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Abstract

We give a complete solution for the existence problem of group divisi-
ble designs (or PBIBDs) with blocks of size k = 3, four groups of size
(n, n, n, 1), and any two indices (λ1, λ2). Moreover, we introduce a con-
struction of infinitely many group divisible designs with t groups of size
n and one group of size 1. The construction technique utilizes our main
result, together with some other known designs.

1 Introduction

A group divisible design GDD(g = g1 + g2 + · · · + gs, s, k;λ1, λ2) is an ordered pair
(G,B) where G is a g-set of symbols that is partitioned into s sets, called groups, of
size g1, g2, . . . , gs, and B a collection of k-subsets of G, called blocks, such that each
pair of symbols from the same group appear together in λ1 blocks and each pair of
symbols from distinct groups appear together in λ2 blocks. λ1 and λ2 are called the
indices of the design. A group divisible design is a partially balanced incomplete
block design (PBIBD) where the set of symbols are partitioned into groups with two
different associates. Symbols occurring together in the same group are called first
associates, and symbols occurring in different groups are called second associates.
(See [2, 3].)

Many papers in the literature have focused on the designs with k = 3. Fu, Rodger,
and Sarvate [2, 3] completely solved the existence of group divisible designs where
all groups have the same size, namely GDD(g = n + n + · · · + n,m, 3;λ1, λ2). In
1992, Colbourn, Hoffman, and Rees [1] showed a necessary and sufficient condition
for the existence of a GDD(g = n + n+ · · ·+ n + u, t+ 1, 3; 0, 1). Later, Pabhapote
and Punnim [9] investigated all triples of positive integers (n,m, λ) for which a
GDD(g = n + m, 2, 3;λ, 1) exists. Pabhapote [8] proved the existence of GDD(g =
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n +m, 2, 3;λ1, λ2) for all m �= 2 and n �= 2 in which λ1 ≥ λ2. In 2014, Lapchinda et
al. [5, 6] worked on GDDs with three groups; they gave a complete solution for the
existence problem of group divisible designs with block size k = 3 and three groups
of size (n, n, 1) in two separated cases λ1 ≥ λ2 and λ1 < λ2. Here we give a complete
solution for the group divisible designs with block size k = 3 and four groups of size
(n, n, n, 1) for any two indices (λ1, λ2). Having three groups of the same size allows us
to utilize latin squares in our construction technique. In the last section, we extend
the main result to construct infinitely many GDD(g = n+ · · ·+n+1, t+1, 3;λ1, λ2)s.

Since for the main result we are dealing with GDDs with four groups and block size
3, the notation GDD(n, n, n, 1;λ1, λ2) is used for GDD(g = n+ n+ n+ 1, 4, 3;λ1, λ2)
from this point forward, and we refer to blocks as triples. Our necessary conditions for
the existence problem of a GDD(n, n, n, 1;λ1, λ2) can be easily obtained from a graph
model by describing a GDD(n, n, n, 1;λ1, λ2) graphically as follows. Let λKv denote
the graph of v vertices where each pair of vertices is joined by λ edges. Let G1 and G2

be graphs. The graph G1 ∨λ G2 is obtained from the union of G1 and G2 by joining
each vertex in G1 to each vertex in G2 with λ edges. A G-decomposition of a graph
H is a partition of the edges of H such that each element of the partition induces a
copy of G. The existence of a GDD(n, n, n, 1;λ1, λ2) is easily seen to be equivalent
to the existence of a K3-decomposition of λ1Kn ∨λ2 (λ1Kn ∨λ2 (λ1Kn ∨λ2 K1)). As
in [2], edges joining vertices in the same group are called pure edges, otherwise, they
are cross edges.

Theorem 1.1. (Necessary Conditions) Let n ≥ 1 and λ1, λ2 ≥ 0 be integers. If there
exists a GDD(n, n, n, 1;λ1, λ2), then

(i) 2 | (n− 1)λ1 + λ2, and
(ii) if n = 2 then λ1 ≤ 3λ2.

Proof. Let G = λ1Kn ∨λ2 (λ1Kn ∨λ2 (λ1Kn ∨λ2 K1)). Since there exists a K3-
decomposition of G, each vertex must have even degree. Vertices of G are of degree
3nλ2 or (n− 1)λ1 + (2n+ 1)λ2, so this yields (i). (Note that the vertex degree also
yields 2 | 3nλ2. However, (i) has already implied 2 | 3nλ2.) When n = 2, any pure
edge must be contained in a triple which contains exactly two cross edges. Thus
the number of pure edges is at most half of the number of cross edges, and so (ii)
holds.

