Theory Ser. B 16 (1974), 248-254.
[8] A. Llamas and J. Martínez-Bernal, Nested log-convavity, Commun. Algebra 38 (2010), 1968-1981.
[9] R. P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics and geometry, Ann. New York Acad. Sci. 576 (1989), 500-535.
[10] Y. Wang and Y.-N. Yeh, Proof of a conjecture on unimodality, European J. Combin. 26 (2005), 617-627.

[^0]: * Corresponding author, shjxu@lzu.edu.cn

