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Abstract

Giraud (1968) demonstrated a process for constructing cyclic Ramsey
graph colourings, starting from a known cyclic ‘prototype’ colouring,
adding edges of a single new colour, and producing a larger cyclic pattern.
This paper describes an extension of that construction which allows any
number of new colours to be introduced simultaneously, by using two
multicolour prototypes, each of which is a linear Ramsey graph. The
resulting colouring is also linear, which allows the process to be applied
iteratively. It is then proved that a simple formula resulting from the new
construction provides improved lower bounds for many Ramsey numbers.
Giraud’s recursive formula is proved for all linear cases, as a corollary.

The formula resulting from the new construction is applied to pro-
duce new lower bounds for several particular Ramsey numbers, includ-
ing R5(4) ≥ 4176, R4(5) ≥ 3282, R5(5) ≥ 33495 and R4(6) ≥ 20202.
For some larger Rr(3), the construction produces new lower bounds that
improve over the construction described by Chung (1973) — including
R12(3) ≥ 575666.

The paper goes on to explore the general limits, implied by the for-
mula, for lower bounds for the Ramsey numbers Rr(k). Specific lower
bounds are derived in the form limr→∞Rr(k)1/r ≥ gk.

1 Introduction

This paper addresses the properties of undirected loopless graphs with edge-colour-
ings in an arbitrary number of colours. Based on a new construction, it presents a
formula leading to new lower bounds for multicolour classical Ramsey numbers.

∗ Formerly of Lincoln College, Oxford, UK.
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The construction described by Giraud [5] generates cyclic Ramsey graph colour-
ings. Starting from a cyclic ‘prototype’ colouring, the construction adds one colour
to a linear extension of the prototype colouring. In the same paper, Giraud derived
a recursive formula from this construction, establishing lower bounds for certain
Ramsey numbers. This formula is referenced in [10] and a simplified proof is given
there.

The current research was motivated by the observation that in many of the cases
under study, when the Giraud construction was based on a prototype graph with
several colours, it produced a much larger proportion of edges in the new colour
than in each of the existing colours. Intuitively, this seemed to make it unlikely that
that construction would produce highly efficient colourings in those cases.

Early in the development of the proofs in this paper, it was found that they apply
to general linear colourings: no condition was necessary that the prototype graphs
should be cyclic.

In Section 3, a new construction is demonstrated, which allows the simultaneous
addition of an arbitrary number of new colours to an extension of any linear graph.
The constructed colouring derives from two ‘prototype’ linear graphs. It is estab-
lished that the maximum size of any complete graph Kn in any colour contained in
the extended graph is the same as the maximum size of any Kn in the original colour
in the associated prototype graph; and that the resulting graph is also linear. A
simple formula is then derived, leading to lower bounds for Ramsey numbers, based
on these linear (or separately, cyclic) graphs. Giraud’s well-known recursive formula,
now based on linear graphs, is proved as a corollary.

In Section 4, some results of applying the formula to specific graphs are listed
numerically, giving new lower bounds for several particular ’small’ Ramsey numbers.

In Section 5, the formula is applied iteratively to generate several series of graphs
which provide limiting lower bounds for ‘diagonal’ Ramsey graphs — which, for a
fixed r, avoid including copies of Kr in all colours. These lower bounds improve
significantly over previous limiting values for many r > 3.

Brief conclusions are presented in Section 6.

2 Notation

In this paper,

Kn denotes the general complete graph with order n.

If U is a complete graph with m vertices {u0, . . ., um−1}, then:

(i) a colouring of U is a mapping of the edges (ui, uj) of U into a set of colours
{cs | 1 ≤ s ≤ r};

(ii) the distance between two vertices ui, uj, or, equivalently, the length of the edge
(ui, uj) connecting them, is defined as |j − i|;
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(iii) a colouring of U is linear if and only if the colour of any edge (ui, uj) depends
only on the length of that edge; and

(iv) a colouring of U is cyclic if and only if (a) it is linear, and (b) the colour of
any edge (ui, uj) is equal to the colour of every edge of length (m− |j − i|).

A Ramsey graph U(k1, . . ., kr;m) is a complete graph of order m with a colouring
such that for each s, where 1 ≤ s ≤ r, there exists no complete monochromatic
subgraph Kq of U in the colour cs for any q ≥ ks.

The Ramsey number R(k1, . . ., kr) is defined as the smallest value of m for which
no Ramsey graph U(k1, . . ., kr;m) exists. When k1 = k2 = · · · = kr = k, this is
usually written Rr(k).

