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Abstract

We study an impartial game introduced by Anderson and Harary. This
game is played by two players who alternately choose previously-unsel-
ected elements of a finite group. The first player who builds a generat-
ing set from the jointly-selected elements wins. We determine the nim-
numbers of this game for generalized dihedral groups, which are of the
form Dih(A) = Z2 n A for a finite abelian group A.

1 Introduction

Anderson and Harary [2] introduced a pair of two-player impartial games on a non-
trivial finite group G. In both games, two players take turns choosing a previously-
unselected element of G. The player who first builds a generating set from the
jointly-selected elements wins the achievement game GEN(G), while a player who
cannot avoid building a generating set loses the avoidance game DNG(G). The the-
ory of these games is further developed in [3, 4, 5, 7]. Similar algebraic games are
studied in [6].

For a finite abelian group A, the generalized dihedral group Dih(A) is the semidi-
rect product Z2nA. Generalized dihedral groups share many of the same properties
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of dihedral groups. For example, every element of Dih(A) that is not in A has order
2 and acts on A by inversion. See [8] or [9] for an introduction to generalized dihedral
groups.

A fundamental problem in game theory is to determine nim-numbers of impartial
two-player games. The nim-number allows for the easy calculation of the outcome
of the sum of games. A general theory on how to compute nim-numbers appears
in [7]. The strategies for the avoidance game for many families of finite groups were
presented in [3], and a complete theory for finding the nim-numbers for the avoidance
games was developed in [5]. The strategies and nim-numbers for symmetric and
alternating groups were determined in [4] for both the achievement and avoidance
games.

The nim-numbers for DNG(Dih(A)) were classified in [5], which found that
DNG(Dih(A)) is ∗3 if A is cyclic of odd order and ∗0 otherwise. The task in this
paper is to determine the nim-numbers for GEN(Dih(A)) for all finite abelian A.

2 Preliminaries

In this section, we recall some general terminology and results from [4, 5, 7] related
to impartial games, as well as the achievement game that is the focus of this paper.

2.1 Impartial Games

A comprehensive treatment of impartial games can be found in [1, 10]. An impartial
game is a finite set X of positions together with a collection {Opt(P ) ⊆ X | P ∈ X},
where Opt(P ) is the set of possible options for a position P . Two players take turns
replacing the current position P with one of the available options in Opt(P ). The
player who encounters a terminal position with an empty option set cannot move
and therefore loses. All games must come to an end in finitely many turns, so we do
not allow infinite lines of play.

The one-pile NIM game ∗n with n stones is the prototype of an impartial game.
The set of options of ∗n is Opt(∗n) = {∗0, . . . , ∗(n− 1)}.

The minimum excludant mex(A) of a set A of ordinals is the smallest ordinal
not contained in the set. The nim-number nim(P ) of a position P is the minimum
excludant of the set of nim-numbers of the options of P . That is,

nim(P ) := mex{nim(Q) | Q ∈ Opt(P )}.

The minimum excludant of the empty set is 0, so the terminal positions of a game
have nim-number 0. The nim-number of a game is the nim-number of its starting
position. A winning strategy exists at position P if and only if nim(P ) 6= 0. So,
the nim-number of a game determines the outcome of the game. We write P = R if
nim(P ) = nim(R), so P = ∗ nim(P ) for every impartial game P .
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2.2 Achievement Games for Groups

We now give a more precise description of the achievement game GEN(G) played
on a finite group G. We also recall some definitions and results from [7]. The
nonterminal positions of GEN(G) are exactly the non-generating subsets of G, and
the terminal positions are the generating sets S of G such that there is an g ∈ S
satisfying 〈S \ {g}〉 < G. The starting position is the empty set since neither player
has chosen an element yet. The first player chooses x1 ∈ G, and the designated
player selects xk ∈ G \ {x1, . . . , xk−1} at the kth turn. A position Q is an option of
P if Q = P ∪ {g} for some g ∈ G \ P . The player who builds a generating set wins
the game.