2 Preliminary Background

This section includes the major tools that are used in our construction of GDDs,
namely latin squares, triple systems, and packings.

Our latin squares of order n are always based on the symbol set {1, 2, 3, . . . , n}.
If L = {lij} is a latin square, we refer to lij as the symbol in the cell (i, j) of L.
L = {lij} is idempotent if lii = i for all i. Two latin squares A = {aij} and B = {bij}
of the same order n are called orthogonal if the n2 ordered pairs (aij , bij), the pairs
formed by superimposing one square on the other, are all different. The existence
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of idempotent latin squares and orthogonal latin squares are well-known, as given in
Theorem 2.1; see [10].

Theorem 2.1. [10]

(i) For all positive integers n �= 2, there exists an idempotent latin square of order
n.

(ii) For all positive integers n �= 2, 6, there exists a pair of orthogonal latin squares
of order n.

A triple system TS(n, λ) of index λ and order n is an ordered pair (S, T ), where
S is an n-set, and T is a collection of 3-subsets of S called triples or blocks, such
that each pair of distinct elements of S appear together in λ triples. We can consider
a triple system TS(n, λ) to be a GDD(g = n, 1, 3;λ, λ2) or a GDD(g = 1 + 1 + 1 +
· · ·+ 1, n, 3;λ1, λ2) where λ1 and λ2 are any nonnegative integers. The existence of
triple systems is concluded in Theorem 2.2. See more details in [7].

Theorem 2.2. [7] A TS(n, λ) exists if and only if λ and n satisfy one of the following
cases:

(i) λ ≡ 0 (mod 6) for all positive integers n �= 2,
(ii) λ ≡ 1 or 5 (mod 6) for all positive integers n ≡ 1 or 3 (mod 6),
(iii) λ ≡ 2 or 4 (mod 6)) for all positive integers ≡ 0 or 1 (mod 3), and
(iv) λ ≡ 3 (mod 6) for all odd positive integers.

A packing with triangles of the complete graph Kn is a 3-tuple (S, T ,L), where
S is the vertex set of Kn, T is a collection of edge disjoint complete subgraphs K3 of
Kn, and L is the collection of edges in Kn not belonging to one of the K3 of T . The
collection of edges L is called the leave. If |L| is as small as possible, then (S, T ,L)
is called a maximum packing of order n; see [7].

Theorem 2.3. [7] Let n be any positive integer. If (S, T ,L) is a maximum packing
of order n, then the leave is

(i) a 1-factor if n ≡ 0 or 2 (mod 6),
(ii) a 4-cycle if n ≡ 5 (mod 6),
(iii) a tripole, that is a spanning graph with each vertex having odd degree and

containing n+2
2

edges, if n ≡ 4 (mod 6), and
(iv) the empty set if n ≡ 1 or 3 (mod 6).

3 Sufficiency

When λ2 = 0, a GDD(n, n, n, 1;λ1, 0) exists if and only if there exists a TS(n, λ1).
Hence we focus only on GDDs with λ2 ≥ 1. When n = 2, the extra necessary
condition (iii) in Theorem 1.1 suggests that we construct a GDD(2, 2, 2, 1;λ1, λ2)
separately.

Throughout the rest of the paper, for any positive integer n we let Xn = {x1, x2,
. . . , xn}, Yn = {y1, y2, . . . , yn}, Zn = {z1, z2, . . . , zn} and W = {w} be disjoint sets
and let Vn = Xn ∪ Yn ∪ Zn ∪W .
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Lemma 3.1. Let n, λ2 ≥ 1 and λ1 ≥ 0 be integers. There exists a GDD(2, 2, 2, 1;
λ1, λ2) where 2 | (λ1 + λ2) and λ1 ≤ λ2.

Proof. Let

B1 = {{w, x1, y2}, {w, y2, z1}, {w, z1, x2}, {w, x2, y1}, {w, y1, z2}, {w, z2, x1},
{x1, y1, z1}, {x2, y2, z2}, {x1, y1, z1}, {x1, y2, z2}, {x2, y1, z2}, {x2, y2, z1}}.

