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Abstract

We investigate the smallest number λ(G) of vertices that need to be
removed from a non-empty graph G so that the resulting graph has a
smaller maximum degree. We prove that if n is the number of vertices, k
is the maximum degree, and t is the number of vertices of degree k, then
λ(G) ≤ n+(k−1)t

2k
. We also show that λ(G) ≤ n

k+1
if G is a tree. These

bounds are sharp. We provide other bounds together with structural
observations.

1 Introduction

Throughout this paper we shall use capital letters such asX to denote sets or graphs,
and small letters such as x to denote non-negative integers or elements of a set. The
set {1, 2, . . . } of positive integers is denoted by N. For any n ∈ N, the set {1, . . . , n}
is denoted by [n]. For a set X, the set {{x, y} : x, y ∈ X, x �= y} of all 2-element
subsets of X is denoted by

(
X
2

)
. It is to be assumed that arbitrary sets are finite.

A graph G is a pair (X, Y ), where X is a set, called the vertex set of G, and Y is
a subset of

(
X
2

)
and is called the edge set of G. The vertex set of G and the edge set

of G are denoted by V (G) and E(G), respectively. It is to be assumed that arbitrary
graphs have non-empty vertex sets. An element of V (G) is called a vertex of G, and
an element of E(G) is called an edge of G. We may represent an edge {v, w} by vw.
If vw is an edge of G, then v and w are said to be adjacent in G, and we say that w
is a neighbour of v in G (and vice-versa). An edge vw is said to be incident to x if
x = v or x = w.

For any v ∈ V (G), NG(v) denotes the set of neighbours of v in G, NG[v] denotes
NG(v) ∪ {v} and is called the closed neighbourhood of v in G, and dG(v) denotes
|NG(v)| and is called the degree of v in G. For X ⊆ V (G), we denote

⋃
v∈X NG(v)

and
⋃

v∈X NG[v] by NG(X) and NG[X], respectively. The minimum degree of G
is min{dG(v) : v ∈ V (G)} and is denoted by δ(G). The maximum degree of G is
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max{dG(v) : v ∈ V (G)} and is denoted by Δ(G). If G = (∅, ∅), then we take both
δ(G) and Δ(G) to be 0.

If H is a graph such that V (H) ⊆ V (G) and E(H) ⊆ E(G), then H is said to be
a subgraph of G, and we say that G contains H . For X ⊆ V (G), (X,E(G) ∩ (

X
2

)
) is

called the subgraph of G induced by X and is denoted by G[X ]. For a set S, G− S
denotes the subgraph of G obtained by removing from G the vertices in S and all
edges incident to them, that is, G − S = G[V (G)\S]. We may abbreviate G − {v}
to G− v.

In this paper, we investigate the minimum number of vertices that need to be
removed from a graph so that the new graph obtained has a smaller maximum degree.

Let M(G) denote the set of vertices of G of degree Δ(G). We call a subset R
of V (G) a Δ-reducing set of G if Δ(G − R) < Δ(G) or V (G) = R (note that V (G)
is the smallest Δ-reducing set of G if and only if Δ(G) = 0). Note that R is a
Δ-reducing set of G if and only if M(G) ⊆ NG[R]. Let λ(G) denote the size of a
smallest Δ-reducing set of G.

We provide several bounds for λ(G). Our main results are given in the next
section. Before stating our results, we need further definitions and notation.

For A,D ⊆ V (G), we say that D dominates A in G if for every v ∈ A, v is in D or
v has a neighbour in G that is in D. Note that D dominates M(G) in G if and only
if D is a Δ-reducing set of G. Thus λ(G) = min{|D| : D dominates M(G) in G}.

A dominating set of G is a set that dominates V (G) in G. The domination
number of G, denoted by γ(G), is the size of a smallest dominating set of G.

We now define some special graphs and important concepts.

If n ≥ 2 and v1, v2, . . . , vn are the distinct vertices of a graph G with E(G) =
{vivi+1 : i ∈ [n − 1]}, then G is called a v1vn-path or simply a path. The path
([n], {{1, 2}, . . . , {n − 1, n}}) is denoted by Pn. For a path P , the length of P ,
denoted by l(P ), is |V (P )| − 1 (the number of edges of P ).

For u, v ∈ V (G), the distance of v from u, denoted by dG(u, v), is given by

dG(u, v) =

⎧⎨
⎩

0 if u = v;
min{l(P ) : P is a uv-path, G contains P} if G contains a uv-path;
∞ if G contains no uv-path.

