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Abstract

Sudoku has risen in popularity over the past few years. The rules are
simple, yet the solutions are often less than trivial. Mathematically, these
puzzles are interesting in their own right. This paper will generalize the
idea of a sudoku puzzle to define a new kind of n× n array. We define a
latin square of order n as an n×n array where every row and every column
contain every symbol 1, 2, . . . , n exactly once. We say (a, b) is an ordered
factor pair of the integer n if n = a × b. An (a, b)-sudoku latin square
is a latin square where in addition to each row and column containing
every symbol exactly once, each a×b rectangle also contains every symbol
exactly once when the n × n array is tiled with a × b rectangles in the
natural way. A factor pair latin square of order n (denoted FPLS(n))
is an (a, b)-sudoku latin square for every ordered factor pair (a, b) of n.
This paper will mainly be concerned with the existence of such designs.

1 Introduction

1.1 History

In recent years, sudoku puzzles have become extremely popular. The modern day
sudoku puzzle first appeared in 1979 as a puzzle called “Number Place” in Dell Mag-
azine [6]. They were designed by Howard Garns [2], a freelance puzzle constructor
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and retired architect. A sudoku puzzle is a 9 × 9 square grid in which every cell
contains exactly one symbol (typically denoted with integers 1 through 9) in such
a way that each 1 × 9 row contains each symbol exactly once, each 9 × 1 column
contains each symbol exactly once, and each 3× 3 sub-square tiling the grid starting
at the top left (often called blocks or regions) contains each symbol exactly once.
For ease of speech, we say a subset S of n cells of an n× n grid is latin if S contains
each symbol exactly once. The property that every row and every column is latin is
an important property. Arrays of n symbols in which every row and every column
is latin are called latin squares.

Generalizations of sudoku puzzles have been popular over the years. The most
closely related to this topic are Retransmission Permutation Arrays. The existence of
such designs have been studied by people such as Wanless and Zhang in [14] as well
as Dinitz, Paterson, Stinson, and Wei in [5]. Retransmission Permutation Arrays are
n× n grids used to resolve problems in overlapping channel transmissions.

There has also been a great deal of literature written on orthogonal arrays based
on sudoku puzzles such as in [8], which deals with sudoku-like arrays, codes, and
orthogonality. Other sudoku arrays have been studied by Lorch in [10]. Samurai
sudoku-based space filling curves have also been a variation of sudoku-arrays that
has been used to pool data from multiple sources in [15].

Other generalizations of sudoku puzzles such as Magic sudoku variants have been
studied in [1]. Some variations include sudoku using partially ordered sets in [4],
modular magic squares in [11], and strongly symmetric self-orthogonal diagonal su-
doku squares in [12].

We propose yet another way to extend the idea of the traditional sudoku puzzle.
A positive integer n is said to have ordered factor pairs (a, b) if n = a× b. Given an
ordered factor pair (a, b) of a positive integer n, the n×n grid can then be partitioned
into a × b regions in a very natural way, namely starting in the top left corner. An
(a, b)-sudoku latin square of order n is a latin square on the symbol set {1, 2, . . . n}
where each a× b region in the natural tiling contains all of the symbols exactly once
[7].

There exists an (a, b)-sudoku latin square for each ordered factor pair (a, b) of a
positive integer n, as will be shown in Section 2 by giving an explicit construction.
Taking this definition a step further, we say a factor pair latin square of order n,
denoted FPLS(n), is a square that is an (a, b)-sudoku latin square of order n for
every ordered factor pair (a, b) of n.

Certainly as the number of ordered factor pairs increase, the problem gets more
complex. In order to solidify this idea, perhaps an example is in order. First, observe
that the number six has ordered factor pairs 1× 6, 6× 1, 2× 3, and 3× 2. Therefore,
a FPLS(6) would have the following regions being Latin: 1×6, 6×1, 3×2, and 2×3.
An example of a FPLS(6) is presented in Figure 1.