The set M of maximal subgroups play a significant role in the game. The last
two authors [7] define the set

I := {∩N | ∅ 6= N ⊆M}
of intersection subgroups, which is the set of all possible intersections of maximal
subgroups. The smallest intersection subgroup is the Frattini subgroup Φ(G) of G,
which is the intersection of all maximal subgroups of G.

Example 2.1. Let G = 〈r, s | r4 = e = s2, sr3 = rs〉 be the dihedral group of
order 8 with identity e. The maximal subgroups 〈r〉, 〈s, sr2〉, and 〈sr, sr3〉 are the
order 4 intersection subgroups. The only other intersection subgroup is the Frattini
subgroup 〈r2〉, which has order 2.

The set I of intersection subgroups is partially ordered by inclusion. We use
interval notation to denote certain subsets of I. For example, if I ∈ I, then
(−∞, I) := {J ∈ I | J � I}.

For each I ∈ I let

XI := P(I) \ ∪{P(J) | J ∈ (−∞, I)}
be the collection of those subsets of I that are not contained in any other intersection
subgroup properly contained in I. We let X := {XI | I ∈ I} and call an element
of X a structure class. We define an additional structure class XG to be the set of
terminal positions, and we let Y := X ∪ {XG}. For any position P of GEN(G), let
dP e be the unique element of I ∪ {G} such that P ∈ XdP e. Note that dP e is the
smallest intersection subgroup containing P if P is not a terminal position. We will
write dA, g1, . . . , gne to mean dA ∪ {g1, . . . , gn}e for A ⊆ G and g1, . . . , gn ∈ G.

Example 2.2. We continue Example 2.1. The structure classes in X are

X〈r2〉 = {∅, {e}, {r2}, {e, r2}}
X〈r〉 = P(〈r〉) \X〈r2〉

X〈s,sr2〉 = P(〈s, sr2〉) \X〈r2〉
X〈sr,sr3〉 = P(〈sr, sr3〉) \X〈r2〉.

Thus, for example d∅e = 〈r2〉 = dee, dre = 〈r〉, and dse = 〈s, sr2〉 = ds, sr2e.
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Parity plays a crucial role in the theory of impartial games. We define the parity
of a natural number n via pty(n) := (1 + (−1)n+1)/2. The parity of a subset of a
group is defined to be the parity of the size of the subset. The parity of a structure
class is defined to be pty(XI) := pty(I). We will say an object is even if its parity
is 0 and odd if its parity is 1.

The partition Y of the set of game positions of GEN(G) is compatible with the
option relationship between game positions [7, Corollary 3.11]: if XI , XJ ∈ X and
P,Q ∈ XI 6= XJ , then Opt(P ) ∩ XJ 6= ∅ if and only if Opt(Q) ∩ XJ 6= ∅. We say
that XJ is an option of XI and we write XJ ∈ Opt(XI) if Opt(I) ∩XJ 6= ∅.

If P,Q ∈ XI ∈ Y and pty(P ) = pty(Q), then nim(P ) = nim(Q) by [7, Proposi-
tion 4.4]. The structure digraph of GEN(G) has vertex set Y and edge set {(XI , XJ) |
XJ ∈ Opt(XI)}. In a structure diagram, a structure class XI is represented by a
triangle pointing down if I is odd and by a triangle pointing up if I is even. The tri-
angles are divided into a smaller triangle and a trapezoid, where the smaller triangle
represents the odd positions of XI and the trapezoid represents the even positions of
XI . The numbers in the smaller triangle and the trapezoid are the nim-numbers of
these positions. There is a directed arrow from XI to XJ provided XJ ∈ Opt(XI).

X〈r2〉

X〈r〉 X〈s,sr2〉X〈sr,sr3〉

XG

0

2

1

2

1

2

1

2

0

0

0

2

1

2

0

0

Figure 1: A depiction of the structure digraph, the structure diagram, and the
simplified structure diagram, respectively, of GEN(G) for the dihedral group G of
order 8.

Example 2.3. Figure 1 shows the structure digraph and the structure diagram of
GEN(G) for the dihedral group G of Example 2.1. The numbers in the diagram were
computed from the bottom up using nim-number arithmetic as depicted in Figure 2.

