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Abstract

In the particular case of finite orders, we investigate the notion of faithful
extension among relations introduced in 1971 by R. Fräıssé: an order Q
admits a faithful extension relative to an order P if P does not embed
into Q and there exists a strict extension of Q into which P still does not
embed. For most of the known order classes, we prove that if P and Q
belong to a class then Q admits a faithful extension in this class. For the
class of distributive lattices, we give an infinite family of orders P and Q
such that P does not embed into Q and embeds in every strict extension
of Q.

1 Introduction

We start by fixing some notation and definitions on orders. Notation and definitions
which are specific to individual sections will be introduced as necessary. For further
information, in particular for order classes that we mention but that we do not
study, we refer to the books of Schröder [13] and of Trotter [14]. We use standard set
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theoretical notation. The cardinal of a set A will be denoted |A|. Given any strictly
positive integer k, the set {1, . . . , k} will be denoted by [k].

A strict order, or simply an order in the sequel, P , is an ordered pair (V (P ), <
P
),

where its ground set V (P ) is a (finite) set and <
P
is an irreflexive, transitive (and

thus antisymmetric) binary relation on V (P ). In the following, we assume that
x, y ∈ V (P ) and X ⊆ V (P ). The notation x ≤

P
y signifies either x <

P
y or x = y,

and the notation x−<
P
y signifies both x <

P
y and, for all z ∈ V (P ), if x ≤

P
z <

P
y

then x = z. In the latter case, x is called a lower cover of y, and y is called an upper
cover of x.

When x and y are distinct, they are comparable (respectively, incomparable),
denoted by x ∼

P
y (respectively, x ‖

P
y), if either x <

P
y or y <

P
x (respectively,

neither x <
P
y nor y <

P
x). The element x is maximal (respectively, minimal) if

for every z ∈ V (P ) we have that x ≤
P
z (respectively, z ≤

P
x) implies x = z.

The set of all maximal (respectively, minimal) elements of P is denoted by Max(P )
(respectively, Min(P )). The element x is isolated if it is both a maximal and a
minimal element. The set X is a chain (respectively, an antichain) of P when every
two distinct elements of X are comparable (respectively, incomparable). The rank
of x in P denoted by rank

P
(x) is the maximal cardinality minus one of a chain of

P having x for greatest element. For example, rank
P
(x) = 0 if and only if x is a

minimal element of P . For every natural number k, the set of all the elements of
P with rank k is denoted by RP (k), that is RP (k) = {x ∈ V (P ) : rank

P
(x) = k}.

The height of P , denoted by h(P ), is the maximal cardinality minus one of a chain
of P . For each element X of 2V (P ) (that is, X is a subset of V (P )) we associate
the suborder (X, (X × X) ∩ <

P
) of P induced by X and denoted by P [X]. When

X = V (P )− {x} we will rather use the notation P − x.

Let us consider two orders P and Q. An isomorphism from P onto Q is a bijective
mapping f : V (P ) −→ V (Q) such that for all x, y ∈ V (P ), x <

P
y if and only if

f(x) <
Q
f(y). The order P embeds into the order Q if there exists a suborder of Q

isomorphic to P . The order Q is an extension of P whenever P = Q[V (P )] (that
implies V (P ) ⊆ V (Q)). Consequently if Q is an extension of P then P embeds
into Q. An extension Q of an order P is strict if |V (Q)| > |V (P )|. If moreover,
|V (Q)| − |V (P )| = 1, Q is then said to be a sharp extension of P .

The notion of faithful extension was first introduced for arbitrary relations in
1971 by Fräıssé [4]. A detailed study of this notion for relations and for bivalent
tables is provided in the book of Fräıssé [5] (Chapter 8). For example, if R is a finite
structure, then the collection Ω¬R of finite structure S such that R does not embed
into S is an infinite age in the terminology of Fräıssé. Notice that such inextensibility
properties were already used in 1948 by Fräıssé [3] for classifying relations and in
1968 by Jullien [11] in his theorem on words on finite alphabets. In 1993, Fräıssé
and Hazim-Sharif [6] were interested in faithful extensions of finite orders: they said
that an order Q admits a faithful extension relative to an order P when (i) P does
not embed into Q, and (ii) there exists Q+ a sharp extension of Q such that P does
not embed into Q+.
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The problem of determining whether any pair of orders admit faithful extensions
is quite obvious. Indeed, as indicated in [4], it is sufficient to notice that: if an order P
does not embed into an order Q, then for any x 	∈ V (Q) either P does not embed into
(V (Q)∪ {x}, <

Q
) or P does not embed into (V (Q)∪ {x}, <

Q
∪{(x, y) : y ∈ V (Q)}).

Consequently, the notion of faithful extension becomes interesting only when it is
restricted to subclasses of finite orders. Under these considerations, Fräıssé and
Hazim-Sharif [6], following an idea of Bonnet, investigated some classes of fixed
height orders. For that study, they introduced the notions of h-inextensibility and of
h-extensibility:

• An order P is h-inextensible for an order Q if and only if P and Q have both
height h, P does not embed into Q, and P embeds into every sharp extension
of Q of height h.

• An order P is h-extensible if and only if for every order Q of height h so that
P does not embed into, there exists Q+ a sharp extension of Q of height h so
that P does not embed into Q+.

If these three notions, faithful extension, h-inextensibility and h-extensibility, can
be directly extended to any class of orders closed by suborders, in order to take into
account any class of orders, we rather propose the following generalizations:

Definition 1.1 An order Q admits a faithful extension relative to an order P when
(i) P does not embed into Q and (ii) there exists Q′ a strict extension of Q such that
P does not embed into Q′.

Definition 1.2 An order P is C-inextensible whenever (i) P belongs to C and (ii)
there exists an order Q in C into which P does not embed, and such that P embeds
into every strict extension of Q belonging to C.