Of course, the first question that arises with such a definition is whether these
designs exist. Originally, we believed that there exists a factor pair latin square for
every order n; however, as we will see in Section 3, this is not true since there exist
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1 2 3 4 5 6

4 5 6 1 2 3

3 6 2 5 1 4

5 1 4 6 3 2

2 4 1 3 6 5

6 3 5 2 4 1

Figure 1: FPLS(6)

several infinite families of positive integers n such that there does not exist a factor
pair latin square of order n. Therefore, finding necessary and sufficient conditions
for the existence of such designs is non-trivial.

There are other natural questions to ask as we are striving to expand the definition
of a sudoku puzzle. One such way is to change the shape of the regions. These
designs are called Gerechte designs [3]. Gerechte designs have been useful in designing
agricultural experiments. Moreover, an n×n square that satisfies multiple Gerechte
designs at the same time is called a multiple Gerechte design [2]. This paper will focus
on finding some necessary (and sometimes sufficient) conditions for the existence of
factor pair latin squares, which are special types of multiple Gerechte designs.

2 Constructions

Provided n = ab, and n, a, and b are positive integers, an (a, b)-sudoku latin square
of order n is a latin square on the symbol set {1, 2, . . . n} where each a × b region
in the natural tiling contains all of the symbols exactly once [7]. A factor pair latin
square of order n is a square that is an (a, b)-sudoku latin square of order n for every
ordered factor pair (a, b) of n. Since we are using (a, b)-sudoku latin squares to define
a factor pair latin square, it is good to start out with the existence of (a, b)-sudoku
latin squares.

Theorem 2.1. There exists an (a, b)-sudoku latin square for each ordered factor pair
(a, b) of order n.

Proof. This proof will be constructive. That is to say that it will give an algorithm
for creating an (a, b)-sudoku latin square followed by a proof that the algorithm
works. We will use a cyclical row/column shifting method similar to Keedwell in [9].
Algorithm. Construct an ab× ab array as in Figure 2 as follows:

1. Fill in the top left a × b so that each symbol appears exactly once. Call this
a× b matrix A.



J. HAMMER AND D. HOFFMAN/AUSTRALAS. J. COMBIN. 69 (1) (2017), 41–57 44

2. Let the a× a matrix

P =

[
0 1

Ia−1,a−1 0

]

define the permutation matrix of order a that cyclically shifts the rows by one
when applied on the left of a matrix and the b× b matrix

Q =

[
0 Ib−1,b−1
1 0

]

denote the permutation matrix of order b that cyclically shifts the columns by
one when applied on the right of a matrix.

3. For the 1 ≤ i ≤ b and 1 ≤ j ≤ a, to compute the rectangle in the ith row (with
respect to the rectangles) and jth column (with respect to the rectangles),
multiply P j−1AQi−1.

b j

a A

i P j−1AQi−1

Figure 2: (a, b)-sudoku Latin Square Construction

Justification. Since every symbol occurs exactly once in the top left a× b rectangle,
the top left rectangle is clearly latin. Since P j−1 is a permutation matrix of order
a which rotates the rows cyclically down by j, each of the first a rows in the n × n
array are latin. Also, since the original top left a × b rectangle was latin to begin
with, rectangles in the first row of a×b rectangles are also latin. In a similar fashion,
since Qi−1 is a permutation matrix of order b which rotates the columns cyclically
right by i, each of the columns in the n × n array is latin. Similarly, the remaining
rows of the n× n array are latin since the first a rows were latin.

However, there is not a similar theorem for factor pair latin squares. As we will
see in Section 3, there does not exist a factor pair latin square for every order n.
This section will be mostly be concerned with constructing infinite families of factor
pair latin squares.
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2.1 Power of Primes

In this section, we will show that there exists a factor pair latin square of every prime
order. Given a prime number p, the only two ordered factor pairs that need to be
latin are the 1× p rows and the p× 1 columns. By the definition of a latin square,
every latin square of order p is a factor pair latin square of order p.

On a less trivial note, it is natural to look at the prime factorization of a number
n, since factor pair latin squares are designs that are concerned with all of the ordered
factors of the number n. The Cayley table of a quasigroup is a latin square with a
headline, a sideline, and a binary operation defined. The following theorem ensures
that a factor pair latin square can be constructed if n is a power of a prime number.

Theorem 2.2. Let p be a prime number and let α be a positive integer. Then there
exists a factor pair latin square of order pα.

