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Abstract

We construct a new family of orthogonal Latin hypercube designs having
second order property with n rows and m = 4 columns, where n ≡
3 (mod 4). In particular, if n ≡ 3 (mod 16), then we also report a family
of such designs with m = 6 columns.

1 Introduction

Latin hypercube designs are widely used for computer experiments. A Latin hyper-
cube design LH(n,m), is an n × m matrix whose columns are permutations of the
column vector (1, 2, . . . , n)′. In the context of computer experiments, the columns of
a Latin hypercube design represent the input factors, and the rows the experimental
runs. It is sometimes convenient to visualize a Latin hypercube design in its centered
form. For a positive integer n, let gn be an n × 1 vector with its ith element equal
to (i− (n+1)/2), 1 ≤ i ≤ n, and let Gn be the set of all permutations of gn. A cen-
tered Latin hypercube design is an n×m matrix with columns from Gn. Henceforth
we consider Latin hypercube designs in the centered form only. A (centered) Latin
hypercube design L is called orthogonal if the columns of L are mutually orthogonal.

We shall denote an orthogonal Latin hypercube design with n rows andm columns
as OLH1(n,m). A subclass of OLH1(n,m) designs consists of those that satisfy the
following two conditions:

(a) the entry-wise square of each column is orthogonal to all columns in the design;

(b) the entry-wise product of any two distinct columns is orthogonal to all columns
in the design.

An orthogonal Latin hypercube design with n rows and m columns satisfying the
conditions (a) and (b) will be called orthogonal Latin hypercube designs with second
order property and denoted as OLH2(n,m). Whereas an OLH1(n,m) design ensures
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that the estimates of linear effects are mutually uncorrelated, an OLH2(n,m) design
ensures that not only the estimates of linear effects are mutually uncorrelated but
they are also uncorrelated with the estimates of quadratic and interaction effects in
a second order model.

In this paper, we focus on orthogonal Latin hypercube designs with second order
property, i.e., on OLH2(n,m) designs. Several families of OLH2(n,m) designs are
known (see [2–4, 6–9]). However, there exist values of n for which such designs with
more than two columns are not known. The known families of OLH2(n,m) designs
cover the cases n ≡ 0, 1 (mod 4). Also, as shown by Lin et al. [5], no OLH1(n,m)
(and hence, no OLH2(n,m)) design can exist if n ≡ 2 (mod 4). Not much seems
to be known about OLH2(n,m) designs when n ≡ 3 (mod 4) and m > 3. In this
paper we give a method of construction of OLH2(n,m) designs with n ≡ 3 (mod 4)
rows and m = 4 columns. In particular, when n ≡ 3 (mod 16), we are also able
to construct OLH2(n,m) designs with m = 6 columns. The proposed method of
construction of OLH2(n,m) designs uses an orthogonal design in conjunction with
an existing OLH2(n

′, m) design, where n′ < n.

2 The method of construction

Throughout, a prime over a vector or a matrix will denote its transpose. For an in-
teger u, let au = (−xu,−xu−1, . . . ,−x2,−x1, x1, x2, . . . , xu−1, xu)

′, where the xi’s are
real numbers. For our purpose, we assume that no xi equals zero. Let A be a 2u×m
matrix whose columns are permutations of au. The matrix A is called an orthogonal
design if the columns of A are mutually orthogonal. Such orthogonal designs are
useful in constructing orthogonal Latin hypercube designs. Four orthogonal designs
with u = 1, 2, 4, 8 are displayed in Lin et al. [5].

An OLH2(15, 4) design was reported in [3]. We have now found an OLH2(19, 6)
design via a computer search. For ease of reference, we display both these designs in
Table 1.

Remark. Note that in the orthogonal designs given in [5], the last u rows are
negatives of the first u rows. Similarly, in both the designs in Table 1, if we exclude
the row of all zeros, then the last (n− 1)/2 rows are negatives of the first (n− 1)/2
rows. These facts are useful in the construction described below.

We first state the following result for subsequent use. The proof of the result is
easy and follows from the well known fold-over principle of Box and Wilson [1].

Lemma 2.1 Let A1 be an a×b matrix and A = [A′
1, −A′

1]
′. Then (i) the entry-wise

square of each column of A is orthogonal to all columns of A and (ii) the entry-wise
product of any two distinct columns of A is orthogonal to all columns of A.

We now give a method of construction of OLH2(n,m) designs where n ≡ 3
(mod 4).
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Theorem 2.1 Let n = 4s+3. Then there exists an OLH2(4s+3, 4) design for each
integer s ≥ 3.