Definition 1.3 An order P is C-extensible whenever (i) P belongs to C and (ii)
every order Q in C, into which P does not embed, admits a strict extension, belonging
to C, into which P does not embed. Moreover, if every P in C is C-extensible then C
is said to be extensible.

Let Hk be the height k orders class, that is, the class of orders whose maximal
cardinality chains contain k+1 elements. Let Isol(P ) be the set of isolated elements
of an order P .

An element x of an order P is max dominating (respectively, min dominating) if
it is strictly greater (respectively, strictly smaller) in P than every element in V (P )
being not maximal (respectively, not minimal), equivalently P−{y ∈ V (P ) : y <

P
x}

(respectively, P − {y ∈ V (P ) : x <
P
y}) is an antichain. The results obtained by

Fräıssé and Hazim-Sharif [6] can be expressed as: there exists H1-extensible orders,
there exists H1-inextensible orders, and for k ≥ 2, any order P such that either
Isol(P ) is empty or such that P [V (P )−Isol(P )] does not admit a max dominating
element, or such that P [V (P )−Isol(P )] does not admit a min dominating element,
is Hk-extensible.
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In this paper we study the notion of faithful extension on various classes of orders.
We present a result of inextensibility for the class of distributive lattices, and, we
show that most of the known classes are extensible. In Section 2, we recall some
known or easy facts about embeddings and about orders extensions. In Section 3,
we show, for several of orders, that only two types of extensions are sufficient to
ensure that they are extensible. Among them we have interval orders, k-dimensional
orders, semi-orders, weak-orders, connected orders, lattices, and in-tree orders. In
Section 4, we show that the class of distributive lattices admits an infinite family of
inextensible orders. In Section 5, by using a variable number of extensions we prove
that the class of disconnected orders, the class of width k orders, and the class of
indecomposable orders on at least 6 elements are all extensible. In Section 6, we
conclude by partial results on the class Hk of height k orders. Particularly, we show
that an order P is Hk-extensible whenever there exists i ∈ {0, . . . , k − 1} such that
Max(P ) ∩RP (i) = ∅.

We finish this section by fixing some other notation and definitions that we use
throughout the following. Given an order P , let x, y ∈ V (P ) and let X ⊆ V (P ). The
predecessors set of x is the setD

P
(x) = {y ∈ V (P ) : y <

P
x} and the set of immediate

predecessors of x is the set D
im

P
(x) = {y ∈ V (P ) : y−<

P
x)}. The same holds for the

successors sets with U
P
(x) and U

im

P
(x). The dual order of P is the order P d where

V (P d) = V (P ) and <
Pd
= {(x, y) ∈ V (P ) × V (P ) : (y, x) ∈<

P
}. Given a family

(Pi)i∈I of pairwise disjoint orders, that is, for i, j ∈ I we have V (Pi) ∩ V (Pj) = ∅
for all i 	= j, the parallel composition of the Pi’s is the order P =

⊕
i∈I Pi where

V (P ) =
⋃

i∈I V (Pi) and <P
=

⋃
i∈I <Pi

. When |I| = 2, with for example I = [2], we
rather use P1 ⊕ P2. Given P1 and P2, two disjoint orders, the left series composition
of P2 by P1 or, equivalently, the right series composition of P1 by P2, is the order
P = P1 ⊗ P2 where V (P ) = V (P1) ∪ V (P2) and <P

=<
P1

∪ <
P2

∪(V (P1) × V (P2)).
When P1 = ({x}, ∅) (respectively, P2 = ({y}, ∅)), we rather use x⊗P2 (respectively,
P1 ⊗ y). Given a mapping ψ from a set A into a set B, to simplify notation, we also
use ψ to denote the corresponding mapping from the subsets of A into the subsets
of B. That is, for X ∈ 2A and for Y ∈ 2B, we have ψ(X) = {ψ(x) : x ∈ X} and
ψ−1(Y ) =

⋃
y∈Y

ψ−1(y), where ψ−1(y) = {x ∈ X : ψ(x) = y}. Also, when ψ is

injective (one-to-one), for every b ∈ B, whenever ψ−1(b) exists, we use indifferently
ψ−1(b) either for the singleton or for the element itself.

2 Preliminaries

2.1 Embedding

We recall some known facts about embeddings and we provide some proofs for the
reader’s convenience.

Fact 2.1 Let P and Q be two orders such that P embeds into Q by ψ. Then for every
x ∈ V (Q) in the range of ψ, we have firstly that P [D

P
(ψ−1(x))] embeds into Q[D

Q
(x)]

by ψ restricted to D
P
(ψ−1(x)) and secondly that D

P
(ψ−1(x)) = ψ−1(D

Q
(x)). The

same holds for the successors sets.
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From this fact the next property follows immediately:

Property 2.1 Let P and Q be two orders such that P embeds into Q by ψ. Let
x, y ∈ V (Q) in the range of ψ; then we have:

(i) x−<
Q
y implies that ψ−1(x)−<

P
ψ−1(y).

(ii) |ψ−1(D
im

Q
(x))| = |Dim

Q
(x)| implies that D

im

P
(ψ−1(x)) = {ψ−1(z) : z ∈ D

im

Q
(x)},

and
|ψ−1(U

im

Q
(x))| = |U im

Q
(x)| implies that U

im

P
(ψ−1(x)) = {ψ−1(z) : z ∈ U

im

Q
(x)}.

(iii) x ∈ Max(Q) (respectively, x ∈ Min(Q)) implies that ψ−1(x) ∈ Max(P ) (re-
spectively, ψ−1(x) ∈ Min(P )).

(iv) if x is the least (respectively, greatest) element of Q, then ψ−1(x) is the least
(respectively, greatest) element of P .

Proof . Assertion (i): firstly, notice that for any order H we have that a−<
H
b if and

only if both a <
H
b and U

H
(a) ∩ D

H
(b) = ∅. Secondly, recall that for any mapping

ϕ from U to V and for any subsets A,B of V , we have that ϕ−1(A) ∩ ϕ−1(B) =
ϕ−1(A ∩B). Then this case immediately follows from Fact 2.1.
Assertion (ii): Since |ψ−1(D

im

Q
(x))| = |Dim

Q
(x)| we have that D

im

Q
(x) ⊆ ψ(V (P )).