Proof. This proof will be constructive. That is to say that it will give an algorithm
for creating a factor pair latin square of order n = pα, followed by a proof that the
algorithm does what is intended.

Algorithm. Let Zαp denote the words of length α from the alphabet Zp. Consider the
following quasigroup with entries from Zαp . Label the headline with v1, v2, . . . , vn such
that

⋃n
i=1 vi = Zαp and the vi’s are ordered lexicographically. Label the sideline with

u1, u2, . . . , un where ui is obtained from vi by writing the corresponding vi backwards.
Let the entry of cell (a, b) be a+ b (mod p).

Justification. Define a block to be the projection of some rectangle that we are
interested in onto the headline or sideline. Let β ∈ {0, 1, . . . , α} and note that each
block in the headline consists of a word w of length β concatenated with every word
of length α − β. The sideline has every word of length β concatenated with some
fixed word v of length α − β. So, within each block, v and w are set words that
run through every combination of words of size |v| and |w| respectively. That is to
say that entries in the same row of a given pα−β × pβ block must agree in the first
α− β components and differ in the last β components, while the opposite is true for
entries in the same column. This forces all of the entries in each of the blocks to be
distinct. This is exemplified in Figure 3.

Each Block

︷ ︸︸ ︷w bbbbbbb . . . b
bbbbb . . . b v

︷ ︸︸ ︷

︷ ︸︸ ︷

|v|

|w|

Figure 3: Power of Primes
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2.2 Twice a Prime

One of the goals is to get constructions for as many factor pair latin squares as we
can. To that avail, if n can be decomposed into twice a prime number, then a factor
pair latin square of order n can be constructed. That is there exists a factor pair
latin square of order n = 2p, where p is a prime number.

Theorem 2.3. Let p > 2 be a prime number. Then there exists a factor pair latin
square of order 2p.

Proof. This proof will be constructive. That is to say that when p is a prime number
an algorithm is presented for creating a factor pair latin square of order 2p. This
will be followed by a proof that the algorithm does what is intended.

Algorithm. Since n = 2p, we will be looking at elements from Z2 × Zp. That is to
say that every element in the 2p × 2p array will be an ordered pair (a, b) where a
is an element of Z2 and b is an element of Zp. For ease of construction, we will
construct two different 2p× 2p arrays. The first array, Z2, will contain symbols from
Z2, while the second array, Zp, will contain symbols from Zp. Let xij denote the
symbol in cell (i, j) of Z2 and yij denote the symbol in cell (i, j) of Zp. Cell (i, j)
of the constructed factor pair latin square of order 2p will be filled with the ordered
pair (xij, yij). Construct Z2 and Zp as follows:
To construct Z2, fill in cell (i, j) with the symbol (i+ j) (mod 2). To construct Zp:

• Let 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ n. For rows 1 through p− 1, fill cell (i, j) with
the symbol 2

⌊
i−1
2

⌋
+ (j − 1) (mod p).

• Let p + 2 ≤ i ≤ 2p− 2 and 1 ≤ j ≤ n. For rows p + 2 through 2p− 2, fill cell

(i, j) with the symbol 2
⌊
i−(p+2)

2

⌋
+ j (mod p).

• Let 1 ≤ j ≤ 2p. For rows i = p and i = 2p, fill in cell (i, j) with the symbol
(p− 1) + 2

⌊
j−1
2

⌋
(mod p).

• Let 1 ≤ j ≤ 2p. For rows i = p + 1 and i = 2p − 1, fill in cell (i, j) with the
symbol (p− 2) + 2

⌊
j
2

⌋
(mod p).

Justification. Notice that in Zp, each 2× p block and each p× 2 block has symbols
1 through 2p exactly twice. This fact is obvious for the first two rows, and is true
for every subsequent pair of two rows from the third row through the (p − 1)st row
as well as the (p+ 2)nd row through the (2p− 2)nd row since we are simply repeating
the symbols (that is to say the third row is the same as the fourth row and so on).
Similarly, the pth row and the (p+1)st row as well as the (2p)th row and the (2p−1)st

row have each symbol exactly twice since for every symbol, it’s partner is next to it
except for the symbol 2p − 2, which is the first symbol of the next row. Moreover,
each repeated symbol is next to it’s partner (it’s partner is either to the left, right,
above or below it) except for the (p + 1)st row and the (2p − 1)st row, which have
exactly one symbol that wraps around the grid. In any case, since the (i, j)th entry of
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Z2 is (i+ j) (mod 2), every ordered pair occur exactly once within each row (1×2p),
column (2p× 1), and block (2× p and p× 2) of the grid.