Then (V2,B1) is a GDD(2, 2, 2, 1; 0, 2). Since 2 | (λ2 + λ1) and λ1 ≤ λ2, we have that
λ2−λ1 is an even nonnegative integer. Let B be 1

2
(λ2−λ1) copies of B1; then (V2,B)

is a GDD(2, 2, 2, 1; 0, λ2 − λ1). By Theorem 2.2, we can let (V2, T ) be a TS(7, λ1),
and thus (V2,B ∪ T ) is our desired GDD.

Lemma 3.2. Let n, λ2 ≥ 1 and λ1 ≥ 0 be integers. There exists a GDD(2, 2, 2, 1;
λ1, λ2) where 2 | (λ1 + λ2) and λ2 < λ1 ≤ 3λ2.

Proof. Let

B ={{w, x1, x2}, {w, y1, y2}, {w, z1, z2}, {x1, x2, y1}, {x1, x2, y2},
{y1, y2, z1}, {y1, y2, z2}, {z1, z2, x1}, {z1, z2, x2}}.

Then (V2,B) is a GDD(2, 2, 2, 1; 3, 1). By Theorem 2.2, let (V2, T ) is a TS(7, 1).
Since 2 | (λ1 + λ2) and λ2 < λ1 ≤ 3λ2, write λ1 − λ2 = 2q where 0 ≤ q ≤ λ2.
Then (V2, C) where C is the union of q copies of B and λ2 − q copies of T is a
GDD(2,2,2,1;λ1, λ2).

For n �= 2, we first construct GDD(n, n, n, 1;λ1, λ2)s where λ1 ≤ λ2, and use them
to construct the GDDs for the remaining case λ1 > λ2. Lemma 3.3 constructs the
designs containing only cross edges.

Lemma 3.3. Let n, λ2 ≥ 1 and λ1 ≥ 0 be integers. If n �= 2 and λ2 is even, then
there exists a GDD(n, n, n, 1; 0, λ2).

Proof. It suffices to show only when λ2 = 2. For i ∈ {1, 2, . . . , n}, let

Bi = {{w, xi, yi}, {w, xi, zi}, {w, yi, zi}, {xi, yi, zi}}.

By Theorem 2.1, there is an idempotent latin square L = {lij} of order n. Let

B = {{xi, yj, zk} : i, j, k ∈ {1, 2, . . . , n}, lij = k and i �= j}.

It is easily seen that pairs of elements from different groups occur either twice in Bi

or precisely once in B. Then (Vn,B∗) is a GDD(n, n, n, 1; 0, 2), where B∗ is the union
of Bi, for all i ∈ {1, 2, . . . , n} and two copies of B.

Lemmas 3.4, 3.5 and 3.7 provide the construction of a GDD(n, n, n, 1;λ1, λ2) where
n �= 2 and λ1 ≤ λ2.
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Lemma 3.4. Let n, λ2 ≥ 1 and λ1 ≥ 0 be integers. If n �= 2 is even, λ1 ≤ λ2 and
λ1 ≡ λ2 (mod 2), then there exists a GDD(n, n, n, 1;λ1, λ2).

Proof. Since n is even, then, by Theorem 2.2, there exists a TS(3n + 1, λ1), say
(Vn, T ). Since λ1 ≡ λ2 (mod 2), λ2 − λ1 is even. Then, by Lemma 3.3, let (Vn,B)
be a GDD(n, n, n, 1; 0, λ2 − λ1). Therefore (Vn,B ∪ T ) is a desired GDD.

Lemma 3.5. Let n, λ2 ≥ 1 and λ1 ≥ 0 be integers. If n ≡ 1, 3 (mod 6), and λ2 ≡ 0
(mod 2), then there exists a GDD(n, n, n, 1;λ1, λ2).

Proof. We can decompose pure edges and cross edges separately. For pure edges,
since n ≡ 1, 3 (mod 6), by Theorem 2.2, there exists a TS(n, λ1). Let (Xn, T1),
(Yn, T2) and (Zn, T3) be those TS(n, λ1)s which exist from the theorem. For cross
edges, since λ2 is even, by Lemma 3.3, there exists a GDD(n, n, n, 1; 0, λ2), say (Vn,B).
Then (Vn,B ∪ T1 ∪ T2 ∪ T3) is a desired GDD.

Lemma 3.6. Let n > 0 be an integer. If n ≡ 5 (mod 6), then there exists a
GDD(n, n, n, 1; 1, 2).