Consequently, by Assertion (i), it follows that {ψ−1(z) : z ∈ D
im

Q
(x)} ⊆ D

im

P
(ψ−1(x)).

Assume that there exists t ∈ D
im

P
(ψ−1(x)) \ {ψ−1(z) : z ∈ D

im

Q
(x)}. Then we have

ψ(t) <
Q
ψ(ψ−1(x)) = x, and thus there exists α ∈ V (Q) such that ψ(t) <

Q
α−<

Q
x.

Consequently, we obtain that t = ψ−1(ψ(t)) <
P
ψ−1(α)−<

P
ψ−1(x): a contradiction.

The dual case follows the same lines.
Assertion (iii): since for any x ∈ Max(Q) (respectively, x ∈ Min(Q)) holds U

Q
(x) = ∅

(respectively, D
Q
(x) = ∅) then the result directly follows from Fact 2.1.

Assertion (iv): for every y ∈ V (Q)−{x}, we have that x <
Q
y (respectively, y <

Q
x).

For every z ∈ V (P )−{ψ−1(x)}, we have that ψ(z) ∈ V (Q)−{x}. Consequently, by
Fact 2.1, holds ψ−1(x) ∈ D

P
(z) (respectively, ψ−1(x) ∈ U

P
(z)). �

2.2 Sharp extension

Most of the time, sharp extensions are sufficient to establish or to confirm the exis-
tence of faithful extensions. In this section, we detail two of them which are partic-
ularly useful.

Let Q and P be two orders such that V (P ) ∩ V (Q) = {y}. We define the order
QP

y by (i) V (QP
y ) = V (Q) ∪ V (P ), and (ii) for all a 	= b ∈ V (QP

y ) we have a <
QP
y
b

whenever either ({a, b} ⊆ V (P ) and a <
P
b) or ({a, b} ⊆ V (Q) and a <

Q
b) or

(a ∈ V (P ), b ∈ (V (Q)− V (P )) and y <
Q
b) or (b ∈ V (P ), a ∈ (V (Q)− V (P )) and

a <
Q
y). This order is said to be obtained by substitution of y by P in Q.

Fact 2.2 Let P and Q be two orders such that V (P ) ∩ V (Q) = {y}. Then QP
y is a

sharp extension of Q whenever |V (P )| = 2. Moreover, with V (P ) = {y, x} we have
that QP

y − x = Q and that QP
y − y is isomorphic to Q.
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Figure 1: The substitution of b by P in Q.

Lemma 2.1 Let P and Q be two orders such that P does not embed into Q. Let
x /∈ V (Q), let y ∈ V (Q) and let Z be any order such that V (Z) = {x, y}. If P
embeds by ψ into QZ

y then both ψ−1(x) and ψ−1(y) exist.

Proof . Since P does not embed into Q then ψ−1(x) exists. Now, assume that ψ−1(y)
does not exist. Thus, P embeds into QZ

y − y, which is in contradiction with the fact
that QZ

y − y is isomorphic to Q. �

Property 2.2 Let P and Q be two orders such that Q has a greatest element and P
does not embed into Q. If P embeds into Q⊗x, for x /∈ V (Q), then P has a greatest
element with a unique immediate predecessor.

Proof . Let �Q be the greatest element of Q, and assume that P embeds into Q⊗ x
by ψ. First of all, notice that Q⊗x = QZ

�Q
where Z = ({�Q, x}, {(�Q, x)}). Now, by

Lemma 2.1, we have that both ψ−1(x) and ψ−1(�Q) exist. From Property 2.1 (iv) it

follows that ψ−1(x) is the greatest element of P . Now, since D
im

Q⊗x
(x) = {�Q}, for all

p ∈ (V (P ) \ {ψ−1(x)}) we have that ψ(p) ≤
Q⊗x

�Q, and thus that D
im

P
((ψ−1(x))) =

{ψ−1(�Q)}. �

3 Some easy extensibility results

In this section, in order to show that the classes that we investigate are extensible,
we only have to exhibit two types of sharp extension per class.

3.1 Parallels and series extensions

The underlying idea of the argumentation developed to establish that any order is
O-extensible –with O the class of all orders– deserves to be expressed in a proposition
that we attribute to Fräıssé:

Proposition 3.1 [Fräıssé] Let C be an order class stable by the parallel composition
with a one element order and stable by the left or right series composition by a one
element order. Then any order in C, on at least two elements, is C-extensible.
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Proof . Let P,Q be two orders belonging to C with |V (P )| ≥ 2 and such that P
does not embed into Q. Let x /∈ V (Q). First, assume that P embeds into Q ⊕ x
by ψ. Then, since P does not embed into Q, we have that ψ−1(x) exists and thus,
by Fact 2.1, we have that ψ−1(x) is an isolated element in P . Second, assume, for
example, that P embeds into Q ⊗ x by φ. Again, since P does not embed into Q,
we have that φ−1(x) exists and thus, by Property 2.1 (iv), we obtain that P has a
greatest element. Thus, if we assume that P embeds both into Q⊕x and into Q⊗x
it follows that P must have a unique element: a contradiction. The case P embeds
into x⊗Q follows exactly the same lines. �

As an immediate consequence we obtain that the classes of N-free orders (see
Schröder [13] on page 50), series-parallel orders (see Schröder [13] on page 220),
threshold orders, truncated lattices (see Schröder [13] on page 137), forest of in-
tree orders (or CS-forest see Trotter [14] on page 116), k-dimensional orders with
k ≥ 2 (see Schröder [13] on page 169 or Trotter [14] on page 9), interval orders
(see Schröder [13] on page 186 or Trotter [14] on page 86), cycle-free orders (see
Trotter [14] on page 123), and decomposable orders (see Schröder [13] on page 203
or Trotter [14] on page 24) are extensible.