The type of the structure class XI is the triple

type(XI) := (pty(I), nim(P ), nim(Q)),

where P,Q ∈ XI with pty(P ) = 0 and pty(Q) = 1. Note that the type of a structure
class XI is determined by the parity of XI and the types of the options of XI as
shown in Figure 2. We define otype(XI) := {type(XJ) | XJ ∈ Opt(XI)}.

The nim-number of the game is the nim-number of the initial position ∅, which
is an even subset of Φ(G). Because of this, nim(GEN(G)) is the second component
of

type(XΦ(G)) = (pty(Φ(G)), nim(∅), nim({e})),



B.J. BENESH ET AL. / AUSTRALAS. J. COMBIN. 68 (3) (2017), 371–384 375

y

x

(1,y,x)

c
d

(0,c,d)

a

b

(1,a,b)

y = mex{b, d, x}
x = mex{a, c}

x

y

(0,x,y)

c
d

(0,c,d)

a
b

(0,a,b)

y = mex{a, c, x}
x = mex{b, d}

Figure 2: Examples for the calculation of the type of a structure class using the types
of the options.

which corresponds to the trapezoidal part of the triangle representing the source
vertex XΦ(G) of the structure diagram.

The simplified structure diagram of GEN(G) is built from the structure diagram
by identifying structure classes XI and XJ satisfying type(XI) = type(XJ) and
otype(XI)∪{type(XI)} = otype(XJ)∪{type(XJ)}. This is followed by the removal
of any resulting loops. See [7] for a more detailed description.

Example 2.4. The simplified structure diagram of GEN(G) is shown in Figure 1 for
the dihedral group G of Example 2.1.

3 Deficiency

We will develop some general tools in this section. For a finite group G, the smallest
possible size of a generating set is denoted by

d(G) := min{|S| : 〈S〉 = G}.

The following definition is closely related to d(G).

Definition 3.1. The deficiency of a subset P of a finite group G is the minimum
size δ(P ) of a subset Q of G such that 〈P ∪Q〉 = G.

Note that the deficiency of a generating set is 0 and δ(∅) = d(G). Also, P ⊆ Q
implies δ(P ) ≥ δ(Q).

Proposition 3.2. If P,Q ∈ XI , then δ(P ) = δ(Q).

Proof. Let L be the set of maximal subgroups containing I. Then I = ∩L because
I is an intersection subgroup. Let g1, . . . , gδ(P ) ∈ G such that 〈P, g1, . . . , gδ(P )〉 = G.
Then no element of L contains {g1, . . . , gδ(P )}. The only maximal subgroups that
contain Q are also in L. Therefore, 〈Q, g1, . . . , gδ(P )〉 = G and δ(Q) ≤ δ(P ). By a
symmetric argument, δ(P ) ≤ δ(Q), so δ(P ) = δ(Q).

Corollary 3.3. If G is a finite group, then δ(Φ(G)) = d(G).

Proof. Since ∅,Φ(G) ∈ XΦ(G), we have δ(Φ(G)) = δ(∅) = d(G).
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Definition 3.4. We say that a structure class XI ∈ Y is m-deficient in G and we
write δ(XI) = m if δ(I) = m.

The terminal structure class is 0-deficient. That is, δ(XG) = 0.

Definition 3.5. Let G be a finite group, E be the set of even structure classes and
O be the set of odd structure classes in Y . We define the following sets:

Dm := {XI ∈ Y | δ(XI) = m}, D≥m := ∪k≥mDk
Em := E ∩ Dm, E≥m := ∪k≥mEk
Om := O ∩Dm, O≥m := ∪k≥mOk

Note that D0 = {XG}.
Proposition 3.6. If G is a finite group, then D≥d(G)+1 = ∅.

Proof. There must be a generating set Q for G with size d(G). If XI ∈ Dm, then
G = 〈Q〉 ⊆ 〈I ∪Q〉, and so m ≤ |Q| = d(G).

The next proposition follows immediately from Corollary 3.3.

Proposition 3.7. If G is a finite group, then XΦ(G) ∈ Dd(G).