Proof. Let (Xn, T1,L1), (Yn, T2,L2) and (Zn, T3,L3) be maximum packings with tri-
angles of order n. In addition, by Theorem 2.3 (ii), since n ≡ 5 (mod 6), the leaves
Li are 4-cycles, say

L1 = {{x1, x2}, {x2, x3}, {x3, x4}, {x4, x1}},
L2 = {{y1, y2}, {y2, y3}, {y3, y4}, {y4, y1}},
L3 = {{z1, z2}, {z2, z3}, {z3, z4}, {z4, z1}}.

Let

C1 = {{w, x1, x2}, {w, x2, x3}, {w, x3, x4}, {w, x4, x1}},
C2 = {{w, y1, y2}, {w, y2, y3}, {w, y3, y4}, {w, y4, y1}},
C3 = {{w, z1, z2}, {w, z2, z3}, {w, z3, z4}, {w, z4, z1}}.

For i ∈ {5, 6, . . . , n}, let

Bii = {{xi, yi, zi}, {w, xi, yi}, {w, yi, zi}, {w, xi, zi}}.

By Theorem 2.1, there is an idempotent latin square L = {lij} of order n.
For i �= j ∈ {1, 2, . . . , n} or i = j ∈ {1, 2, 3, 4}, let

Bij = {{xi, yj, zlij}, {xi, yj, zlij}}.

Let T be T1 ∪ T2 ∪ T3, B the union of Bij , for i, j ∈ {1, 2, . . . , n}, and C the union of
Ci, for i ∈ {1, 2, 3}. Thus (Vn, T ∪ B ∪ C) is a GDD(n, n, n, 1; 1, 2).

Lemma 3.7. Let n, λ2 ≥ 1 and λ1 ≥ 0 be integers. If n ≡ 5 (mod 6), λ1 ≤ λ2 and
λ2 ≡ 0 (mod 2), then there exists a GDD(n, n, n, 1;λ1, λ2).
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Proof. If λ1 ≡ 0 (mod 3) then a TS(n, λ1) exists. Let (Xn, T1), (Yn, T2) and (Zn, T3)
be TS(n, λ1)s. Since λ2 is even, by Lemma 3.3, let (Vn,B) be a GDD(n, n, n, 1; 0, λ2).
Then (Vn,B ∪ T1 ∪ T2 ∪ T3) is the desired GDD. If λ1 ≡ 1 (mod 3) then λ1 −
1 ≡ 0 (mod 3). Then there exists a GDD(n, n, n, 1;λ1 − 1, λ2 − 2); together with a
GDD(n, n, n, 1; 1, 2) in Lemma 3.6, we have the desired GDD. Similarly, a GDD(n, n,
n, 1;λ1 − 2, λ2 − 2) exists where λ1 ≡ 2 (mod 3), and by Theorem 2.2, there always
exists a TS(3n+1, 2) which is a GDD(n, n, n, 1; 2, 2); combining them together yields
our desired GDD.

Theorem 3.8. Let n, λ2 ≥ 1 and λ1 ≥ 0 be integers. If (n, λ1, λ2) satisfy the
necessary conditions in Theorem 1.1 and λ1 ≤ λ2, then there exists a GDD(n, n, n, 1;
λ1, λ2).

Proof. If (n, λ1, λ2) satisfies the necessary conditions in Theorem 1.1, then λ1 ≡ λ2

(mod 2) where n is even, and λ2 ≡ 0 (mod 2) where n is odd. Therefore, by Lemmas
3.1, 3.4, 3.5 and 3.7, there exists a GDD(n, n, n, ;λ1, λ2) where λ1 ≤ λ2

Lemma 3.9. Let n be any positive integer. If n �= 2 is even, then there exists a
GDD(n, n, n, 1; 3, 1).

Proof. If n ≡ 0, 4 (mod 6) then, by Theorem 2.2, let (Xn, T1), (Yn, T2) and (Zn, T3)
be TS(n, 2)s and (Vn, T ) be a TS(3n+ 1, 1). Then (Vn, T ∪ T1 ∪ T2 ∪ T3) is a desired
GDD.