A graph G is connected if for every u, v ∈ V (G) with u �= v, G contains a uv-path.
A component of G is a maximal connected subgraph of G (that is, one that is not a
subgraph of any other connected subgraph of G). It is easy to see that if H and K
are distinct components of a graph G, then H and K have no common vertices (and
therefore no common edges). If G1, . . . , Gr are the distinct components of G, then
we say that G is the disjoint union of G1, . . . , Gr.

If n ≥ 3 and v1, v2, . . . , vn are the distinct vertices of a graph G with E(G)
= {v1v2, v2v3, . . . , vn−1vn, vnv1}, then G is called a cycle. The cycle ([n], {{1, 2}, . . . ,
{n− 1, n}, {n, 1}}) is denoted by Cn.

A graph G is a tree if G is a connected graph that contains no cycles. A graph G
is a star if E(G) = {uv : v ∈ V (G)\{u}} for some u ∈ V (G). Thus a star is a tree.
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The star ({0} ∪ [n], {{0, i} : i ∈ [n]}) is denoted by K1,n.

A graph G is complete if every two vertices of G are adjacent (that is, E(G) =(
V (G)
2

)
). A graph G is empty if no two vertices of G are adjacent (that is, E(G) = ∅).

A graph G is regular if the degrees of its vertices are the same. If k ∈ {0} ∪ N
and the degree of each vertex of G is k, then G is called k-regular.

Let H be a graph. A graph G is a copy of H if there exists a bijection f : V (G) →
V (H) such that E(H) = {f(u)f(v) : uv ∈ E(G)}.

We are now ready to state our main results, given in the next section. In Section 3,
we investigate λ(G) from a structural point of view, particularly observing how this
parameter changes with the removal of vertices. Some of the structural results are
then used in the proofs of the main results; these proofs are given in Section 4.

2 Bounds

Our first result is a lower bound for λ(G).

Proposition 2.1 For any graph G,

λ(G) ≥ |M(G)|
Δ(G) + 1

.

Proof. Let k = Δ(G). For any X ⊆ V (G), we have |NG[X]| ≤ ∑
v∈X |NG[v]| ≤

(k + 1)|X|. Let S be a Δ-reducing set of G of size λ(G). Since M(G) ⊆ NG[S],
|M(G)| ≤ |NG[S]| ≤ (k + 1)|S| = (k + 1)λ(G). The result follows. �

The bound above is sharp; for example, it is attained by complete graphs.

We now provide a number of upper bounds for λ(G).

Proposition 2.2 For any non-empty graph G,

λ(G) ≤ min

{
|M(G)|, γ(G),

|E(G)|
Δ(G)

}
.

Proof. Obviously, G−M(G) has no vertex of degree Δ(G). Thus λ(G) ≤ |M(G)|.
Let D be a dominating set of G. Since every vertex in V (G)\D is adjacent to

some vertex in D, dG−D(v) ≤ dG(v)− 1 ≤ Δ(G) − 1 for each v ∈ V (G −D). Thus
λ(G) ≤ |D|. Consequently, λ(G) ≤ γ(G).

Since G is non-empty, Δ(G) > 0. Let v1 be a vertex of G of degree Δ(G). If
Δ(G − v1) = Δ(G), then let v2, . . . , vr be distinct vertices of G such that Δ(G −
{v1, . . . , vr}) < Δ(G) and dG−{v1,...,vi−1}(vi) = Δ(G) for each i ∈ [r]\{1}. If Δ(G −
v1) < Δ(G), then let r = 1. Let R = {v1, . . . , vr}. By the choice of v1, . . . , vr, no
two vertices in R are adjacent. Thus |E(G − R)| = |E(G)| − rΔ(G), and hence

|E(G)| ≥ rΔ(G). Therefore, we have λ(G) ≤ |R| = r ≤ |E(G)|
Δ(G)

. �
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Let d(G) denote the average degree 1
|V (G)|

∑
v∈V (G) dG(v) of G. Proposition 2.2

and the handshaking lemma (d(G)|V (G)| = 2|E(G)|) give us

λ(G) ≤ d(G)|V (G)|
2Δ(G)

. (1)

It immediately follows that λ(G) ≤ 1
2
|V (G)|. In Section 4, we characterize the cases

in which the bound 1
2
|V (G)| is attained.

Theorem 2.3 For any non-empty graph G,

λ(G) ≤ |V (G)|
2

,

and equality holds if and only if G is either a disjoint union of copies of K2 or a
disjoint union of copies of C4.

The subsequent new theorems in this section are also proved in Section 4. The
following sharp bound is our primary contribution.

Theorem 2.4 If G is a non-empty graph, n = |V (G)|, k = Δ(G) and t = |M(G)|,
then

λ(G) ≤ n+ (k − 1)t

2k
.