Proposition 3.8. Let G be a finite group and m be a positive integer. If XI ∈ Dm,
then XI has an option XK in Dm−1, and every option of XI is in either Dm or Dm−1.

Proof. Let XJ be an option of XI ; that is, Q := I ∪ {g} is in XJ for some g ∈ G.
Since I ⊆ Q,

δ(XI) = δ(I) ≥ δ(Q) = δ(J) = δ(XJ).

Let h1, . . . , hδ(Q) ∈ G such that 〈Q, h1, . . . , hδ(Q)〉 = G. Then 〈I, g, h1, . . . , hδ(Q)〉 = G,
which implies

δ(XI) = δ(I) ≤ δ(Q) + 1 = δ(XJ) + 1.

Hence δ(XJ) ∈ {δ(XI), δ(XI)− 1}.
Now let g1, . . . , gδ(I) ∈ G such that 〈I, g1, . . . , gδ(I)〉 = G, and let K = dI ∪ {g1}e.

Then δ(XK) ∈ {δ(XI), δ(XI)−1}. Because 〈I ∪{g1}, g2, . . . , gδ(I)〉 = G, we conclude
that δ(XK) = δ(XI)− 1.

Note that the deficiency of a structure class XI is the directed distance from XI

to the terminal structure class XG in the structure digraph.

Even structure classes only have even options by Lagrange’s Theorem, so the
next corollary follows by Proposition 3.8.

Corollary 3.9. If m is a positive integer and XI ∈ Em, then XI has an option in
Em−1 and every option of XI is in either Em or Em−1.

The proof of the following result uses calculations similar to those shown in
Figure 2.
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Proposition 3.10. If G is a group of even order, then

type(XI) =


(0, 0, 0) if XI = XG ∈ E0

(0, 1, 2) if XI ∈ E1

(0, 0, 2) if XI ∈ E2

(0, 0, 1) if XI ∈ E≥3.

Proof. We will use structural induction on the structure classes. By Corollary 3.9,
structure classes in Em with m ≥ 1 must have an option in Em−1 and possibly more
options in Em ∪ Em−1. Hence Em 6= ∅ if and only if m ≤ d(G).

If XI ∈ E0, then type(XI) = type(XG) = (0, 0, 0). If XI ∈ E1, then type(XI) =
(0, 1, 2) since

otype(XI) =

{
{(0, 0, 0)} if Opt(XI) ∩ E1 = ∅
{(0, 0, 0), (0, 1, 2)} otherwise.

If XI ∈ E2, then type(XI) = (0, 0, 2) since

otype(XI) =

{
{(0, 1, 2)} if Opt(XI) ∩ E2 = ∅
{(0, 1, 2), (0, 0, 2)} otherwise.

If XI ∈ E3, then type(XI) = (0, 0, 1) since

otype(XI) =

{
{(0, 0, 2)} if Opt(XI) ∩ E3 = ∅
{(0, 0, 2), (0, 0, 1)} otherwise.

If XI ∈ E≥4, then type(XI) = (0, 0, 1), since every option of XI has type (0, 0, 1).

Corollary 3.11. If G is a group of even order with d(G) ≥ 4, then GEN(G) = ∗0.

Proof. If the first player initially selects an involution, the second player selects the
identity; otherwise, the second player selects an involution t. This guarantees that the
game position P after the second turn satisfies P ∈ XI ∈ E≥d(G)−2 for some structure
class XI . Because d(G)− 2 ≥ 2, type(XI) is (0, 0, 2) or (0, 0, 1) by Proposition 3.10.
In both cases the even position P has nim-number 0, so the second player wins.

4 The Generalized Dihedral Group Dih(A)

For a finite abelian group A, the generalized dihedral group Dih(A) is the semidirect
product C2 n A where the generator x of the two-element cyclic group C2 = {1, x}
acts on A on the right by inversion. That is, the operations on the elements of C2×A
are defined by

(k, a)(1, b) := (k, ab), (k, a)(x, b) := (kx, a−1b)
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for a, b ∈ A and k ∈ C2.