If n ≡ 2 (mod 6) then, by Theorem 2.3, let (Xn, T1,L1), (Yn, T2,L2) and (Zn, T3,
L3) be maximum packings with triangles of order n; the leaves Lt, t ∈ {1, 2, 3} are
1-factors. Let

L1 = {{x1, x(1+n
2
)}, {x2, x(2+n

2
)}, . . . , {x(n

2
), xn}},

L2 = {{y1, y(1+n
2
)}, {y2, y(2+n

2
)}, . . . , {y(n

2
), yn}},

L3 = {{z1, z(1+n
2
)}, {z2, z(2+n

2
)}, . . . , {z(n

2
), zn}}.

Since n
2
�= 2, by Theorem 2.1, there is an idempotent latin square of order n

2
, say L

= {lij}. For i ∈ {1, 2, . . . , n
2
}, let

Bii = {{w, xi, x(i+n
2
)}, {w, yi, y(i+n

2
)}, {w, zi, z(i+n

2
)},

{xi, yi, zi}, {xi, y(i+n
2
), z(i+n

2
)},

{x(i+n
2
), yi, z(i+n

2
)}, {x(i+n

2
), y(i+n

2
), zi}},

and for i �= j ∈ {1, 2, . . . , n
2
}, let

Bij = {{xi, yj, zlij}, {xi, y(j+n
2
), z(lij+n

2
)},

{x(i+n
2
), yj, z(lij+n

2
)}, {x(i+n

2
), y(j+n

2
), zlij}}.

Thus (Vn, T ∪ B), where T is the union of three copies of T1 ∪ T2 ∪ T3, and B is the
union of Bij for all i, j ∈ {1, 2, . . . , n

2
}, is a GDD(n, n, n, 1; 3, 1).
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Lemma 3.10. Let n > 0 be an integer. If n �= 2, then there exists a GDD (n, n, n, 1;
5, 1).

Proof. If n ≡ 0, 4 (mod 6) then, by Theorem 2.2, let (Xn, T1), (Yn, T2) and (Zn, T3)
be TS(n, 4)s and (Vn, T ) be a TS(3n+ 1, 1). Then (Vn, T ∪ T1 ∪ T2 ∪ T3) is a desired
GDD.

If n ≡ 2 (mod 6), then let (X, T1,L1), (Y, T2,L2) and (Z, T3,L3) be maximum
packings with triangles of order n. Then by Theorem 2.3, the leaves Lt, t ∈ {1, 2, 3}
are 1-factors. Let

L1 = {{x1, x(1+n
2
)}, {x2, x(2+n

2
)}, . . . , {x(n

2
), xn}},

L2 = {{y1, y(1+n
2
)}, {y2, y(2+n

2
)}, . . . , {y(n

2
), yn}},

L3 = {{z1, z(1+n
2
)}, {z2, z(2+n

2
)}, . . . , {z(n

2
), zn}}.

Since n
2
is neither 2 nor 6, by Theorem 2.1 we can let L = {lij} and L∗ = {l∗ij} be two

orthogonal latin squares of order n
2
. For each pair of i, j ∈ {1, 2, . . . , n

2
}, we define

Bij in three cases separately.

For i, j such that l∗ij = 1, let Bij be the collection of blocks of a GDD(2,2,2,1;3,1)
based on the symbol set {xi, x(i+n

2
)} ∪ {yj, y(j+n

2
)} ∪ {zlij , z(lij+n

2
)} ∪ {w}.

For i, j such that l∗ij = 2, let

Bij = {{xi, x(i+n
2
), yj}, {xi, x(i+n

2
), y(j+n

2
)}, {yj, y(j+n

2
), zlij},

{yj, y(j+n
2
), z(lij+n

2
)}, {zlij , z(lij+n

2
), xi}, {zlij , z(lij+n

2
), x(i+n

2
)}}.

For i, j such that l∗ij ≥ 3, let

Bij = {{xi, yj, zlij}, {xi, y(j+n
2
), z(lij+n

2
)}, {x(i+n

2
), yj, z(lij+n

2
)},

{x(i+n
2
), y(j+n

2
), zlij}}.

Let T be the union of five copies of T1 ∪ T2 ∪ T3 and B the union of Bij , for all i, j.
Thus (Vn, T ∪ B) is a GDD(n, n, n, 1; 5, 1).

The next main theorem is the conclusion for the existence of our desired GDDs.

Theorem 3.11. Let n > 0 and λ1, λ2 ≥ 0 be integers. There exists a GDD(n, n,n,
1;λ1,λ2) if and only if

(i) λ2 = 0, and there exists a TS(n, λ1),
(ii) λ2 �= 0, n = 2, 2 | (λ1 + λ2) and λ1 ≤ 3λ2, or
(iii) λ2 �= 0, n �= 2, and 2 | (n− 1)λ1 + λ2.