3 New Construction

Let U(k1, . . ., kq;m) and V (kq+1, . . ., kq+r;n) be two linear Ramsey graphs, with no
colours in common. Accordingly, let the set of colours of U be {cs | 1 ≤ s ≤ q} and
let the set of colours of V be {cq+s | 1 ≤ s ≤ r}.

Because the colourings are linear, they can be expressed as functions only of the
length of the edges, so that we may write the colour of any edge of length i as c(i).
The set of lengths of all the edges of U consists of the integers {i | 1 ≤ i ≤ m− 1}.
A linear colouring gives rise to a natural partition of that set of integers into subsets
Ls containing the lengths of edges of each colour cs. That is, for 1 ≤ s ≤ q , using
the colours of U :

Ls = {i | c(i) = cs}.
and, for 1 ≤ s ≤ r, we can partition the set of integers {i | 1 ≤ i ≤ n − 1} into the
following subsets, using the colours of V :

Lq+s = {i | c(i) = cq+s}.

We define a new graph W with vertices (w0, . . . , wM−1) for M = 2mn−m−n+1.
The set of lengths of all the edges of W consists of the integers {i | 1 ≤ i ≤M − 1},
which can be partitioned and coloured in two stages as follows:

For 1 ≤ s ≤ q, let:

As = {i+ λ(2m− 1) | i ∈ Ls, 0 ≤ λ ≤ n− 1}. (3.1)

Edges of W with a length l ∈ As are then coloured as cs.

For 1 ≤ s ≤ r, let:

Aq+s = {i+ (λ− 1)(2m− 1) | i ∈ {m, . . . , 2m− 1}, λ ∈ Lq+s}. (3.2)

Edges of W with a length l ∈ Aq+s are then coloured as cq+λ, where λ is the
integer part of (l −m)/(2m− 1) + 1.
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The new graph W is seen to be linearly coloured.

It is observed that the subgraph of W induced by the first m vertices of the new
graph is isomorphic to U . Alternatively, it may be said that they constitute the ‘first
copy of U ’ within W . This subgraph is referred to below as Û .

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67

0 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1

1 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2

2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2

3 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1

4 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2

5 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2

6 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1

7 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3

8 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3

9 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3

10 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3

11 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3

12 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3

13 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3

14 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3

15 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1

16 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2

17 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2

18 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1

19 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2

20 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2

21 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1

22 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4

23 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4

24 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4

25 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4

26 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4

27 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4

28 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4

29 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4

30 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1

31 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2

32 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2

33 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1

34 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2

35 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2

36 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1

37 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4

38 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4

39 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4

40 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4

41 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4

42 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4

43 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4

44 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4

45 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1

46 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2

47 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2

48 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1

49 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2

50 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2

51 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1

52 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3

53 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3 3

54 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3 3

55 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3 3

56 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3 3

57 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3 3

58 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3 3

59 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1 3

60 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2 1

61 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2 2

62 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1 2

63 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2 1

64 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2 2

65 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1 2

66 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0 1

67 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 4 4 4 4 4 4 4 4 1 2 2 1 2 2 1 3 3 3 3 3 3 3 3 1 2 2 1 2 2 1 0

Figure 1: Example adjacency matrix.

Figure 1 illustrates the form of the adjacency matrix of W , when U = U(3, 4; 8)
and V = V (3, 3; 5). The edges in all the colours form monochromatic diagonals (as a
consequence of linearity), and these are grouped into noticeable wider solid ‘bands’
for the colours derived from V (i.e. cq+s where 1 < s ≤ r). In the lower left triangle,
there are seen to be n (= 5) linearly-extended copies of U and n − 1 (= 4) solid

bands comprising edges of colours derived from V . Here Û is represented within the
box at top left.
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Theorem 3.1 (Construction Theorem)
Let U(k1, . . . , kq;m) and V (kq+1, . . . , kq+r;n) be two linear (cyclic) Ramsey graphs
with distinct colours. If W is a copy of the complete graph K(2mn−m−n+1) and is
coloured as described above, then it is a linear (cyclic) Ramsey graph of the form
W (k1, . . ., kq+r; 2mn−m− n+ 1).

Proof: Choose any colour cs such that 1 ≤ s ≤ q. That colour derives from U ,
and neither U nor Û has any subgraph isomorphic to Kj for j ≥ ks.