Note that we use multiplicative notation for group operations. We identify the
elements of A and C2 with their images in C2nA through the natural inclusion maps
k 7→ (k, 1) : C2 ↪→ Dih(A) and a 7→ (1, a) : A ↪→ Dih(A) so that we can write ka for
(k, a). This identification allows us to consider the action of C2 on A as conjugation
since (ka)(xb) = kxx−1axb = (kx)(axb).

Lemma 4.1. Let S be a subset of Dih(A) and y ∈ Dih(A) \ A. If a, b ∈ A, then
〈S, ya, yb〉 = 〈S, a−1b, yb〉.

Proof. Let H = 〈S, ya, yb〉 and K = 〈S, a−1b, yb〉. Then S ⊆ H, yb ∈ H, and
a−1b = (yay)b = (ya)(yb) ∈ H, so K ≤ H. Also, S ⊆ K, yb ∈ K, and ya =
(yb)(b−1a) = (yb)(a−1b)−1 ∈ K, so H ≤ K. Therefore, H = K.

Lemma 4.2. If 〈B, y〉 = Dih(A) for some B ≤ A and y ∈ Dih(A) \ A, then A = B.

Proof. It is easily verified that y−1by = b−1 for all b ∈ B. So 〈y〉 normalizes B,
and hence B is normal in 〈B, y〉 = Dih(A). Thus, Dih(A) = 〈B, y〉 ⊆ B〈y〉, which
implies Dih(A) = B〈y〉. Since B ∩ 〈y〉 is trivial, B〈y〉 = 〈y〉 n B after the natu-
ral identification. Since y acts on B by inversion, 〈y〉 n B = Dih(B). Therefore,
Dih(A) = Dih(B), which shows that A = B.

Proposition 4.3. If A is a finite abelian group, then d(Dih(A)) = d(A) + 1.

Proof. Let a1, . . . , ad(A) ∈ A such that 〈a1, . . . , ad(A)〉 = A. Since |Dih(A) : A| = 2,

〈a1, . . . , ad(A), y〉 = Dih(A)

for all y ∈ Dih(A) \ A, so d(Dih(A)) ≤ d(A) + 1.

Now let n = d(Dih(A)) and g1, . . . , gn ∈ Dih(A) such that 〈g1, . . . , gn〉 = Dih(A).
Without loss of generality, let gn ∈ Dih(A)\A. By possible repeated use of Lemma 4.1
we may find B := 〈b1, . . . , bn−1〉 ≤ A such that 〈b1, . . . , bn−1, gn〉 = 〈g1, . . . , gn〉.
Then 〈B, gn〉 = Dih(A), so B = A by Lemma 4.2. Therefore, d(A) ≤ n − 1 =
d(Dih(A))− 1.

The following result is likely well-known, but we will include the proof for want
of a reference.

Proposition 4.4. If G = Dih(A), then Φ(G) = Φ(A).

Proof. Since A is a maximal subgroup of G, Φ(G) is contained in A.

We will first prove that Φ(A) is contained in Φ(G). Let z be in Φ(A) and M be a
maximal subgroup of G. If M = A, then z is certainly in M , so we will assume that
M is not equal to A. Then M ∩A is maximal in A, so z ∈M ∩A ⊆M . Therefore,
Φ(A) ⊆ Φ(G).

We now prove that Φ(G) is contained in Φ(A). Let z be in Φ(G) and L be
a maximal subgroup of A. Then M = 〈x〉 n L is a maximal subgroup of G, so
z ∈M . Since z is in Φ(G) and A is a maximal subgroup of G, z is in A. Therefore,
z ∈M ∩ A = L. Therefore, Φ(G) ≤ Φ(A), and we conclude that Φ(G) = Φ(A).
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5 The Achievement Game GEN(Dih(A))

We now determine the nim-number of GEN(Dih(A)). We consider three cases:
d(A) = 1, d(A) ≥ 3, and d(A) = 2. If d(A) = 1, then A is a cyclic group and
Dih(A) is a usual dihedral group characterized by the following result.