Proof. A computer search reveals that there does not exist an OLH2(7, m) design
with m ≥ 2 columns. For s = 2, Dey and Sarkar [3] obtained an OLH2(11, 3) design,
and also observed that no OLH2(11, m) design with m ≥ 4 columns exists. Attention
is thus confined to the values of s ≥ 3. We distinguish two cases according as s is
odd or even.

Case 1: s odd, s ≥ 3: When s = 3, we have an OLH2(15, 4) shown in Table 1.
Now, let s ≥ 5. For j = 1, 2, . . . , (s − 3)/2, let Dj be an 8 × 4 matrix obtained by
replacing the elements x1, x2, x3 and x4 by 8 + 4(j − 1), 9 + 4(j − 1), 10 + 4(j − 1)
and 11 + 4(j − 1), respectively, in the orthogonal design with u = 4 in [5]. Also, let
d15 be the OLH2(15, 4) design displayed in Table 1. Let

d(1) =

⎡
⎢⎢⎢⎢⎢⎣

d15
D1

D2
...

D s−3
2

⎤
⎥⎥⎥⎥⎥⎦
.

Then using the lemma and the facts in the remark, it is easily seen that d(1) is an
OLH2(4s+ 3, 4) design, where s ≥ 5 is an odd integer.

Case 2: s even, s ≥ 4: For s = 4, we have an OLH2(19, 4) obtained by deleting any
two columns of the OLH2(19, 6) displayed in Table 1. Call this design d19,4. Now, let
s ≥ 6. For j = 1, 2, . . . , (s−4)/2, let Ej be an 8×4 matrix obtained by replacing the
elements x1, x2, x3 and x4 by 10+4(j−1), 11+4(j−1), 12+4(j−1) and 13+4(j−1),
respectively, in the orthogonal design with u = 4 in [5]. Let

d(2) =

⎡
⎢⎢⎢⎢⎢⎣

d19,4
E1

E2
...

E s−4
2

⎤
⎥⎥⎥⎥⎥⎦
.

Then it is easily seen that d(2) is an OLH2(4s+ 3, 4) design, where s ≥ 6 is an even
integer. �

In a special case, we can obtain an OLH2(n,m) design with m = 6 columns.
Suppose n = 4s + 3 and s ≡ 0 (mod 4). This implies that n ≡ 3 (mod 16). For
s = 4, we have an OLH2(19, 6) design, displayed in Table 1. We denote this design
by d19,6. Let s ≡ 0 (mod 4), s ≥ 8. For j = 1, 2, . . . , (s− 4)/4, replace the elements
x1, x2, . . . , x8 in any 6 columns of the 16 × 8 orthogonal design (u = 8) in [5] by
10 + 4(j − 1), 11 + 4(j − 1), . . . , 17 + 4(j − 1), respectively, to obtain the 16 × 6
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matrices Fj , j = 1, 2, . . . , s−4
4
. Let d(3) be the design

d(3) =

⎡
⎢⎢⎢⎢⎢⎣

d19,6
F1

F2
...

F s−4
4

⎤
⎥⎥⎥⎥⎥⎦
.

Then d(3) is an OLH2(4s + 3, 6) design where s ≡ 0 (mod 4). We thus have the
following result.

Theorem 2.2 Let n = 4s+3, where s ≡ 0 (mod 4). Then there exists an OLH2(4s+
3, 6) design.

Table 1
Orthogonal Latin hypercube designs OLH2(15, 4) and OLH2(19, 6)

OLH2(15, 4) OLH2(19, 6)

−7 −7 −1 −3
−6 6 −4 −4
−5 5 6 6
−4 −4 5 1
−3 3 −2 −2
−2 −2 −3 5
−1 −1 −7 7
0 0 0 0
7 7 1 3
6 −6 4 4
5 −5 −6 −6
4 4 −5 −1
3 −3 2 2
2 2 3 −5
1 1 7 −7

−9 2 7 1 8 4
−8 5 −6 −5 4 −3
−7 −3 −2 9 −6 −9
−6 1 5 −4 −3 −5
−5 −6 4 −7 −9 6
−4 7 −9 2 −5 8
−3 −8 −3 3 7 2
−2 −4 1 8 −1 7
−1 −9 −8 −6 2 −1
0 0 0 0 0 0
1 9 8 6 −2 1
2 4 −1 −8 1 −7
3 8 3 −3 −7 −2
4 −7 9 −2 5 −8
5 6 −4 7 9 −6
6 −1 −5 4 3 5
7 3 2 −9 6 9
8 −5 6 5 −4 3
9 −2 −7 −1 −8 −4
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