Assume that in W , there is a copy of Kj with j = ks, in colour cs, with vertices
wt0 , . . ., wtj−1

. The indices may be assumed to be increasing, without loss of general-
ity. We observe that if we reduce the indices of these vertices modulo (2m− 1) then

the resulting set of vertices induces a complete graph in colour cs within Û .

In doing this it is not necessary to assume that U is cyclic. This can be seen by
considering two vertices wa, wb where a < m and a < b, and b = b′ + λ(2m − 1). If
the edge (wa, wb) is of a colour derived from U , then from the construction, we must
have a < b′. Therefore c |b′ − a| = c |b− a| = c(b− a).

It remains to show that this ‘reduced’ copy graph also has order j. In fact, this must
be the case: if, when the indices are reduced modulo (2m−1) as proposed, any two of
those vertices were to map onto the same ‘image’ vertex, then they would be joined
in W by an edge with a length that is a multiple of (2m − 1) — which can be seen
(from the construction) to be of a colour derived from V , which is a contradiction.
So if those vertices form part of the assumed copy of Kj, they are mapped to distinct

vertices in Û , and there is a copy of Kj in colour cs within Û . This gives us a second
contradiction: so W contains no copy of Kj in colour cs.

Now choose any colour cq+s such that 1 ≤ s ≤ r. This colour clearly derives from V .

Assume that W has a subgraph in colour cq+s that is isomorphic to Kj with j = kq+s,
on vertices (wt0 , . . . , wtj−1

) where t0 < t1 < · · · < tj−1. We note (from the linearity
of W ) that we can reduce the indices of all these vertices by subtracting t0 without
loss of generality. The first vertex is then w0.

We can now define a partition the vertices of W into subsets according to their
distance from w0. The first subset is S0 = {w0}.
The remaining subsets are of the following form, for 1 ≤ λ ≤ n− 1:

Sλ = {wt | t = i+ (λ− 1)(2m− 1), m ≤ i ≤ 2m− 1}. (3.3)

We see that any vertex of our assumed subgraph must be a member of one of these
subsets, if it is connected to w0 by an edge with colour derived from V . The maximum
length of an edge joining two vertices within any of these subsets is m−1. Thus, from
the construction, they cannot be connected by an edge with a colour derived from
V . Therefore any two distinct vertices of our copy of Kj are contained in distinct
subsets Sλ and Sµ.

Now we consider any distinct pair of subsets {Sλ, Sµ}, with λ < µ. From the con-
struction, we can calculate that the distance between a vertex in Sλ and a vertex in
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Sµ is within the range (µ−λ)(2m− 1)− (m− 1) to (µ−λ)(2m− 1) + (m− 1). Also
from the construction, we see that although the edges connecting a vertex in Sλ to a
vertex in Sµ may be of several colours, only one of those colours is derived from V .
And again from the construction, we know that the single colour identified in this
way is the same as the colour of the edge (vλ, vµ) in V .

We can hence identify the subsets Sλ with the vertices of V , in the natural way:
Sλ 7→ vλ, for 0 ≤ λ ≤ n− 1. It follows immediately from that mapping that if there
is a monochromatic copy of Kj in W with each vertex contained in a distinct subset
Sλ, then there must be a monochromatic copy of Kj in the same colour contained
within V . This again gives a contradiction, which proves the theorem. 2

The following corollary is a direct consequence of the theorem, noting that if U
and V are cyclic, then W is also cyclic:

Corollary 3.2 (Lower Bounds from Constructed Linear or Cyclic Graphs)
If L1 = L(k1, . . . , kq) and L2 = L(kq+1, . . . , kq+r) are the maximal orders of all
the linear Ramsey graphs U(k1, . . . , kq;m) and V (kq+1, . . . , kq+r;n) respectively, then
R(k1, . . . , kq+r) > L(k1, . . . , kq+r) ≥ 2L1L2−L1−L2+1. The same formula applies
when all the graphs are cyclic.

In a particular case, if we take U(k1, . . . , kq;m) as any linear Ramsey graph and
V as a complete monochromatic graph of order kq+1 − 1, then:

|W | = 2|U |(kq+1 − 1)− |U | − (kq+1 − 1) + 1 = |U |(2kq+1 − 3)− kq+1 + 2.

There are clearly no copies of Kq+1 in W , which leads directly to:

Corollary 3.3 (Giraud’s Formula for Linear Graphs)
If Lq = L(k1, . . ., kq) and Lq+1 = L(k1, . . ., kq, kq+1) are the maximal orders of the
related linear Ramsey graphs, then Lq+1 ≥ Lq(2kq+1 − 3)− kq+1 + 2.