Proposition 5.1. [7, Corollary 7.10] If A is a cyclic group of order n, then

GEN(Dih(A)) =


∗0 if n ≡4 0

∗1 if n ≡4 2

∗3 if n ≡2 1.

Proposition 5.2. If A is an abelian group such that d(A) ≥ 3, then GEN(Dih(A)) =
∗0.

Proof. Since d(A) ≥ 3, d(Dih(A)) ≥ 4. The result follows by Corollary 3.11 because
Dih(A) is even.

We now focus on the case when d(A) = 2. We start by considering the case
when A is even. Figures 6(b) and 7(a) show our conjectured two possible simplified
structure diagrams for this situation.

Proposition 5.3. If A is an abelian group of even order such that d(A) = 2, then
GEN(Dih(A)) = ∗0.

XΦ(G)

0

+

XI even

+

XI odd
0

+

XJ

D3

D≥2
t

s

Figure 3: Visual representation for the proof of Proposition 5.3.

Proof. Because d(A) = 2, we know that d(Dih(A)) = 3 by Proposition 4.3, and so
the initial position ∅ has deficiency 3. We show that the second player can create
a position with nim-number 0 in the second turn, no matter what the first player
chooses in the first turn. This will show that the second player has a winning strategy
and the nim-number of the game is 0.

Suppose the first player chooses g ∈ Dih(A), and let I = dge. Then XI is in D2

or D3 by Proposition 3.8. We have provided a visualization in Figure 3.

If XI is in E2 or E3, then the second player picks any element s ∈ I \ {g} to move
to a position with nim-number 0 by Proposition 3.10 since type(XI) is either (0, 0, 1)
or (0, 0, 2).
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Now assume that XI is in O2 or O3. Because every element in Dih(A) \ A is an
involution, we conclude that I is an odd subgroup of A and g has odd order. The
second player then selects an involution t ∈ A, and we consider a new structure class
XJ for J = dI, te. Because gcd(|g|, |t|) = 1 and A is abelian, 〈g, t〉 = 〈gt〉 and hence
J = dgte. Therefore, XJ is in E2 or E3. Since type(XJ) is either (0, 0, 1) or (0, 0, 2)
by Proposition 3.10, the second player moves to a position with nim-number 0 by
choosing t.

We now consider the case when A is odd.

Lemma 5.4. Let G = Dih(A) where A is an abelian group of odd order and d(A) =
2. If XI ∈ Om with m ∈ {2, 3}, then XI has an option in Om−1.

Proof. Recall that C2 = 〈x〉. Since XI ∈ Om, there are distinct g1, . . . , gm such that
〈I, g1, . . . , gm〉 = G. Additionally, I ≤ A because I is odd. If gi has odd order for
some i, then gi ∈ A and XdI,gie ∈ Om−1.

Now assume that all g1, . . . , gm have even order. Since g1 and g2 are involutions,
there are a, b ∈ A such that g1 = xa and g2 = xb. Then 〈g1, g2〉 = 〈xa, xb〉 =
〈a−1b, xb〉 if m = 2 and 〈g1, g2, g3〉 = 〈a−1b, g2, g3〉 if m = 3 by Lemma 4.1, so
XdI,a−1be ∈ Om−1.

Lemma 5.5. Let G = Dih(A) where A is an abelian group of odd order such that
d(A) = 2. If XI ∈ Om with m ∈ {1, 2, 3}, then XI has an option in Em−1 but not in
Em.

Proof. Since XI is odd, I is a subgroup of A. So XdI,he is an option of XI for any
h ∈ G \ A, and this option is in Em−1 or Em. It remains to show that XI has no
option in Em.

We argue by contradiction. Assume that XI ∈ Om has an option XJ ∈ Em and
m is as small as possible with this property. Let J = dI, ye for some y ∈ G \ A.

We first consider the case where m = 1 and XI ∈ O1. Then XdI,ge ∈ D0 for some
g ∈ G \A. Then G = 〈I, g〉, so I = A by Lemma 4.2. Thus XJ = XdA,ye = XG ∈ E0,
which is a contradiction.