We point out four facts regarding Theorem 2.4. The first is that it immediately
implies (1). Indeed, let S = {v ∈ V (G) : dG(v) = 0}, G′ = G− S and n′ = |V (G′)|;
then λ(G′) ≤ n′+(k−1)t

2k
= kt+n′−t

2k
≤ 1

2k

∑
v∈V (G′) dG(v) =

1
2k

∑
v∈V (G) dG(v) =

d(G)n
2k

.

Secondly, the bound in Theorem 2.4 can be attained in cases where λ(G) = t
and also in cases where λ(G) < t. If G is a disjoint union of t copies of K1,k, then

λ(G) = t, n = (k + 1)t, and hence λ(G) = n+(k−1)t
2k

. If G is one of the extremal

structures in Theorem 2.3, then t = n and λ(G) = n
2
= n+(k−1)t

2k
.

Thirdly, it is immediate from the proof of Theorem 2.4 that the inequality in the
result is strict if the closed neighbourhood of some vertex of G contains at least 3
members of M(G); see (7).

Fourthly, since λ(G) ≤ t, Theorem 2.4 is not useful if t ≤ n+(k−1)t
2k

. This occurs if

and only if t ≤ n
k+1

. Thus, if t ≤ n+(k−1)t
2k

, then λ(G) ≤ n
k+1

. We have

λ(G) ≤ max

{
n

k + 1
,
n + (k − 1)t

2k

}
, (2)

and if n
k+1

< n+(k−1)t
2k

and k ≥ 2, then n < (k + 1)t and λ(G) ≤ n+(k−1)t
2k

< t.

It turns out that if G is a tree, then, although we may have n
k+1

< n+(k−1)t
2k

(that
is, n < (k + 1)t, as in the case of trees that are paths with at least 4 vertices),
λ(G) ≤ n

k+1
holds.
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Theorem 2.5 For any tree T ,

λ(T ) ≤ |V (T )|
Δ(T ) + 1

.

The bound is sharp; for example, it is attained by stars.

By Proposition 2.2, any upper bound for γ(G) is an upper bound for λ(G).
Domination is widely studied and several bounds are known for γ(G); see [4]. The
following well-known domination bound of Reed [9] gives us λ(G) ≤ 3

8
|V (G)| when

δ(G) ≥ 3.

Theorem 2.6 ([9]) If G is a graph with δ(G) ≥ 3, then

γ(G) ≤ 3

8
|V (G)|.

Arnautov [3], Payan [8] and Lovász [7] independently proved that

γ(G) ≤
(
1 + ln (δ(G) + 1)

δ(G) + 1

)
n. (3)

Alon and Spencer [2] gave a probabilistic proof using Alon’s well-known argument
in [1]. By adapting the argument to our problem of dominating M(G) rather than
all of V (G), we prove the following improved bound for λ(G), replacing in particular
δ(G) by Δ(G).

Theorem 2.7 If G is a graph, n = |V (G)|, k = Δ(G) and t = |M(G)|, then

λ(G) ≤ n ln (k + 1) + t

k + 1
.

We conclude this section with a brief discussion on regular graphs. If G is regular,
then M(G) = V (G), and hence λ(G) = γ(G). For a regular graph G, Theorem 2.7 is
given by (3) as δ(G) = Δ(G). Kostochka and Stodolsky [6] obtained an improvement
of the bound in Theorem 2.6 for 3-regular graphs.

Theorem 2.8 ([6]) If G is a connected 3-regular graph with |V (G)| ≥ 9, then

γ(G) ≤ 4

11
|V (G)|.

Also, they showed in [5] that there exists an infinite class of connected 3-regular

graphs G with γ(G) >
⌈
|V (G)|

3

⌉
>

⌈
|V (G)|
Δ(G)+1

⌉
. This means that the lower bound in

Proposition 2.1 is not always attained by regular graphs, and that the bound in
Theorem 2.5 does not extend to the class of regular graphs. For regular graphs G
with Δ(G) ≤ 2, the problem is trivial. Indeed, if such a graph G is connected, then
either G has only one edge orG is a cycle. It is easy to check that {1+3t : 1+3t ∈ [n]}
is a Δ-reducing set of Cn of minimum size, and hence λ(Cn) =

⌈
n
3

⌉
=

⌈
|V (Cn)|
Δ(Cn)+1

⌉
.
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3 Structural results

In this section, we provide some observations on how λ(G) is affected by the structure
of G and by removing vertices or edges from G. Some of the following facts are used
in the proofs of our main results.

Lemma 3.1 If G is a graph, H is a subgraph of G with Δ(H) = Δ(G), and R is a
Δ-reducing set of G, then R ∩ V (H) is a Δ-reducing set of H.