3 Negative Results

3.1 Generalizing Order Twelve

At the onset of this problem, we believed that a factor pair latin square existed for
every order. With the proper time and patience, one can show that there does not
exist a factor pair latin square of order twelve, since the ordered factor pairs of twelve
are {1× 12 , 12× 1, 2× 6, 6× 2, 3× 4, 4× 3}.

The idea of this proof can be generalized to higher orders; however, for a concrete
example, there does not exist a factor pair latin square of order 12 by the following
theorem if we let a = 2, b = 6, c = 3, d = 4, f = 4, and g = 3. In general, we have
the following theorem that describes in terms of ordered factor pairs what orders are
inadmissible by this technique.

Theorem 3.1. There does not exist a factor pair latin square if:

• n = a · b = c · d = f · g,

• a < c < f, g < d < b,

• g
⌊
d
g

⌋
< d,

• g
⌈
d
g

⌉
≥ b.

Proof. Fill in the first a × b rectangle with the n symbols. Since g
⌊
d
g

⌋
< d, the

shaded region in Figure 4 is nonempty. Moreover, the restriction that g
⌉
d
g

⌉
≥ b

dictates that the cells in the first a× b region but not the first c× d region must all
be contained within the last g× f region to intersect the first a× b region. Suppose
symbol α appears in the shaded region in Figure 4. It cannot appear again in the
top c × d region, so it can’t appear in the portion of the a × b rectangle that lies
within this c × d region. Therefore, α must appear in the far right portion of the
a × b region, outside of the c × d region. But this location of α and the location of
α in the shaded region are distinct and both lie in the right most f × g region in
Figure 4, giving a contradiction.

This all started with the observation that there does not exist a factor pair latin
square of order twelve. Moreover, the following corollary generalizes this to say that
there cannot be a factor pair latin square of any order that is divisible by twelve.

Corollary 3.2. If m satisfies the conditions of Theorem 3.1 and n ≡ 0 (mod m)
then there does not exist a factor pair latin square of order n.
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︸ ︷︷ ︸
g

f



 a

b︷ ︸︸ ︷

︸ ︷︷ ︸
d


c

︸ ︷︷ ︸
g

Figure 4: Three Conditions

Proof. Let m satisfy the conditions of Theorem 3.1. That is to say that

• m = a · b = c · d = f · g,

• a < c < f, g < d < b,

• g
⌊
d
g

⌋
< d,

• g
⌈
d
g

⌉
≥ b.

Moreover, since n ≡ 0 (mod m), n = km for some positive integer k. That is to say
that there exist three ordered factor pairs such that

• n = a · bk = c · dk = f · gk,

• a < c < f, gk < dk < bk,

• gk
⌊
dk
gk

⌋
= gk

⌊
d
g

⌋
< dk,

• gk
⌈
dk
gk

⌉
= gk

⌈
d
g

⌉
≥ bk.

Since each inequality is simply multiplied by k, the above inequalities also satisfy the
conditions for Theorem 3.1. Hence, there does not exist a factor pair latin square of
order n.

3.2 Generalizing Order Twenty

Factor pair latin squares can be constructed using methods from Section 2 for orders
thirteen, fourteen, sixteen, seventeen, and nineteen. Moreover, there exists a factor
pair latin square of order fifteen as shown in Figure 5 as well as a factor pair latin
square of order eighteen as shown in Figure 6. One might notice, however, that order
twenty is missing from this list. The following theorem gives a reason as to why that
is the case. We can see that there does not exist a factor pair latin square of order
20 by letting a = 4, b = 5, c = 5, d = 4, f = 10, g = 2, h = 2, and j = 10.