Proof. For necessity, (i) holds by Theorem 2.2, and the other conditions hold by
Theorem 1.1. Now we prove the sufficiency. If we assume (i), then the statement
is true trivially. If we assume (ii), then the sufficiency has been proved by Lemmas
3.1–3.2.

Next we assume (iii); let n �= 2 and λ2 �= 0. Theorem 3.8 provides the case
λ1 ≤ λ2. Assume that λ1 > λ2 and write λ1 = 6q + r where 0 ≤ r < 6. If
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r ≤ λ2, by Theorem 3.8 we can let (Vn,B) be a GDD(n, n, n, 1; r, λ2). Let (Xn, T1),
(Yn, T2) and (Zn, T3) be TS(n, 6q)s. Then (Vn,B ∪ T1 ∪ T2 ∪ T3) is a desired GDD.
Now suppose that r > λ2. Then when n is even, (r, λ2) can only be one of the
ordered pairs in {(3, 1), (4, 2), (5, 1), (5, 3)}; and when n is odd, (r, λ2) can only be in
{(3, 2), (4, 2), (5, 2), (5, 4)}.

If n is even, a GDD(n, n, n, 1; 3, 1) and a GDD(n, n, n, 1; 5, 1) are constructed in
Lemmas 3.9 and 3.10, respectively. Furthermore, a GDD(n, n, n, 1; 4, 2) and a GDD(n,
n, n, 1; 5, 3) can be constructed by adding one and two copies of a TS(3n + 1, 1) to
a GDD(n, n, n, 1; 3, 1), respectively.

If n is odd, by Lemma 3.5 and 3.6 , let (Vn,B1) be a GDD(n, n, n, 1; 1, 2), and
by Lemma 3.3, let (Vn,B2) be a GDD(n, n, n, 1; 0, 2). By Theorem 2.2, let (Xn, T1),
(Yn, T2) and (Zn, T3) be TS(n, 3)s, and (Vn, T4) be a TS(3n+1, 2). Therefore (Vn,B)
is a GDD(n, n, n, 1; r, λ2), where (r, λ2,B) is as in the following table.

(r, λ2) B
(3, 2) B2 ∪ T1 ∪ T2 ∪ T3

(4, 2) B1 ∪ T1 ∪ T2 ∪ T3

(5, 2) T1 ∪ T2 ∪ T3 ∪ T4

(5, 4) B2 ∪ T1 ∪ T2 ∪ T3 ∪ T4

4 GDD(g = n+ · · ·+ n+ 1, t+ 1, 3; λ1, λ2)

In this section, we introduce a construction of infinitely many GDD(g = n + n +
· · ·+ n + 1, t + 1, 3;λ1, λ2)s that utilizes our result and the results from [5] and [6],
namely the existence of a GDD(g = n + n + n + 1, 4, 3;λ1, λ2) and a GDD(g =
n + n + 1, 3, 3;λ1, λ2). The necessary conditions to obtain the desired GDDs are
shown in Theorem 4.1 which can be proved by a standard idea, similar to the proof
of Theorem 1.1. Theorems 4.2 and 4.3 form a complete solution for the existence of
a GDD(g = n + n+ 1, 3, 3;λ1, λ2). Beside these two theorems, our construction also
needs Theorems 4.4 and 4.5 to obtain a K3-decomposition of the graph λ2Kt(n) and
λ2Kt(n),m where Kt(n) is a complete multipartite graph with t groups of size n and
Kt(n),m is a complete multipartite graph with t groups of size n and one group of size
m; see more details in [1] and [4].

Theorem 4.1. (Necessary Conditions) Let n, t, λ1 and λ2 be integers. If there exists
a GDD(g = n+ n + · · ·+ n+ 1, t+ 1, 3;λ1, λ2) if and only if

(i) 2 | λ2tn,
(ii) 2 | [λ1(n− 1) + λ2((t− 1)n+ 1)],
(iii) 3 | tn[λ1(n− 1) + λ2(n(t− 1) + 2)], and
(iv) if n = 2 then λ1 ≤ tλ2.
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Theorem 4.2. [5] Let n, λ1, λ2 be positive integers. If λ1 < λ2 then there exists a
GDD(g = n + n+ 1, 3, 3;λ1, λ2) if and only if

(i) 2 | [λ1(n− 1) + λ2(n+ 1)],
(ii) 3 | [λ1n(n− 1) + λ2n(n+ 2)], and
(iii) λ2 ≤ 2λ1.