Proof. Let S = R ∩ V (H). Consider any v ∈ M(H). Since Δ(H) = Δ(G),
v ∈ M(G) and NH [v] = NG[v]. Since v ∈ M(G), u ∈ NG[v] for some u ∈ R. Since
NH [v] = NG[v], u ∈ NH [v]. Thus u ∈ V (H), and hence u ∈ S. Thus v ∈ NH [S].
The result follows. �

We point out that having |R| = λ(G) in Lemma 3.1 does not guarantee that
|R ∩ V (H)| = λ(H). Indeed, let k ≥ 2, let G1 and G2 be copies of K1,k such that
V (G1) ∩ V (G2) = ∅, let G be the disjoint union of G1 and G2, let e be an edge of
G2, and let H = (V (G), E(G)\{e}). For each i ∈ [2], let vi be the vertex of Gi of
degree k. Let R = {v1, v2}. Then R is a Δ-reducing set of G of size λ(G), {v1} is a
Δ-reducing set of H , but R ∩ V (H) = R.

Proposition 3.2 If G is a graph and G1, . . . , Gr are the distinct components of G
whose maximum degree is Δ(G), then λ(G) =

∑r
i=1 λ(Gi).

Proof. Let R be a Δ-reducing set of G of size λ(G), and let Ri = R ∩ V (Gi) for
each i ∈ [r]. Then R1, . . . , Rr partition R, so |R| =

∑r
i=1 |Ri|. By Lemma 3.1,

λ(Gi) ≤ |Ri| for each i ∈ [r]. Suppose λ(Gj) < |Rj | for some j ∈ [r]. Let R′
j be

a Δ-reducing set of Gj of size λ(Gj). Then R′
j ∪

⋃
i∈[r]\{j}Ri is a Δ-reducing set of

G that is smaller than R, a contradiction. Therefore, λ(Gi) = |Ri| for each i ∈ [r].
Thus we have λ(G) = |R| = ∑r

i=1 |Ri| =
∑r

i=1 λ(Gi). �

Proposition 3.3 If H is a subgraph of a graph G such that Δ(H) = Δ(G), then
λ(H) ≤ λ(G).

Proof. Let R be a Δ-reducing set of G of size λ(G). Let S = R ∩ V (H). By
Lemma 3.1, Δ(H − S) < Δ(G). Thus we have λ(H) ≤ |S| ≤ |R| = λ(G). �

Proposition 3.4 If G is a graph, v ∈ V (G) and v /∈ NG[M(G)], then λ(G − v) =
λ(G).

Proof. By Proposition 3.3, λ(G − v) ≤ λ(G). Let R be a Δ-reducing set of G − v
of size λ(G− v). Since v /∈ NG[M(G)], M(G− v) = M(G). Thus R is a Δ-reducing
set of G, and hence λ(G) ≤ λ(G− v). Hence λ(G− v) = λ(G). �

Proposition 3.5 If v is a vertex of a graph G, then λ(G) ≤ 1 + λ(G− v).
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Proof. If Δ(G − v) < Δ(G), then λ(G) = 1. Suppose Δ(G − v) = Δ(G), so
M(G − v) ⊆ M(G). Let R be a Δ-reducing set of G − v of size λ(G− v). For any
x ∈ M(G)\M(G− v), x ∈ NG[v]. Thus R∪{v} is a Δ-reducing set of G. The result
follows. �

Define M1(G) = {v ∈ M(G) : dG(v, w) ≤ 2 for some w ∈ M(G)\{v}} and
M2(G) = M(G)\M1(G). Thus M2(G) = {v ∈ M(G) : dG(v, w) ≥ 3 for each w ∈
M(G)\{v}}.

Proposition 3.6 For a graph G, λ(G) = |M(G)| if and only if M2(G) = M(G).

Proof. Suppose λ(G) = |M(G)| and M2(G) �= M(G). Then M1(G) �= ∅. Let
v ∈ M1(G). Then dG(v, w) ≤ 2 for some w ∈ M(G)\{v}. Thus NG[v] ∩NG[w] �= ∅.
Let x ∈ NG[v] ∩NG[w]. Then (M(G)\{v, w}) ∪ {x} is a Δ-reducing set of G of size
|M(G)| − 1, a contradiction. Therefore, if λ(G) = |M(G)|, then M2(G) = M(G).