3.2 Min-Max substitution and series extensions

In the same vein as Fräıssé’s proposition, we have:

Proposition 3.2 Let C be an order class stable by the right (respectively, the left)
series composition by a one element order, and stable by the substitution of any of
its maximal (respectively, minimal) elements by a two elements antichain. Then any
order in C is C-extensible.
Proof . Let P,Q be two orders belonging to C such that P does not embed into Q.
Let x /∈ V (Q). First, assume that P embeds into Q ⊗ x by φ. Then, since P does
not embed into Q, we have that φ−1(x) exists and thus, by Property 2.1 (iv), we
obtain that P has a greatest element. Second, let y ∈ Max(Q), let Z = ({y, x}, ∅)
and assume that P embeds into QZ

y by ψ. Then, by Lemma 2.1, ψ−1(x) and ψ−1(y)
exist and moreover, by Property 2.1 (iii), they belong to Max(P ). Thus assuming
that P embeds both into Q⊗ x and into QZ

y leads to a contradiction.
The case P embeds both into x⊗Q and into QZ

y , for y ∈ Min(Q), follows exactly
the same lines. �

First, notice that, if C is a class of orders which satisfies the conditions of Propo-
sition 3.2, then its restriction, on connected orders, also satisfies these conditions.
Now, as an immediate consequence of Proposition 3.2, we obtain that the classes
of weak orders (or weakly ordered set see Schröder [13] on page 181), semi-orders
(see Schröder [13] on page 197 or Trotter [14] on page 192), and connected orders
on at least two elements (see Schröder [13] on page 44 or Trotter [14] on page 4)
are extensible. Also, the class of chain dominated orders, introduced by Guenver et
al. [8], that is the class of orders which have a chain such that every element of the
order either belongs to this chain or has all its covers in this chain, is then clearly
extensible.
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3.3 Minimal pendant and series extensions

Recall that an order P is an in-tree order if it has a greatest element and for every
x ∈ V (P ) the set U

P
(x) is a chain. That is, an in-tree order is any order whose

transitive reduction is an anti-arborescence.
For an order P , having �P has greatest element, and for an element x /∈ V (P ),

we denote its minimal pendant extension by the order P � x = (V (P ) ∪ {x}, <
P

∪{(x,�P )}). Obviously, if P is an in-tree order then P �x still belongs to this class.

a b c

d e f

�

Q
a b c

d e f

�
x

Q� x

Figure 2: The minimal pendant extension.

Proposition 3.3 Let C be the class of in-tree orders. Then any order P in C, having
at least three elements, is C-extensible.

Proof . Let P be an in-tree order on at least 3 elements, let Q be an in-tree order
into which P does not embed and let x /∈ V (Q). First, assume that P embeds into
Q ⊗ x. Then, by Property 2.2, we obtain that |Dim

P
(�P )| = 1. Second, assume that

P embeds into Q � x by ψ. Then, since P does not embed into Q, we have that
ψ−1(x) exists. But, since U

Q�x
(x) = {�Q�x} and since P has at least 2 elements,

the fact that P has a greatest element together with Fact 2.1 imply that ψ−1(�Q�x)
exists. Moreover, Property 2.1 (iv) insures that ψ−1(�Q�x) = �P . Finally, since
x−<

Q�x
�Q�x, Property 2.1 (i) implies that ψ−1(x)−<

P
�P . Consequently, since �P

has a unique immediate predecessor, we obtain that P is isomorphic to the 2 elements
chain: this contradicts that |V (P )| ≥ 3. �

3.4 Universal complement and series extensions

Following Birkhoff [1] (on page 6), a lattice is an order L any two of whose elements
have a greatest lower bound or “meet” denoted by x ∧L y, and a least upper bound
or “join” denoted by x ∨L y.

For any order P , we denote �P , respectively, ⊥P , the greatest, respectively, the
least, element of P when it exists. For any order P , on at least two elements, having
both a greatest and a least element, and for any x /∈ V (P ), we denote by P�x the
order (V (P )∪{x}, <

P
∪{(x,�P ), (⊥P , x)}). Obviously, for any lattice Q, on at least

two elements, and for any element x /∈ V (Q), the order Q�x is still a lattice.

Proposition 3.4 Let C be the class of lattices. Then any order P in C, having at
least four elements, is C-extensible.
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⊥Q

a b

c d

�Q

Q

⊥Q�x

a b

c d

�Q�x

x

Q�x

Figure 3: The universal complement extension.

Proof . Let P and Q be two lattices such that P does not embed into Q, |V (P )| ≥ 4
and x /∈ V (Q). First, assume that P embeds into Q ⊗ x then, by Property 2.2, we
obtain that |Dim

P
(�P )| = 1. Second, assume that P embeds into Q�x by ψ. Then,

since P does not embed into Q, we have that ψ−1(x) exists. Since D
Q�x

(x) = {⊥Q�x}
and U

Q�x
(x) = {�Q�x}, then, since P is a lattice on at least three elements, we have

by Fact 2.1 that both ψ−1(�Q�x) and ψ
−1(⊥Q�x) exist. By Property 2.1 (iv) we have

that ψ−1(�Q�x) = �P and ψ−1(⊥Q�x) = ⊥P . Now, since ⊥Q�x−<Q�x
x−<

Q�x
�Q�x,

Property 2.1 (i) implies that ⊥P−<P
ψ−1(x)−<

P
�P . Finally the fact that �P has a

unique immediate predecessor implies that P is isomorphic to the 3 elements chain:
this contradicts that |V (P )| ≥ 4. �

Remark 3.1 Given a planar lattice L, since for x /∈ V (L) we have that both L⊗ x
and L�x are obviously planar lattices; this proposition remains true when C is the
class of planar lattices.