Theorem 3.3. There does not exist a factor pair latin square if:
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

6 7 8 9 10 11 12 13 14 15 1 2 3 4 5

11 12 13 14 15 1 2 3 4 5 6 7 8 9 10

4 5 9 2 3 7 1 10 15 8 13 14 6 11 12

10 14 15 8 12 13 5 6 11 3 4 9 1 2 7

7 1 6 11 13 2 4 9 12 14 3 5 10 15 8

2 3 4 1 6 5 8 7 10 9 12 15 11 13 14

5 8 10 7 9 12 14 15 13 11 2 1 4 3 6

12 13 11 15 14 3 6 1 2 4 8 10 5 7 9

9 15 14 10 4 8 3 11 5 6 7 13 2 12 1

3 6 1 5 2 4 9 12 7 13 14 8 15 10 11

8 11 12 13 7 10 15 14 1 2 5 3 9 6 4

13 4 2 12 1 9 10 5 6 7 15 11 14 8 3

14 9 5 3 11 15 13 4 8 12 10 6 7 1 2

15 10 7 6 8 14 11 2 3 1 9 4 12 5 13

Figure 5: FPLS(15)

• n = a× b = c× d = f × g = h× j,

• h < a < c < f, g < d < b < j,

• b | j, g | d, h | a, c | f, g | 2b

• h > c− a, g > b− d,

• (a− h)
(
g
⌈
b
g

⌉
− b
)

+
(
h
⌈
c
h

⌉
− c
)

(2d− b) > (f − 2a) g.

Proof. First and foremost, it should be noted that if the above conditions are sat-
isfied, then there exists a configuration of rectangles as seen in Figure 7 in the top
left corner of the proposed factor pair latin square. This proof will show that if the
above conditions are satisfied, then there are not enough symbols to fill up Region
10 as depicted in Figure 7. First, fill in the h× j rectangle in Figure 7. Since the top
left a× d rectangle is in common with the other rectangles in the top left, Region 1
and Region 11 must have the same symbol set. That is to say that Region 10 and
Region 1 cannot share any of the same symbols since Region 10 and Region 11 are in
the same f × g rectangle together. Moreover, Regions 2 and 6 are in the same f × g
rectangle as Region 10; so, they also cannot share any symbols. Similarly, Regions
3, 4, 7, 8, and 9 cannot share any symbols, nor can they share any symbols with region
10, since they occur in the same a× b rectangle. By this fact and by the intersection
of the top right a× b rectangle along with the top right c× d rectangle, the union of
Regions 1, 2, 3, and 4 must have the same symbol set as Region 12. That is to say
that the symbols from Regions 5 and 6 have to be divided among Regions 13 and 14.
Also, the symbols in Regions 7 and 8 must all occur in Region 14 as well, since the
symbols in Regions 5, 6, 7, and 8 must all occur in Regions 13 and 14 and Regions
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

12 13 11 10 17 14 18 16 15 2 4 5 7 1 8 6 3 9

8 15 7 16 18 9 14 3 6 1 13 17 5 4 10 12 2 11

4 10 5 2 12 11 1 17 13 14 16 18 3 6 9 7 8 15

14 16 9 1 8 7 4 2 11 3 15 6 12 17 18 13 10 5

6 17 18 15 13 3 10 12 5 7 8 9 11 16 2 4 1 14

3 7 17 14 1 4 9 15 16 12 10 2 8 18 11 5 13 6

5 11 8 12 2 10 6 13 18 4 1 14 9 15 3 17 7 16

9 18 6 13 16 15 5 11 8 17 3 7 10 2 1 14 12 4

10 1 2 3 7 17 12 4 14 16 9 15 6 13 5 11 18 8

15 12 16 5 11 8 17 10 3 18 6 13 4 7 14 1 9 2

13 14 4 9 6 18 2 1 7 8 5 11 16 12 17 3 15 10

11 9 15 6 10 2 13 14 1 5 7 3 17 8 4 18 16 12

7 5 12 17 3 16 8 18 4 15 2 10 1 11 6 9 14 13

18 4 13 8 14 1 11 9 12 6 17 16 15 10 7 2 5 3

2 3 10 7 15 5 16 6 17 13 14 4 18 9 12 8 11 1

17 6 1 18 9 13 15 5 2 11 12 8 14 3 16 10 4 7

16 8 14 11 4 12 3 7 10 9 18 1 2 5 13 15 6 17

Figure 6: FPLS(18)