Conversely, suppose M2(G) = M(G). Let R be a Δ-reducing set of G of size
λ(G). Then M(G) ⊆ NG[R] and NG[v] ∩ M(G) �= ∅ for each v ∈ R. Suppose
|NG[v] ∩ M(G)| ≥ 2 for some v ∈ R. Let x, y ∈ NG[v] ∩ M(G) with x �= y.
Since x, y ∈ NG[v], we obtain dG(x, y) ≤ 2, which contradicts x, y ∈ M2(G). Thus
|NG[v]∩M(G)| = 1 for each v ∈ R. Since M(G) ⊆ NG[R], M(G) = M(G)∩NG[R] =
M(G)∩⋃

v∈R NG[v] =
⋃

v∈R(NG[v]∩M(G)). Thus we have |M(G)| ≤ ∑
v∈R |NG[v]∩

M(G)| = ∑
v∈R 1 = |R|. By Proposition 2.2, |R| ≤ |M(G)|. Hence |R| = |M(G)|. �

Proposition 3.7 If G is a graph with M2(G) �= M(G), then Δ(G−M2(G)) = Δ(G)
and λ(G) = |M2(G)|+ λ(G−M2(G)).

Proof. We use induction on |M2(G)|. The result is trivial if |M2(G)| = 0. Suppose
|M2(G)| ≥ 1. Let x ∈ M2(G). Since M2(G) �= M(G), M1(G) �= ∅. Thus we clearly
have Δ(G − x) = Δ(G), M1(G − x) = M1(G) and M2(G − x) = M2(G)\{x} �=
M(G − x). By the induction hypothesis, λ(G − x) = |M2(G − x)| + λ((G − x) −
M2(G−x)) = |M2(G)|−1+λ(G−({x}∪M2(G−x))) = |M2(G)|−1+λ(G−M2(G)).
By Proposition 3.5, λ(G) ≤ 1 + λ(G − x). Suppose λ(G) ≤ λ(G − x). Let R be a
Δ-reducing set of G of size λ(G). Then x ∈ NG[y] for some y ∈ R. Since x ∈ M2(G),
y /∈ NG[z] for each z ∈ M(G)\{x} (because otherwise we obtain dG(x, z) ≤ 2, a
contradiction). We obtain that R\{y} is a Δ-reducing set of G−x of size λ(G)−1 ≤
λ(G−x)−1, a contradiction. Thus λ(G) = 1+λ(G−x) = |M2(G)|+λ(G−M2(G)). �

4 Proofs of the main results

We now prove Theorems 2.3, 2.4, 2.5 and 2.7.

Proof of Theorem 2.3. Let n = |V (G)| and k = Δ(G). Since G is non-empty,
k > 0. By (1), λ(G) ≤ n

2
. It is straightforward that if G is either a disjoint union of

copies of K2, or a disjoint union of copies of C4, then λ(G) = n
2
. We now prove the
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converse. Thus, suppose λ(G) = n
2
. Then, by (1), G is k-regular. Let G1, . . . , Gr be

the distinct components of G. Consider any i ∈ [r].

Applying the established bound to each of G1, . . . , Gr, we have λ(Gj) ≤ |V (Gj)|
2

for each j ∈ [r]. Together with Proposition 3.2, this gives us
∑r

j=1
|V (Gj)|

2
≥∑r

j=1 λ(Gj) = λ(G) = n
2
=

∑r
j=1

|V (Gj)|
2

, and hence λ(Gj) =
|V (Gj)|

2
for each j ∈ [r].

Suppose k ≥ 3. Since G is k-regular, Gi is k-regular. Thus we have δ(Gi) =

k ≥ 3, λ(Gi) = γ(Gi), and hence, by Theorem 2.6, λ(Gi) ≤ 3|V (Gi)|
8

< |V (Gi)|
2

, a
contradiction.

Therefore, k ≤ 2. If k = 1, then Gi is a copy of K2. Suppose k = 2. Clearly, a
2-regular graph can only be a cycle. Thus, for some p ≥ 3, Gi is a copy of Cp. As

pointed out in Section 2, λ(Cp) =
⌈
p
3

⌉
. Since λ(Cp) = λ(Gi) =

|V (Gi)|
2

= p
2
, it follows

that p = 4. The result follows. �

For any m,n ∈ {0} ∪ N, we denote {i ∈ {0} ∪ N : m ≤ i ≤ n} by [m,n]. Note
that [m,n] = ∅ if m > n.