4 An inextensibility result

In Section 3.4 we show that lattices are extensible. However, this extensibility re-
sult is no longer possible for distributive lattices. We even prove that the simplest
family of lattices provides an infinite family of inextensible distributive lattices. To
that purpose, we first recall G. Birkhoff’s characterization of distributive lattices by
forbidden sublattices (see for example Davey and Priestley [2] Theorem 6.10 for a
proof).

Theorem 4.1 A lattice is distributive if and only if none of its sublattices is iso-
morphic to M3 or N5.

Since Bk, the boolean lattice with k atoms, is for, k ∈ N∗, isomorphic to (2[k],⊆)
(see for example Davey and Priestley [2] Theorem 8.3 for a proof), by aim of sim-
plicity, in the sequel we consider that Bk = (2[k],⊆).

Concerning the extensions of boolean lattices, first we notice that any strict
extension of B1, being a lattice, contains the 3-elements chain as suborder. For the
other boolean lattices, if the number of strict extensions, being a lattice, increases
with the number of atoms, however, none of them are distributive when we keep the
height constant:
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⊥

1 2 3

�

M3

1

3
2

4

5

N5

Figure 4: The forbidden sublattices in distributive lattice.

Theorem 4.2 A finite boolean lattice has no strict extension, of the same height,
which is a distributive lattice.

Proof . The case B1 being already discussed, we consider Bk for k ≥ 2. Now, let
L be any strict extension, of Bk, having the same height and being a lattice. First,
since Bk embeds in L and since h(L) = h(Bk) it follows that �L = �Bk and that
⊥L = ⊥Bk . Consequently, for any x ∈ (V (L) \ 2[k]), there exists A,B ∈ 2[k], such
that A <

L
x <

L
B. Among all such (A, x,B) 3-uplets, takes one of them such that

h(Bk[[A,B]Bk ]) is minimal, when as usually, [A,B]Bk = {Z ∈ 2[k] : A ⊆ Z ⊆ B}.
Notice that h(L) = h(Bk) implies that h(Bk[[A,B]Bk ]) ≥ 2.

• Assume that h(Bk[[A,B]Bk ]) = 2, then B = A ∪ {α, β} with α, β ∈ [k]. Con-
sequently, since h(L) = h(Bk), the set {A,A ∪ {α}, A ∪ {β}, x, B} induces a
sublattice of L isomorphic to M3. Firstly, the set {A,A ∪ {α}, A ∪ {β}, x, B}
induces a suborder of L isomorphic to M3. On the one hand, Bk is a subor-
der of L. On the other hand, if, for example, x <

L
A ∪ {α} then we have

that A <
L
x <

L
(A ∪ {α}), and thus h(Bk) < h(L) : the remaining cases are

proved under the same lines. Secondly, the set {A,A ∪ {α}, A ∪ {β}, x, B}
actually induces a sublattice of L. If, for example, (A ∪ {α}) ∨L z = y with
z ∈ {A∪{β}, x} and y 	= B then we have y <

L
B. Now, since Bk is a suborder

of L, then y ∈ (V (L) \ 2[k]) and thus (A ∪ {α}) <
L
y <

L
B = (A ∪ {α, β}).

The remaining cases are proved under the same lines.

• Assume that h(Bk[[A,B]Bk ]) ≥ 3, then there exists C,D ∈ 2[k], such that
A � C � D � B. Consequently, due to the minimality of h(Bk[[A,B]Bk ]), the
set {A,C,D, x, B} induces a sublattice of L isomorphic to N5. Firstly, the set
{A,C,D, x, B} induces a suborder of L isomorphic to N5: on the one hand Bk

is a suborder of L and, on the other hand, if, for example, x <
L
D then the

3-uplet (A, x,D) contradicts the choice of (A, x,B), since h(Bk[[A,D]Bk ]) <
h(Bk[[A,B]Bk ]). Secondly, the set {A,C,D, x, B} actually induces a sublattice
of L: if, for example, x ∨L z = y with z ∈ {C,D} and y 	= B then we have
y <

L
B. Now, either y ∈ 2[k] and then the 3-uplet (A, x, y) contradicts the

choice of (A, x,B), or y ∈ (V (L)\2[k]) and then the 3-uplet (z, y, B) contradicts
the choice of (A, x,B). The remaining cases are proved under the same lines.

�
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Let DL be the class of distributive lattices, and let Ck be the chain order on k
elements. Since the height of the boolean lattice Bk is k, as an immediate consequence
of Theorem 4.2, we obtain:

Corollary 4.1 for all k ∈ N∗, the chain Ck+2 is DL-inextensible.
Notice that this approach is no more possible for the class of modular lattices.

Even though, for every k ≥ 2 there exists a strict extension of Bk, with 2k−1 more
elements, being a modular lattice and in which Ck+2 still does not embed. We do
believe that faithful extensions, for the class of modular lattices, are worth studying.
Moreover, we think that this study should be inclined towards an extensibility result.

5 Some more extensibility results

In this section, the number of sharp extensions, used to show that a class is extensible,
is no more the same for all the elements of the class, but depends on structural
parameters of the order to be extended.

5.1 Disconnected orders

Recall that a disconnected order is any order whose comparability graph is discon-
nected. Using one more sharp extension as the number of connected components of
the order to be extended, we show that the class of disconnected orders is extensible.

Q1 Q2 Q3

Q

x

S0

x
S2

Figure 5: Some extensions used in the proof of Theorem 5.1.

Theorem 5.1 The class of disconnected orders is extensible.

Proof . Let P and Q be two disconnected orders. Then we have that P =
⊕

i∈[n] Pi

with 2 ≤ n, Q =
⊕

j∈[m]Qj with 2 ≤ m, and that all the Pi’s and all the Qj ’s are
connected orders on at least one element. Assume that P does not embed into Q and
let x /∈ V (Q). Let S0 = (V (Q)∪ {x}, <

Q
), and for j ∈ [m] let Sj = (V (Q)∪ {x}, <

Q

∪{(x, y) : y ∈ V (Q)−V (Qj)}). Notice that all the Sj ’s are obviously sharp extensions
of Q, and that, moreover, for every j ∈ [m] the order Sj[V (Q) − V (Qj)] has x for
least element.