7 and 8 share an a × b rectangle with Region 13. The symbols in region 10 must
all occur in Region 5, since Regions 1, 2, 3, 4, 6, 7, 8, and 9 all share some rectangle
with Region 10. In addition, the symbols in Region 10 must also occur in Regions
13 and 14, since symbols in Region 5 must occur in Regions 13 and 14. Moreover,
the symbols in Region 10 must all occur in Region 14, since Regions 10 and 13 share
a rectangle. So, the symbols in Regions 7, 8, and 10 are all distinct and must all

occur in region 14. Since (a− h)
(
g
⌈
b
g

⌉
− b
)

+
(
h
⌈
c
h

⌉
− c
)

(2d− b) > (f − 2a) g,

the number of cells in Region 14 is smaller than the number of unique symbols in
Region 7, 8, and 10; so, there are not enough symbols to properly fill this design.

As before, Theorem 3.3 can be extended to say that if order m satisfies the
conditions of Theorem 3.3 and n ≡ 0 (mod m), then there does not exist a factor
pair latin square of order n.

Corollary 3.4. If m satisfies the conditions of Theorem 3.3 and n ≡ 0 (mod m),
then there does not exist a factor pair latin square of order n.

Proof. Say m satisfies the conditions of Theorem 3.3. That is, there exist a set of
four ordered factor pairs such that

• n = a× b = c× d = f × g = h× j,

• h < a < c < f, g < d < b < j,

• b | j, g | d, h | a, c | f, g | 2b
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1 2 3 4

5 6 7 8
9

1





a

︸ ︷︷ ︸

d




c

︸ ︷︷ ︸

d




c





a

︷ ︸︸ ︷b

︸ ︷︷ ︸

b





hh

︷ ︸︸ ︷
j





f

︸ ︷︷ ︸
g





f

︸ ︷︷ ︸
g

10

11 12

13

14

Figure 7: Generalization of Order Twenty

• h > c− a, g > b− d,

• (a− h)
(
g
⌈
b
g

⌉
− b
)

+
(
h
⌈
c
h

⌉
− c
)

(2d− b) > (f − 2a) g.

Let n ≡ 0 (mod m). That is to say that there exists a positive integer k such that
n = km. Moreover, there exist a set of four ordered factor pairs such that

• n = a× bk = c× dk = f × gk = h× jk,

• h < a < c < f, gk < dk < bk < jk,

• bk | jk, gk | dk, h | a, c | f, gk | 2bk

• h > c− a, gk > bk − dk,

• (a− h)
(
gk
⌈
bk
gk

⌉
− bk

)
+
(
h
⌈
c
h

⌉
− c
)

(2dk − bk) > (f − 2a) gk.

Since all of the inequalities are either the same as before or multiples of k, n also
satisfies the conditions of Theorem 3.3. Hence, there does not exist a factor pair
latin square of order n.

3.3 General Order Twenty-Eight

A factor pair latin square of order twenty-one has been constructed in Figure 8. One
might also notice that Section 2 gives us constructions for factor pair latin squares
for orders twenty-two, twenty-three, and twenty-five through twenty-seven. Also,
there cannot exist a factor pair latin square of order twenty-four since twenty-four
is divisible by twelve. Twenty eight; however, is one that is not covered by these
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14