Now we consider the case when m ≥ 2, as shown in Figure 4. By Lemma 5.4,
there is a g ∈ G such that XdI,ge ∈ Om−1. Since m is minimal, XdI,ge has no option
in Em−1, and so XdI,g,ye ∈ Em−2. This is a contradiction, since XdI,g,ye is an option of
XJ and XJ does not have an option in Em−2 by Proposition 3.8.

Lemma 5.6. If G = Dih(A) where A is an abelian group of odd order and d(A) = 2,
then

type(XI) =


(1, 2, 1) if XI ∈ O1

(1, 3, 0) if XI ∈ O2

(1, 3, 1) if XI ∈ O3.
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XI XJ

Dm

Dm−1

Dm−2

y

g

y

g

Figure 4: The m ≥ 2 case of the proof of Lemma 5.5.

Proof. We will use structural induction on the structure classes. Proposition 3.8
and Lemmas 5.4 and 5.5 determine the possible options of our structure classes.
Proposition 3.10 and induction yields the types of these options.

If XI ∈ O1, then Opt(XI)∩E0 6= ∅ and Opt(XI) ⊆ E0∪O1. So type(XI) = (1, 2, 1)
since

otype(XI) =

{
{(0, 0, 0)} if Opt(XI) ∩ O1 = ∅
{(0, 0, 0), (1, 2, 1)} otherwise.

If XI ∈ O2, then Opt(XI)∩E1 6= ∅ 6= Opt(XI)∩O1 and Opt(XI) ⊆ E1∪O1∪O2.
So type(XI) = (1, 3, 0) since

otype(XI) =

{
{(0, 1, 2), (1, 2, 1)} if Opt(XI) ∩ O2 = ∅
{(0, 1, 2), (1, 2, 1), (1, 3, 0)} otherwise.

If XI ∈ O3, then Opt(XI)∩E2 6= ∅ 6= Opt(XI)∩O2 and Opt(XI) ⊆ E2∪O2∪O3.
So type(XI) = (1, 3, 1) since

otype(XI) =

{
{(0, 0, 2), (1, 3, 0)} if Opt(XI) ∩ O3 = ∅
{(0, 0, 2), (1, 3, 0), (1, 3, 1)} otherwise.

Figure 5(b) shows our conjectured simplified structure diagram that corresponds
to the next result.

Proposition 5.7. If A is an abelian group of odd order such that d(A) = 2, then
GEN(Dih(A)) = ∗3.

Proof. By Proposition 3.7, we have XΦ(G) ∈ D3 since d(Dih(A)) = 3. By Lemma 4.4,
we have Φ(G) = Φ(A) ≤ A, so Φ(G) is odd. Therefore, XΦ(G) ∈ O3, so type(XΦ(G)) =
(1, 3, 1) by Lemma 5.6. The second component is 3, so we conclude that
GEN(Dih(A)) = ∗3.

We conclude with our main result, which summarizes Propositions 5.1, 5.2, 5.3,
and 5.7.
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Theorem 5.8. If A is an abelian group, then

GEN(Dih(A)) =


∗1 if d(A) = 1, |A| ≡4 2

∗3 if 1 ≤ d(A) ≤ 2, A odd

∗0 otherwise.

6 Further Questions
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Figure 5: Conjectured simplified structure diagrams for GEN(Dih(A)) with odd A.
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Figure 6: Conjectured simplified structure diagrams for GEN(Dih(A)) with A =
Z2 × P and P odd.

We outline a few open problems.
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1. The simplified structure diagrams in Figures 5–7 were found via computer
calculations by considering several examples of GEN(Dih(A)). We conjecture
that these figures cover all possible structure diagrams.

2. We believe that the key new insight of this paper is the use of deficiency. Can
we use this tool to handle other semidirect products?

3. Can we extend the techniques in this paper to give a complete description of
the nim-numbers of GEN(G) using covering properties as was done in [5] for
DNG(G)? It is likely that d(G) plays a role in this characterization.
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Figure 7: Conjectured simplified structure diagrams for GEN(Dih(A)) with A =
Zk2 × P and P odd.
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