We claim that there exists j ∈ {0} ∪ [m] such that P still does not embed into
Sj . On the contrary, assume that, for every j ∈ {0} ∪ [m], P embeds into Sj by φj.
Notice that since P does not embed into Q then, for every j ∈ {0} ∪ [m], we have
that φ−1

j (x) ∈ V (P ). Consequently, for every j ∈ [m], there exists a unique ij ∈ [n]
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such that φj(V (Pij))∩ (V (Q)−V (Qj)) 	= ∅. Let us consider Sm, we can assume –up
to a permutation– that im = n.

First, assume that there exists j ∈ [m − 1] such that ij ∈ [n − 1]. Thus, since⊕
i∈[n−1] Pi embeds into Qm by the appropriate restriction of φm, and since Pn embeds

into Qj by the appropriate restriction of φj, we immediately obtain an embedding of
P into Qm ⊕Qj and thus into Q which is a contradiction.

Consequently, we have that for every j ∈ [m], ij = n and thus, for every j ∈ [m]
we have that

⊕
i∈[n−1] Pi embeds into Qj by the appropriate restriction of φj. Now,

consider S0. Then either there exists α ∈ [m] such that Pn embeds into Qα with the
appropriate restriction of φ0. Thus, for any β ∈ [m] with β 	= α, we immediately
obtain an embedding of P into Qα⊕Qβ : a contradiction. Or, Pn embeds into ({x}, ∅),
by the appropriate restriction of φ0, and, thus, Pn embeds into Qi for every i ∈ [m].
Consequently, for every α, β ∈ [m] with β 	= α, we obtain an embedding of P into
Qα ⊕Qβ: a contradiction. �

5.2 Fixed width orders

Recall that the width of an order P , denoted by w(P ), is the maximal cardinality
of an antichain of P . Using at least as many sharp extensions as the height of the
order to be extended, we show that the class of width k orders is extensible for any
k ≥ 2.

Theorem 5.2 The class of width k orders, with 2 ≤ k, is extensible.

Proof . Let P and Q be two orders such that w(P ) = w(Q) = k and 2 ≤ k.
Assume that P does not embed into Q, let x /∈ V (Q) and, for every y ∈ V (Q), let

Zy = ({y, x}, {(y, x)}). Notice that for every y ∈ V (Q) we have that w(Q
Zy
y ) = k.

To prove the theorem by contradiction we show that if P embeds into every sharp
extension ofQ then w(P ) = 1. For that purpose we show, by induction, that for every
0 ≤ i ≤ h(P ), |RP (i)| = 1. The fact that |RP (0)| = 1 is an immediate consequence of
Property 2.1 (iv) when considering the sharp extension x⊗Q. Consider 0 ≤ n < h(P )
and assume that for every 0 ≤ j ≤ n we have that RP (j) = {cj}. Let y ∈ RQ(n).
Notice that RQ(n) 	= ∅ since h(P ) > n and P embeds into every sharp extension

of Q. Now, assume that P embeds into Q
Zy
y by ϕ, and recall that, by Lemma 2.1,

we have that both ϕ−1(y) and ϕ−1(x) exist. Now, since y ∈ R
Q

Zy
y
(n), it follows, by

Fact 2.1, that ϕ−1(y) ∈ {c0, . . . , cn}.
First, assume that ϕ−1(y) = cj with j < n, then by Property 2.1 (i) it follows that

ϕ−1(x) = cj+1. Consequently, using Fact 2.1, we obtain that P [U
P
[cj+1]] embeds into

Q
Zy
y [U

Q
Zy
y

[x]]. Then, since Q
Zy
y [U

Q
Zy
y

[x]] is clearly isomorphic to Q[U
Q
[y]], it follows

that P [U
P
[cj+1]] embeds into Q[U

Q
[y]]. Recall that P = P [{c0, . . . , cj}]⊗P [UP

[cj+1]]
with P [{c0, . . . , cj}] being a chain. Then the fact that y ∈ RQ(n) with j < n,
immediately implies that P embeds into Q: a contradiction.

Consequently, we have that ϕ−1(y) = cn. Then, as an immediate consequence of
Property 2.1 (i) and (ii), we obtain that U

im

P
(cn) = {ϕ−1(x)}, and, thus it immediately

follows that RP (n + 1) = {ϕ−1(x)}. �
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5.3 Indecomposable orders

Given an order P , a subset X of V (P ) is an interval, or an autonomous set, of P
provided that for all u, v ∈ X and x ∈ V (P )−X , (u, x) ∈<

P
if and only if (v, x) ∈<

P
,

and (x, u) ∈<
P
if and only if (x, v) ∈<

P
. The trivial intervals of P are : ∅, V (P ) and

{x} for every x ∈ V (P ). Then an order is indecomposable, or prime, if it has at least
3 elements and if all of its intervals are trivial: notice that this implies that it has in
fact at least 4 elements. For further details about these notions, due to T. Gallai [7],
we refer to Habib [9], Kelly [12] and to Ille [10].

Sharp extensions were obtained by mean of substitution. These substitutions
consist of adding intervals, and thus do not preserve indecomposability. We give
another process which preserves it: for an order Q, for x 	∈ V (Q) and for any
m ∈ Max(Q) (respectively, m ∈ Min(Q)) we denote by Qx,m (respectively, Qx,m) the
order (V (Q) ∪ {x}, <

Q
∪{(y, x) : y ∈ V (Q)− {m}}) (respectively, (V (Q) ∪ {x}, <

Q

∪{(x, y) : y ∈ V (Q)− {m}})).

1

3

2

4

b

Q
1

3

2

4

b

x

Qx,3

Figure 6: The Qx,m indecomposable sharp extension of Lemma 5.1.