Theorem 4.3. [6] Let n ≥ 3, λ1, λ2 be positive integers. If λ1 ≥ λ2 then there exists
a GDD(g = n+ n + 1, 3, 3;λ1, λ2) if and only if

(i) 2 | [λ1(n− 1) + λ2(n+ 1)], and
(ii) 3 | [λ1n(n− 1) + λ2n(n+ 2)].

Theorem 4.4. [4] Let n, t and λ2 be positive integers. If n �= 2 then there exists a
GDD(g = n + n+ n+ · · ·+ n, t, 3; 0, λ2) if and only if

(i) 2 | λ2(t− 1)n
(ii) 3 | λ2t(t− 1)n2, and
(iii) t ≥ 3.

Theorem 4.5. [1] Let n,m, t ≥ 1 be integers. There exists a GDD(g = n+ n+ n +
· · ·+ n+m, t + 1, 3; 0, 1) if and only if

(i) If t = 2 then m = n,
(ii) m ≤ n(t− 1),
(iii) 2 | [(t− 1)n+m]
(iv) 2 | tn, and
(v) 3 | [t(t− 1)n2 + tmn].

Now we will construct infinitely many GDD(g = n+n+ · · ·+n+1, t+1, 3;λ1, λ2)s
using Theorems 4.2–4.5, together with Theorem 3.11. The construction is separated
into two corollaries depending on the parity of the number of groups of size n in
the design. For our construction, let Xi = {xi1, xi2, . . . , xin} for i = 1, 2, . . . , t and
W = {w} be disjoint sets.

Corollary 4.6. Let n ≥ 3, λ1 and λ2 be positive integers, and let t ≥ 6 be an even
integer. If there exists a GDD(g = n + n + 1, 3, 3;λ1, λ2), and n, t, λ1, λ2 satisfy the
necessary conditions in Theorem 4.1, then there exists a GDD(g = n+ n+ · · ·+ n+
1, t+ 1, 3;λ1, λ2).

Proof. By the assumption, for i = 1, 2, . . . , t
2
, we can construct a GDD(g = n + n +

1, 3, 3;λ1, λ2) based on the element set X2i−1 ∪ X2i ∪W . Let H be the graph that
represents such construction for all i. Suppose that a K3-decomposition of graph G
represents a GDD(g = n+ n+ · · ·+ n+ 1, t+ 1, 3;λ1, λ2). Then G = H + λ2K t

2
(2n).

By Theorems 4.1-4.3, the degree of each vertex of both graphs G and H is even and
the number of edges of graphs G and H are both divisible by three. These yield
that the degree of each vertex of the graph K t

2
(2n) is also even, and the number of

edges of the graph K t
2
(2n) is also divisible by three. Moreover, t

2
≥ 3 since t ≥ 6. By

Theorem 4.4, the graph K t
2
(2n) can be decomposed into triangles. Hence there exists

a desired GDD.
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Corollary 4.7. Let n ≥ 3, λ1 and λ2 be positive integers, and let t ≥ 9 be an odd
integer. If there exist a GDD(g = n+ n+ 1, 3, 3;λ1, λ2) and a GDD(g = n+ n+ n+
1, 4, 3;λ1, λ2), and n, t, λ1, λ2 satisfy the necessary conditions in Theorem 4.1, then
there exists a GDD(g = n + n+ · · ·+ n + 1, t+ 1, 3;λ1, λ2).

Proof. We construct a GDD(g = n + n + 1, 3, 3;λ1, λ2) based on the element set
X2i−1 ∪ X2i ∪ W for i = 1, 2, . . . , t−3

2
, represented by a K3-decomposition of the

graph H1, and a GDD(g = n+n+n+1, 4, 3;λ1, λ2) based on the element set Xt−2∪
Xt−1 ∪Xt ∪W , represented by a K3-decomposition of the graph H2. We construct
our desired GDD similarly to the previous Corollary that is a K3-decomposition of
the graph G = H1 + H2 + λ2K t−3

2
(2n),3n and use of Theorem 4.5 to obtain a K3-

decomposition of the graph λ2K t−3
2

(2n),3n.
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