8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7

19 20 21 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

12 13 14 15 16 17 18 19 20 21 1 2 3 4 5 6 7 8 9 10 11

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 1 2 3 4

4 11 18 7 14 21 3 10 17 6 13 20 2 9 16 5 12 19 1 8 15

16 5 12 19 1 8 15 4 11 18 7 14 21 3 10 17 6 13 20 2 9

10 17 6 13 20 2 9 16 5 12 19 1 8 15 4 11 18 7 14 21 3

2 1 4 3 6 5 8 7 10 9 16 11 12 13 14 15 20 21 17 18 19

7 14 9 10 11 12 13 2 18 15 17 21 19 20 6 1 4 3 8 5 16

18 15 19 17 21 16 20 3 14 4 6 8 1 5 2 10 9 12 7 11 13

3 8 11 9 4 15 1 21 19 2 20 13 7 17 18 14 5 16 6 12 10

13 21 20 14 7 18 17 6 12 5 3 10 9 16 11 8 19 2 4 15 1

6 12 2 5 10 19 16 11 4 1 14 15 18 8 3 7 13 17 21 9 20

9 3 1 2 8 4 5 13 7 11 10 6 14 12 21 18 16 20 15 19 17

11 10 13 6 15 7 12 17 1 20 21 18 16 19 9 4 2 5 3 14 8

20 18 16 21 17 14 19 9 3 8 5 4 15 2 7 12 11 10 13 1 6

14 4 5 16 3 1 2 20 8 19 9 17 11 10 13 21 15 6 18 7 12

17 7 15 12 18 11 6 14 21 13 2 3 4 1 20 19 8 9 10 16 5

21 19 8 20 13 9 10 18 15 16 12 7 5 6 17 3 1 14 11 4 2

Figure 8: FPLS(21)
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a





︷ ︸︸ ︷
b





c

︸ ︷︷ ︸
d





f

︸ ︷︷ ︸
g

Figure 9: Generalization of Order Twenty-Eight

constructions. The following section will give reasoning for why there does not exist
a factor pair latin square of order twenty-eight.

We turn our attention to showing that there does not exist a factor pair latin
square of order twenty-eight. In fact, we will display another infinite family of for-
bidden orders of which twenty eight is the first member (a = 4, b = 7, c = 7, d =
4, f = 14, and g = 2).

Theorem 3.5. There does not exist a factor pair latin square if

• n = a× b = c× d = f × g,

• a < c < f, g < d < b,

• d - b,

• d
⌊
b
d

⌋
< g

⌊
b
g

⌋
< d

⌈
b
d

⌉
≤ g

⌈
b
g

⌉
.

Proof. If the above conditions hold, the top left corner of the n × n grid looks like
Figure 9. Let s =

⌊
c
a

⌋
=
⌊
b
d

⌋
. That is to say that each symbol occurs s times in the

first s a×b blocks aligned along the vertical axis. Then the r symbols in the rightmost
dark gray area in Figure 9 occur s−1 times in the intersection. Also, as each symbol
occurs s times in the first s c × d blocks aligned along the horizontal axis, each of
these symbols must occur in the lowermost dark gray area. Similarly, any symbol
not occurring in the rightmost dark gray area occurs s times in the intersection, so
cannot occur in the lowermost dark gray area. So, the dark gray regions in Figure 9
must have the same symbol set. Fill in the last c × d region that intersects the top
left a × b with symbols. Suppose some symbol α occurred in the light gray area in
Figure 9. The symbol α cannot occur in the rightmost dark gray region, as each of
these symbols occur in the lowermost dark gray region, which share an a× b region
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with the light gray region. That is, the symbol α must also occur in the f × g region
that intersects the last c × d region that intersects the top left a × b region, or it
must be in the repeated symbol set within the same a× b rectangle as the light gray
region, which is a contradiction.

Theorem 3.5 can be rephrased in terms of the factor pairs. We will establish this
in the following corollary.

Corollary 3.6. Let k > 1. There does not exist a FPLS(4 (4k + 3)).

Proof. Let n = 4 (4k + 3) for some integer k > 1. Then a = 4, b = 4k+3, c = 4k+3,
d = 4, f = 2(4k + 3), and g = 2 satisfy the conditions of Theorem 3.5; therefore,
there does not exist a factor pair latin square of order 4 (4k + 3)

As before, we can extend this to orders which are multiples of a number that is
deemed inadmissible by Theorem 3.5.

Corollary 3.7. If m satisfies the conditions of Theorem 3.5 and n ≡ 0 (mod m)
then there does not exist a factor pair latin square of order n.

Proof. If m satisfies Theorem 3.5, then there exist three ordered factor pairs such
that

• m = a× b = c× d = f × g,

• a < c < f, g < d < b,

• d - b,

• d
⌊
b
d

⌋
< g

⌊
b
g

⌋
< d

⌈
b
d

⌉
≤ g

⌈
b
g

⌉
.