Lemma 5.1 Let Q be an indecomposable order and let x /∈ V (Q). Then:

(i) for every m ∈ Max(Q), having a predecessors set of maximal cardinality, the
order Q′ = Qx,m is indecomposable,

(ii) for every m ∈ Max(Q), such that for every t ∈ D
im

Q
(m) ∩ Min(Q) we have

U
Q
(t) 	= {m}, the order Q′ = (V (Q) ∪ {x}, <

Q
∪{(x,m)}) is indecomposable,

(iii) for every p ∈ Min(Q), such that |U
Q
(p)| = 1, the order Q′ = (V (Q) ∪ {x}, <

Q

∪{(p, x)}) is indecomposable.

Proof . We proceed by contradiction. Let X be a non-trivial interval of Q′, that is
X � V (Q′) and 2 ≤ |X|. Since Q = Q′[V (Q)], and since Q is indecomposable, it
then follows that both x ∈ X and |X| = 2. Thus, assume that X = {x, y}.

For case (i): either x ‖
Qx,m y, then y = m, and thus Q has m for greatest

element, this contradicts that Q is indecomposable. Or y <
Qx,m x, then D

Qx,m (y) =
V (Qx,m) − {x,m, y}, and thus, since D

Qx,m (y) = D
Q
(y) and y 	= m, it follows that

D
Q
(y) = V (Q) − {m, y}. But now, the assumption about the cardinality of D

Q
(m)

implies either that m is the greatest element of Q, or that D
Q
(m) = D

Q
(y): each of

these cases contradicts that Q is indecomposable.
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For case (ii): either x ‖
Q′ y, in which case we have that y ∈ Min(Q′) and that

U
im

Q
(y) = U

im

Q′ (y) = U
im

Q′ (x) = {m}. But, since y ∈ Min(Q′) − {x} and Min(Q) =

Min(Q′)−{x}, we obtain a contradiction with the assumption about m. Or, x <
Q′ y

and then y = m. Thus, since D
Q′ (x) = ∅, it follows that D

Q
(m) = D

Q′ (m) −
{x} = D

Q′ (x) − {m} = ∅ . Consequently, m is an isolated element in Q, this
contradicts that Q is indecomposable.

For case (iii): Assume that U
Q
(p) = {m}. Either x ‖

Q′ y, then we have that y ∈
Max(Q′) and that D

Q
(y) = D

Q′ (y) = D
Q′ (x) = {p}, consequently y = m. It follows

that D
Q
(m) − {p} = ∅. Since p ∈ Min(Q) we have that D

Q
(m) − {p} = D

Q
(p) −

{m}. Since, by definition, U
Q
(p) − {m} = ∅ and since m ∈ Max(Q) it follows

that U
Q
(m) − {p} = U

Q
(p)− {m}: this implies that {m, p} is a non-trivial interval

of Q and this is impossible. Or y <
Q′ x, then y = p, and then, it follows that

U
Q
(p) = U

Q′ (p)− {x} = U
Q′ (x)− {p} = U

Q′ (x) = ∅. Thus, p is an isolated element
in Q, this contradicts that Q is indecomposable. �

Lemma 5.2 Let P be an indecomposable order, let Q be any order, and let m ∈
Max(Q). For any x /∈ V (Q), if P does not embed into Q but embeds into Qx,m, then
|Max(P )| = 2 and P has a max dominating element.

Proof . Assume that P embeds into Qx,m by ψ. Then, since P does not embed into
Q, we have that ψ−1(x) exists. Consequently, from Fact 2.1, it follows that for all
y ∈ V (P )− {ψ−1(x)} we have y <

P
ψ−1(x) whenever y 	= ψ−1(m). But, since P is

indecomposable, it follows that ψ−1(m) exists, this gives the lemma. �

Theorem 5.3 If C is the class of indecomposable orders, then any order P in C, on
at least 6 elements, is C-extensible.

Proof . Let P be an indecomposable order on at least 6 elements, let Q be any inde-
composable order in which P does not embed, and let x 	∈ V (Q). By contradiction
assume that P embeds into every indecomposable extension of Q. Let ma ∈ Max(Q)
and let mi ∈ Min(Q) having respectively, a predecessors set and a successors set of
maximal cardinality. By Lemma 5.1 (i), applied to Q and to Qd, we obtain that
Qx,ma and Qx,mi

are indecomposable extensions of Q. Consequently, we can use
Lemma 5.2 with P , Q and Qx,ma : this implies that Max(P ) = {map1, map2} and
that, without loss of generality, D

P
(map1) = V (P ) − Max(P ). Again, we can use

Lemma 5.2 with P d, Qd and Qx,mi
: this implies that Min(P ) = {mip1, mip2} and

that, without loss of generality, U
P
(mip1) = V (P )−Min(P ).

Now, assume that there exists q ∈ Min(Q) such that U
Q
(q) = {mq}. Let

Q′ = (V (Q) ∪ {x}, <
Q

∪{(q, x)}), then, by Lemma 5.1 (iii), Q′ is an indecom-
posable extension of Q. Thus, assume that P embeds into Q′ by φ. Then, since
P does not embed into Q, φ−1(x) exists, and, by Property 2.1 (iii), it follows that
φ−1(x) ∈ Max(P ). Then, since P is connected, Fact 2.1 implies that φ−1(q) exists.
But now, again from Fact 2.1 we have that |U

P
(φ−1(q))| ≤ |U

Q′ (q)| = 2, from Prop-

erty 2.1 (iii) we obtain that φ−1(q) ∈ Min(P ), and from Property 2.1 (ii) it follows
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that D
im

P
(φ−1(x)) = {φ−1(q)}. Consequently, we have D

P
(φ−1(x)) = {φ−1(q)} and

then φ−1(q) = mip1, this implies that |V (P )| ≤ 4: a contradiction.
If we assume that there exists q ∈ Max(Q), such that D

Q
(q) = {mq}, we obtain

a similar contradiction with Q′ = (V (Q) ∪ {x}, <
Q
∪{(x, q)}).