4 Some New Lower Bounds

Table 1 shows the highest orders of linear Ramsey graphs known to the author (in
black), along with the orders of some new linear Ramsey graphs derived from the
new construction above (in larger red bold font). All the red numbers are believed
to represent Ramsey graphs with orders larger than previously published. The grey
area indicates that the orders resulting from the new construction are exceeded by
other published results for graphs that are not known to be linear. Numbers above
5 million have been excluded, but can be calculated easily from the formula.

A few of the smaller ‘known’ cyclic and linear graphs in Table 1 were derived by
the current author. The majority were sourced, at least conceptually, from papers
mentioned in the bibliography or Radziszowski’s Dynamic Survey [9].
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m 3 4 5 6 7 8 9

r

1 2 3 4 5 6 7 8

2 5 17 41 101 113 281 373

3 14 127 414 1069 1778

4 45 633 3281 20201 157361 277513

5 161 4175 33494 214769 2045687 4162688

6 537 32005 341965 4060301

7 1681 160023 2712974

Table 1: Highest orders of linear Ramsey graphs known to the author (black) and
orders of constructed graphs (red bold), avoiding Km in r colours.

Almost all the graphs for r = 2 are Paley graphs, as described in [8], although
notably the cyclic graph of order 101 avoiding K6 was identified much earlier by
Kalbfleisch [7]. Another exception is the cyclic graph of order 113 avoiding K7,
which is mentioned in [6].

The linear graphs avoiding K3 for r = 3 and 4 were generated by basic computer
search. The cyclic graph in five colours avoiding K3 is described in [3]. The graphs
avoiding K3 in six colours (non-cyclic) and seven colours (cyclic) are described in [4].

The cyclic graphs in three colours avoiding K4 and K6 are described by means
of ‘cyclotomic’ associations in [8]. The non-cyclic linear graph of order 414 in three
colours avoiding K5 is described in [10]. The cyclic graph in four colours avoiding
K4 is derived in the same paper, using the Giraud construction. The cyclic graph in
three colours avoiding K7 is a product graph derived by the author.

A number of new lower bounds including R5(4) ≥ 4176, R4(5) ≥ 3282,
R5(5) ≥ 33495 and R4(6) ≥ 20202 can be deduced directly from Table 1.

In the same way, we can deduce that R10(3) ≥ 51522, R11(3) ≥ 172218, and
R12(3) ≥ 575666. These limits are an improvement over those derived from the
ingenious construction described by Chung [2], when both calculations are based on
the data in Table 1. Chung’s construction nevertheless gives better values for R8(3)
and R9(3).

We note that the new construction can be applied in a variety of ways to gen-
erate Ramsey graphs with desired properties. In constructing the new graphs it
proved necessary to choose components in such a way as to maximise the order, by
partitioning the ks appropriately between U and V .
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If we write the construction in the form U ⊗ V = W , then since the formula
for |W | is symmetrical in m and n, we have |W | = |U ⊗ V | = |V ⊗ U |. Hence
the operations can be applied in any sequence, producing a graph of the same order
in each case, so that |(W ⊗ U) ⊗ V | = |U ⊗ (V ⊗W )| etc. However, there is no
implication that the resulting graphs are necessarily isomorphic.

The formula in the construction for the number of vertices of W is M = 2mn−
m − n + 1. It follows that (2M − 1) = (2m − 1)(2n − 1). From this, it is easy also
to deduce that:

2 |U
p times︷ ︸︸ ︷

⊗V ⊗ V · · · ⊗ V ⊗ V | − 1 = (2m− 1)(2n− 1)p. (4.1)

This observation leads naturally to the ideas of the next section.

5 New Limiting Lower Bounds

It is shown above that the new construction can be applied repeatedly without limit,
while preserving linearity. This property gives rise to new limiting lower bounds
for Ramsey graphs in r colours where all the ks are constant and equal to k. The
relevant Ramsey numbers are denoted by Rr(k).

After adjusting terminology, Giraud [5] gave the following results for r ≥ 2:

Rr(4) ≥ 5r−2.(16.5) + 1.5 ;

Rr(5) ≥ 7r−2.(36.5) + 1.5 ;

Rr(6) ≥ 9r−2.(100.5) + 1.5 .