Proof of Theorem 2.4. Since G is non-empty, k > 0. Let r = λ(G) and G1 = G.
Let R be a Δ-reducing set of G of size r. We remove from G1 a vertex v1 in R whose
closed neighbourhood in G1 contains the largest number of vertices in M(G1), and
we denote the resulting graph G1 − v1 by G2. If r ≥ 2, then we remove from G2 a
vertex v2 in R\{v1} whose closed neighbourhood in G2 contains the largest number
of vertices in M(G2), and we denote the resulting graph G2 − v2 by G3. If r ≥ 3,
then we remove from G3 a vertex v3 in R\{v1, v2} whose closed neighbourhood in G3

contains the largest number of vertices in M(G3), and we denote the resulting graph
G3− v3 by G4. Continuing this way, we obtain v1, . . . , vr and G1, . . . , Gr+1 such that
R = {v1, . . . , vr}, Gr+1 = G− R, Δ(Gi) = k for each i ∈ [r] (since |R| = r = λ(G)),
Δ(Gr+1) < k and

M(G) =

r⋃
i=1

(NGi
[vi] ∩M(Gi)). (4)

For each i ∈ [r], let Ai = NGi
[vi] ∩M(Gi). The members v1, . . . , vr of R have been

labelled in such a way that
|A1| ≥ · · · ≥ |Ar|. (5)

For every i, j ∈ [r] with i < j, each member of Ai ∩ V (Gj) is of degree at most k− 1
in Gj (as its neighbour vi in Gi is not in V (Gj)), and hence

Ai ∩ Aj = ∅. (6)

Let I3 = {i ∈ [r] : |Ai| ≥ 3}, I2 = {i ∈ [r] : |Ai| = 2} and I1 = {i ∈ [r] : |Ai| = 1}.
Let r1 = |I1|, r2 = |I2| and r3 = |I3|. Then r = r1 + r2 + r3. By (5), we have
I3 = [1, r3], I2 = [r3 + 1, r3 + r2] and I1 = [r3 + r2 + 1, r3 + r2 + r1] = [r − r1 + 1, r].
Let H = Gr−r1+1.

Suppose r1 = 0. Then I2 ∪ I3 = [r]. By (4), M(G) =
⋃

i∈I2∪I3 Ai. By (6), it

follows that t =
∑

i∈I2∪I3 |Ai| ≥
∑

i∈I2∪I3 2 = 2r, and hence r ≤ t
2
≤ n+(k−1)t

2k
.
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Now suppose r1 �= 0. Then Δ(H) = k. By construction, {vi : i ∈ I1} is a Δ-
reducing set of H , and M(H) =

⋃
i∈I1 Ai. If we assume that H has a Δ-reducing

set S of size less than |I1|, then we obtain that (R\{vi : i ∈ I1}) ∪ S is a Δ-reducing
set of G of size less than |R|, a contradiction. Thus λ(H) = |I1|. Together with
M(H) =

⋃
i∈I1 Ai, (6) gives us |M(H)| = ∑

i∈I1 |Ai| = |I1|. By Proposition 3.6,
M(H) = M2(H). For each i ∈ I1, let zi be the unique element of Ai. By (6), zi �= zj
for every i, j ∈ I1 with i �= j. Since M2(H) = M(H) =

⋃
i∈I1 Ai, M2(H) = {zi : i ∈

I1}. By definition of M2(H), it follows that for every i, j ∈ I1 with i �= j,

NH [zi] ∩NH [zj ] = ∅.

Therefore,

|
⋃
i∈I1

NH [zi]| =
∑
i∈I1

|NH [zi]| = (k + 1)|I1| = (k + 1)r1.

Let R′ = (R\{vi : i ∈ I1}) ∪M(H). Since |M(H)| = |I1| = λ(H) (and M(H) is a
Δ-reducing set of H), R′ is a Δ-reducing set of G of size λ(G).

Let B1 =
⋃

i∈I1 NH [zi], B2 = {vi : i ∈ I2} and B3 = {vi : i ∈ I3}. Then |B1| =
(k + 1)r1, |B2| = r2 and |B3| = r3.

Suppose that there exists j ∈ I2 such that Aj ⊆ B1 ∪ B2 ∪ B3. Let w1 and
w2 be the two members of Aj . Let C = {vi : i ∈ I2, i ≥ j}. We have w1, w2 ∈
V (Gj) = V (G)\{vi : i ∈ [1, j − 1]}, so w1, w2 ∈ B1 ∪ C. We have w1, w2 ∈ NGj

[vj]
and dGj

(w1) = dGj
(w2) = k.

Suppose vj = w1. Since w1, w2 ∈ B1 ∪ C, we have w2 ∈ B1 ∪ (C\{vj}). Suppose
w2 ∈ B1. Then w2 ∈ NH [zi] for some i ∈ I1. Since Aj∪{zi} = {vj, w2, zi} ⊆ NGj

[w2],
we obtain that (R′\{vj, zi}) ∪ {w2} is a Δ-reducing set of G of size |R′| − 1, which
contradicts |R′| = λ(G). Thus w2 ∈ C\{vj}, meaning that w2 = vi for some i ∈ I2
such that i > j. From this we obtain that R′\{vj} is a Δ-reducing set of G of size
|R′| − 1, a contradiction.