Moreover, if n is a multiple of m, then n = mk for some positive integer k. Further-
more, there exist three ordered factor pairs of n such that

• n = a× bk = c× dk = f × gk,

• a < c < f, gk < dk < bk,

• dk - bk,

• dk
⌊
bk
dk

⌋
< gk

⌊
bk
gk

⌋
< dk

⌈
bk
dk

⌉
≤ gk

⌈
bk
gk

⌉
.

Since every inequality is either the same as m or it is a multiple of k. In either case,
the above set of inequalities satisfy the conditions of Theorem 3.5. Henceforth, if
n is a multiple of a number that satisfies Theorem 3.5, then there does not exist a
factor pair latin square of order n.

The theorems discussed in this section give us an infinite family of inadmissible
orders for factor pair latin squares.
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4 Multiple Gerechte Designs

A gerechte design is an n × n grid partitioned into n regions (possibly of different
shapes and possibly disconnected) with n cells in each region such that each row,
column, and region is latin. A multiple gerechte design is a latin square for which
multiple gerechte designs are satisfied [2]. Factor pair latin squares are particular
kinds of multiple gerechte designs.

A gerechte skeleton of order n is an n × n array whose n2 cells are partitioned
into n regions containing n cells each. E. R. Vaughan has shown in [13] that decid-
ing whether a gerechte skeleton has a completion is NP -complete; however, if the
gerechte skeleton is restricted to contiguous regions, the answer is unknown. Sim-
ilarly, if the regions are required to be rectangles, the solution is unknown. The
problem of finding a completion to a factor pair latin square is even more specific,
since we are requiring multiple particular gerechte skeletons.

Perhaps more importantly to the design of experiments, a further question is
whether or not a design has an orthogonal mate. Two latin squares of size n, L = ai,j
on symbol set S and L′ = bi,j on symbol set S ′, are said to be orthogonal if every
element in S × S ′ occurs exactly once among the n2 pairs (ai,j, bi,j) , 1 ≤ i, j ≤ n. A
set of latin squares are mutually orthogonal if every pair of latin squares in the set
are mutually orthogonal [7].

A natural question is how many mutually orthogonal factor pair latin squares
can be found of a given order. The following theorem gives a maximum number of
mutually orthogonal factor pair latin squares.

Theorem 4.1 (Modified from [2]). Let d denote the maximum size of the intersection
between any two different rectangles in a factor pair latin square of order n. There
exists at most n− d mutually orthogonal factor pair latin squares of order n.

Proof. Say that rectangles A1 and A2 have the biggest intersection. Moreover, let
d = |A1 ∩ A2|. Let c be a cell in A1 \ A2. By renaming the cells in each of the
mutually orthogonal factor pair latin squares, we can say that cell c of each of the
mutually orthogonal factor pair latin squares contains symbol 1. Moreover, symbol 1
must occur exactly once in A2 and not in A1 in each of the factor pair latin squares;
however, each subsequent factor pair latin square must have symbol 1 in a different
cell within A2, since symbol 1 has already occurred in cell c. Hence, there can be at
most |A2 \ A1| mutually orthogonal factor pair latin squares.

5 Open Problems

This paper has discussed some aspects of factor pair latin squares. Namely, it has
addressed some existential problems; however, necessary and sufficient conditions
have not been shown. Progress has been made towards that goal; however, it remains
an open problem.
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Open Problem 1. What are the necessary and sufficient conditions for a factor
pair latin square of order n to exist?

Simpler problems can be tackled first, however. Namely, are there other con-
structions for when a factor pair latin square of order n exists? Powers of primes and
twice a prime number have been dealt with in Section 2, but what about a product
of two distinct primes?

Open Problem 2. Does there exist a factor pair latin square of order 3p where p
is a prime numbers?

Open Problem 3. Does there exist a factor pair latin square of order pq where p
and q are both prime numbers?

Asymptotically, it seems that perhaps the only admissible orders for factor pair
latin squares are primes, powers of primes, and numbers that have prime factorization
pq where p and q are both prime numbers.

Open Problem 4. Asymptotically, does there exist any factor pair latin squares
other than those that have prime factorization pα or pq where p and q are prime
numbers and α is a positive integer?

We have also done some work in mapping the problem of finding factor pair latin
squares for a given order n; however, the complexity has not been studied.

Open Problem 5. What is the complexity of completing a partially filled factor pair
latin square of order n?
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