More generally it has been established that for k ≥ 3 there is a constant mk such
that Rr(k) ≥ mk(2k − 3)r−2. It is simple to deduce that:

lim
r→∞

Rr(4)1/r ≥ 5 ;

lim
r→∞

Rr(5)1/r ≥ 7 ;

lim
r→∞

Rr(6)1/r ≥ 9 .

Improved limits in similar form can be derived from repeated application of the
new construction in the manner suggested by equation (4.1) above.

Note first that from Theorem 3.1 if 1 ≤ n ≤ m, we have:

|W |/|U | = (2mn−m− n+ 1)/m = 2n− 1− δ (5.1)

where 0 ≤ δ < 1.
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Suppose we have available a finite sequence of linear Ramsey graphs, U1(k), . . . ,
Ul(k), where each Ut(k) is coloured with t colours, and for each graph all the kr are
equal to k. Such a sequence always exists, since it can be produced by applying
the construction above. We select the value of t, which we call t0, which maximises
gk = (2|Ut(k)| − 1)1/t.

We can then construct Us+t0(k), for each of s = 1, . . . t0, using the new construc-
tion, taking V in the construction equal to Ut0(k) in all cases. By repeatedly applying
U t0(k) as V , we can produce an infinite sequence of graphs Us+jt0(k) of increasing
size, for s = 1, . . . , t0 and j = 1, 2, 3 . . . . The orders of these graphs each provide a
lower bound for the corresponding Ramsey numbers, for all positive integers.

The ratios of the orders of successive graphs within each of these sequences are
given by Equation (5.1) above. The orders of the graphs increase rapidly with in-
creasing j. As j → ∞, the deltas approach zero and the ratios converge to gk. It
follows directly that limr→∞Rr(k)1/r ≥ gk.

Calculations based on the data in Table 1 are shown in Table 2.

m 3 4 5 6 7 8 9

r

1 3.000          5.000          7.000          9.000          11.000        13.000        15.000        

2 3.000          5.745          9.000          14.1774    15.000        23.6854    27.2947    

3 3.000          6.3247      9.3865      12.881        15.2621    

4 3.071          

5 3.172          

6 3.1996      

7 3.190          

Table 2: Factors gk calculated from the data in Table 1.

The figures that determine maximal gk are shown in red bold. These results
indicate that:

lim
r→∞

Rr(3)1/r ≥ 3.199 . . .

lim
r→∞

Rr(4)1/r ≥ 6.324 . . .

lim
r→∞

Rr(5)1/r ≥ 9.386 . . .

lim
r→∞

Rr(6)1/r ≥ 14.177 . . .
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lim
r→∞

Rr(7)1/r ≥ 15.262 . . .

lim
r→∞

Rr(8)1/r ≥ 23.685 . . .

lim
r→∞

Rr(9)1/r ≥ 27.294 . . .

. . . and so on.

It is noted that [1] provides a slightly stronger limit in one special case, as follows:

lim
r→∞

Rr(5)1/r ≥ (89)1/2 = 9.433 . . . .

For other values of k greater than 3, these limits constitute a significant improve-
ment over the formula identified by Giraud [5] and Abbott and Hanson [1], and
referred to as formula 6.2(c) in Radziszowski’s Dynamic Survey [9].

The noticeably ‘low’ results for Rr(7)1/r and Rr(9)1/r reflect the relatively low
orders of the best available linear graphs (1778 and 373 respectively). This may
indicate a useful area for further work. Using graphs mentioned in Table 1, it is also
possible to construct a product graph in 5 colours avoiding K9 with order 5392534
in a manner derived from [1], although this does not improve the limit shown above.

6 Conclusions

It is interesting to note that the author has constructed a (5, 5, 5, 5; 3281) colouring as
described above, using two identical cyclic 2-colourings of K41 as prototypes, which
contains an equal number of edges and an equal number of copies of K3 and K4 in
all four colours. This elegant and highly symmetrical result is obviously very much
in line with the original motivation of the research.

However, the results quoted or derived in this paper seem to indicate a somewhat
richer scope for improving the lower bounds of classical Ramsey numbers by ex-
panding our knowledge of linear graph colourings that are non-cyclic. The power of
modern computers seems to give greater scope for the exploration of less symmetrical
graph colourings than was practical previously.

The new lower bounds that result from the new construction are not expected
to be restricted to those listed here, since many more prototype graphs might have
been considered.

Equally, one might expect the limits limr→∞Rr(k)1/r shown here to be improved
in the near future, since each one rests on the existence of a particular linear graph
colouring.
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