Therefore, vj �= w1. Similarly, vj �= w2. If we assume that w1, w2 ∈ C, then
we obtain that R′\{vj} is a Δ-reducing set of G of size |R′| − 1, a contradiction.
Therefore, at least one of w1 and w2 is in B1; we may assume that w1 ∈ B1. Thus
w1 ∈ NH [zi] for some i ∈ I1. If we assume that w2 ∈ C, then we obtain that R′\{vj}
is a Δ-reducing set of G of size |R′| − 1, a contradiction. Thus w2 ∈ B1, and hence
w2 ∈ NH [zh] for some h ∈ I1. From this we obtain that R′\{vj} is a Δ-reducing set
of G of size |R′| − 1, a contradiction.

Therefore, Ai � B1 ∪ B2 ∪ B3 for each i ∈ I2. For each i ∈ I2, let xi ∈ Ai\(B1 ∪
B2 ∪ B3). Let B4 = {xi : i ∈ I2}. Thus B4 ∩ (B1 ∪ B2 ∪ B3) = ∅. Since B1, B2 and
B3 are pairwise disjoint (by construction), it follows that |⋃4

i=1Bi| =
∑4

i=1 |Bi|. By
(6), xi �= xj for every i, j ∈ I2 with i �= j. Thus |B4| = r2.

By (4) and (6), the sets A1, . . . , Ar partition M(G). Thus t =
∑r

i=1 |Ai| ≥
3r3 + 2r2 + r1 = 2r3 + r2 + r, and hence −r3 − r2 ≥ r − t+ r3.
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We have

n ≥ |
4⋃

i=1

Bi| =
4∑

i=1

|Bi| = r3 + 2r2 + (k + 1)r1 = r3 + 2r2 + (k + 1)(r − r3 − r2)

= (k + 1)r + (k − 1)(−r3 − r2)− r3 ≥ (k + 1)r + (k − 1)(r − t+ r3)− r3

= 2kr − (k − 1)t+ (k − 2)r3,

and hence

r ≤ n+ (k − 1)t− (k − 2)r3
2k

. (7)

If k = 1, then r3 = 0. Thus (k − 2)r3 ≥ 0, and hence r ≤ n+(k−1)t
2k

. �

We now prove Theorem 2.5, making use of the following well-known fact.

Lemma 4.1 Let x be a vertex of a tree T . Let m = max{dT (x, y) : y ∈ V (T )}, and
let Di = {y ∈ V (T ) : dT (x, y) = i} for each i ∈ {0} ∪ [m]. For each i ∈ [m] and each
v ∈ Di, NG(v) ∩

⋃i
j=0Dj = {u} for some u ∈ Di−1.

Indeed, let v ∈ Di. By definition of Di, v can only be adjacent to vertices of distance
i − 1, i or i + 1 from x. If v is adjacent to a vertex w of distance i, then, by
considering an xv-path and an xw-path, we obtain that T contains a cycle, which is
a contradiction. We obtain the same contradiction if we assume that v is adjacent
to two vertices of distance i− 1 from x.

If a vertex v of a graph G has only one neighbour in G, then v is called a leaf
of G.

Corollary 4.2 If T is a tree, x, z ∈ V (T ) and dT (x, z) = max{dT (x, y) : y ∈ V (T )},
then z is a leaf of T .

Proof. Let D0, D1, . . . , Dm be as in Lemma 4.1. Then z ∈ Dm. By Lemma 4.1,
NG(z) = {u} for some u ∈ Dm−1. �

Proof of Theorem 2.5. Let n = |V (T )| and k = Δ(T ). The result is trivial for
n ≤ 2. We now proceed by induction on n. Thus consider n ≥ 3. Since T is a
connected graph, we clearly have k ≥ 2.

Suppose that T has a leaf z whose neighbour is not in M(T ). Then M(T − z) =
M(T ) and, by Proposition 3.4, λ(T − z) = λ(T ). By the induction hypothesis,
λ(T − z) ≤ n−1

k+1
< n

k+1
. Thus λ(T ) < n

k+1
.

Now suppose that each leaf of T is adjacent to a vertex in M(T ). Let x, m and
D0, D1, . . . , Dm be as in Lemma 4.1. Let z ∈ Dm. By Corollary 4.2, z is a leaf of T .
Let w be the neighbour of z. Then w ∈ M(T ). By Lemma 4.1, w ∈ Dm−1.