Consequently, for any miq ∈ Min(Q) and for any maq ∈ Max(Q), by Lem-
ma 5.1(ii), it follows that the orders Qmiq = (V (Q) ∪ {x}, <

Q
∪{(miq, x)}) and

Qmaq = (V (Q) ∪ {x}, <
Q
∪{(x,maq)}) are indecomposable extensions of Q. Thus,

on the one hand, P embeds into Qmiq by ψ and we have both ψ−1(x) ∈ Max(P )
and |D

P
(ψ−1(x))| = 1. On the other hand, P embeds into Qmaq by φ, and we

have both φ−1(x) ∈ Min(P ) and |U
P
(φ−1(x))| = 1. It follows that the unique non

max (respectively, non min) dominating element of P has for single predecessor
(respectively, successor) the unique min (respectively, max) dominating element of
P . Therefore V (P )\(Max(P )∪Min(P )) is a non-trivial interval of P : a contradiction.

�
To complete the study of faithful extensions on the class C of indecomposable

orders, notice that, since any indecomposable order has a suborder isomorphic to
the only -up to isomorphism- indecomposable order on 4 elements (for example
({1, 3, 2, 4}, {(1, 3), (2, 4), (2, 3)})), it is then sufficient to consider indecomposable
orders on 5 elements.

Firstly, following the first part of the proof of Theorem 5.3, we obtain that orders
with more than two maximal or two minimal elements are C-extensible.

Secondly, since it is always possible to extend any indecomposable order by adding
either a minimal or a maximal pendant (a minimal pendant is any minimal element
with a unique immediate successor), orders with neither minimal nor maximal pen-
dant are C-extensible.

It is then a matter of routine to check that the only -up to isomorphism- inde-
composable order on 5 elements having a pendant element, two maximal elements
and two minimal elements is isomorphic to

P = ({1, 3, 2, 4, b}, {(1, 3), (2, 4), (2, 3), (2, b), (b, 3)})
(see Figure 1). If we think that P is C-extensible we do not have a proof.

6 Conclusion

If for the class Hk we are unable to solve the general case, nevertheless we can
strengthen a little the result of Fräıssé and Hazim-Sharif [6]. Indeed we show that
every order (of height k) having at least one level of its rank decomposition without
a maximal element is Hk-extensible. Therefore, it only remains unsolved the case of
orders in Hk, with 1 < k, having a maximal element in each level of its rank decom-
position and such that its unique connected component on at least two elements has
both a max dominating and a min dominating element.

Proposition 6.1 Any order P in Hk, such that |{i ∈ [k+1] : RP (i−1)∩Max(P ) 	=
∅}| 	= k + 1, is Hk-extensible.
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Proof . We proceed by contradiction. We assume that there exists Q in Hk, such
that P does not embed into Q but embeds into every sharp extension of Q belonging
to Hk. Let x 	∈ V (Q), and, for i ∈ {0, . . . , k}, let Qi = (V (Q) ∪ {x}, <

Q
∪{(y, x) :

y ∈ ⋃i−1
j=0RQ(i)}). Notice that Qi ∈ Hk, and thus assume that P embeds into

Qi by φi. Since P does not embed into Q, for every i ∈ {0, . . . , k} we have that
φ−1
i (x) exists, and, by Property 2.1 (iii), it follows that φ−1

i (x) ∈ Max(P ). Since,
by Fact 2.1, for every p ∈ V (P ) we have that rank

P
(p) ≤ rank

Q
(φ(p)). Then to

prove that, for every i ∈ {0, . . . , k}, rank
P
(φ−1

i (x)) = i, it is sufficient to show that
i ≤ rank

P
(φ−1

i (x)). Let c = (x0, . . . , xk) be a maximal sized chain of P . Then,
since h(Qi) = k, (φi(x0), . . . , φi(xk)) is also a maximal sized chain of Qi and thus
rank

Q
(φ(xj)) = j for j ∈ {0, . . . , k}. Consequently, (x0, . . . , xi−1, φ

−1
i (x)) is a chain

of P and thus i ≤
N
rank

P
(φ−1

i (x)). �
As already mentioned in Section 4, we believe that the challenging class of mod-

ular lattices is worth to be studied. Likewise, the class of tree-like orders (or poset
tree orders see Trotter [14] on page 113 and page 117) seems interesting to study.
Indeed, the tree-like order’s sharp extensions, being tree-like, are obtained by adding
a new element having a unique lower (respectively, upper) cover, say y, and then
having for upper (respectively, lower) covers any subset of the original set of upper
(respectively, lower) covers of y. Now, on the one hand, the fact that these sharp
extensions are highly targeted, and are simple to characterize, could lead to conclude
that the extensibility can be easily obtained. But, on the other hand, the fact that
these sharp extensions are obtained by modifications having a strongly local char-
acter, makes the problem harder to solve. In fact, we think that, as soon as a class
of connected orders is stable under pendant extensions, this class is then extensible.
When, a pendant extension of an order is any extension obtained by adding a new
maximal (respectively, minimal) element having a unique lower (respectively, upper)
cover.

Notice that such a result would also imply that the class of connected planar
orders (see Trotter [14] on page 66) is extensible.

Acknowledgements

The authors thank a referee for his/her helpful suggestions which substantially helped
to improve the quality of the paper.

References

[1] G. Birkhoff, Lattice theory, American Mathematical Society Colloquium Publi-
cations Volume XXV, 1967.

[2] B.A. Davey and H.A. Priestley, Introduction to Lattices and Order, Cambridge
University Press, 1990.

[3] R. Fräıssé, Sur la comparaison des types de relation, C.R. Acad. Sci. Paris,
t. 226 (1948), 987–988.



A. GUILLET ET AL. /AUSTRALAS. J. COMBIN. 69 (1) (2017), 1–17 17
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