Suppose w = x. Thenm = 1 and E(T ) = {xz1, . . . , xzk} for some distinct vertices
z1, . . . , zk of T . Thus {x} is a Δ-reducing set of T , and hence λ(T ) = 1 = n

k+1
.

Now suppose w �= x. Together with Lemma 4.1, this implies that NT (w) =
{v, z1, . . . , zk−1} for some v ∈ Dm−2 and some distinct vertices z1, . . . , zk−1 in Dm.
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By Corollary 4.2, z1, . . . , zk−1 are leaves of T . Let T
′ = T −v. Then each component

of T ′ is a tree. Let K be the set of components of T ′ whose maximum degree is
k, and let H be the set of components of T ′ whose maximum degree is less than
k. Let W = {w, z1, . . . , zk−1}. Note that (W, {wz1, . . . , wzk−1}) is in H, and hence
W ∩ ⋃

K∈K V (K) = ∅. If K = ∅, then {v} is a Δ-reducing set of T , and hence
λ(T ) = 1 ≤ n

k+1
. Suppose K �= ∅. For each K ∈ K, let SK be a Δ-reducing set of

K of size λ(K). By the induction hypothesis, |SK | ≤ |V (K)|
k+1

for each K ∈ K. Now
{v} ∪⋃

K∈K SK is a Δ-reducing set of T . Therefore, we have

λ(T ) ≤ 1 +
∑
K∈K

|SK | ≤ |W ∪ {v}|
k + 1

+
∑
K∈K

|V (K)|
k + 1

≤ n

k + 1
,

as required. �

Proof of Theorem 2.7. We may assume that V (G) = [n]. Let p = ln(k+1)
k+1

. We set
up n independent random experiments, and in each experiment a vertex is chosen
with probability p. More formally, for each i ∈ V , let (Ωi, Pi) be the probability space
given by Ωi = {0, 1}, Pi({1}) = p and Pi({0}) = 1 − p. Let Ω = Ω1 × · · · × Ωn, and
let P : 2Ω → [0, 1] such that P ({ω}) = ∏n

i=1 Pi({ωi}) for each ω = (ω1, . . . , ωn) ∈ Ω,
and P (A) =

∑
ω∈A P ({ω}) for each A ⊆ Ω. Then (Ω, P ) is a probability space.

For each ω = (ω1, . . . , ωn) ∈ Ω, let Sω be the subset of V (G) such that ω is
the characteristic vector of Sω (that is, Sω = {i ∈ [n] : ωi = 1}), let Tω be the set
of vertices in M(G) that are neither in Sω nor adjacent to a vertex in Sω (that is,
Tω = {v ∈ M(G) : v /∈ NG[Sω]}), and let Dω = Sω ∪ Tω. Then Dω is a Δ-reducing
set of G.

Let X, Y : Ω → R be the random variables given by X(ω) = |Sω| and Y (ω) =
|Tω|. For each i ∈ [n], let Xi : Ω → R be the indicator random variable for whether
vertex i is in Sω; that is, for each ω = (ω1, . . . , ωn) ∈ Ω,

Xi(ω) =

{
1 if i ∈ Sω;
0 otherwise.

For each i ∈ M(G), let Yi : Ω → R be the indicator random variable for whether
vertex i is in Tω; that is, for each ω = (ω1, . . . , ωn) ∈ Ω,

Yi(ω) =

{
1 if i ∈ Tω;
0 otherwise.

We have X =
∑n

i=1Xi and Y =
∑

i∈M(G) Yi.

For each i ∈ [n], P (Xi = 1) = Pi({1}) = p. For each i ∈ M(G),

P (Yi = 1) = P ({ω ∈ Ω: ωj = 0 for each j ∈ NG[i]})
=

∏
j∈NG[i]

Pj({0}) = (1− p)|NG[i]| = (1− p)k+1.
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For any random variable Z, let E[Z] denote the expected value of Z. By linearity
of expectation,

E[X + Y ] = E[X] + E[Y ] =

n∑
i=1

E[Xi] +
∑

i∈M(G)

E[Yi]

=

n∑
i=1

P (Xi = 1) +
∑

i∈M(G)

P (Yi = 1) = np + t(1− p)k+1.

By the probabilistic pigeonhole principle, there exists ω∗ ∈ Ω such that X(ω∗) +
Y (ω∗) ≤ np + t(1 − p)k+1. Since X(ω∗) + Y (ω∗) = |Sω∗| + |Tω∗ | = |Dω∗ | and

(1−p)k+1 ≤ e−p(k+1), |Dω∗| ≤ np+te−p(k+1) = n ln(k+1)
k+1

+te− ln(k+1) = n ln(k+1)
k+1

+ t
k+1

. �
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