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Abstract

In this paper we give an alternate proof that it is always possible to
complete partial Latin squares with two filled rows and two filled columns,
except for a few small counterexamples. The proof here is significantly
shorter than the most recent proof by Adams, Bryant, and Buchanan.
Additionally, we find sufficient conditions under which a partial Latin
square with two filled rows and at least three filled columns can be
completed.

1 Introduction

Let n be a positive integer and S be a finite symbol set. If P is an n × n array
in which each nonempty cell contains exactly one symbol of S, then we call P an
array of order n over S. The symbol of S appearing in a nonempty cell (i, j) of P
is denoted P (i, j). Unless stated otherwise, we assume that S = [n] = {1, 2, . . . , n}.
We will often treat P as a subset of [n]× [n]× [n], where (r, c, s) ∈ P if and only if
s = P (r, c).

If symbols occur at most once in a row (or column) of P , then that row (or column)
is called Latin. The array P is a partial Latin square (PLS) if each row and column of
P is Latin. If P is a PLS and each cell is nonempty, then P is called a Latin square.
A Latin square of order 2 that occurs as a subset of a PLS is called an intercalate.
We use Ij,k to denote an intercalate over symbols {j, k}.
Let PLS(n) denote the set of all partial Latin squares of order n and let LS(n) denote
the set of all Latin squares of order n. Furthermore, let PLS(a, b;n) be the subset
of PLS(n) in which the first a rows and first b columns are filled, and the remaining
cells empty.
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We say that P ∈ PLS(n) is completable if there exists L ∈ LS(n) such that P ⊂ L.
The problem of determining if a partial Latin square is completable is NP-complete
[4]. However, there are many known families of completable partial Latin squares
(see e.g. [5], [6], [8], [9]). Of particular interest is the result that all elements of
PLS(2, 2;n) for n > 6 are completable, first proven in Buchanan’s PhD thesis [3]. A
slightly shortened version appears in [1], which is still over 25 pages long and relies on
a computer search to check the values n ∈ {6, 7, 8}. In the present paper, we provide
a significantly shorter proof without computer aid. We also give sufficient conditions
under which elements of PLS(2, b;n) can be completed for b > 3. Critical to these
proofs are the notions of isotopisms and conjugates, which we define below.

Let P ∈ PLS(n) and Sn be the symmetric group acting on [n]. For θ = (α, β, γ) ∈
Sn × Sn × Sn, we use θ(P ) ∈ PLS(n) to denote the array in which the rows, columns,
and symbols of P are permuted according to α, β, and γ respectively. The mapping
θ is called an isotopism, and P and θ(P ) are said to be isotopic. It is well known that
P can be completed if and only if θ(P ) can be completed for any θ ∈ Sn × Sn × Sn.
Thus, when completing an element of PLS(2, b;n), we may assume that the subarray
induced by cells [2]× [b] is over a subset of [2b] and that the symbols in the first row
appear in natural order.

A conjugate of P is an array in which the coordinates of each triple of P are
uniformly permuted. There are six, not necessarily distinct, conjugates of P . Let
λ ∈ {ε, (rc), (rs), (cs), (rcs), (rsc)}. We use λ to permute coordinates, where r, c,
and s correspond to the row, column, and symbol coordinates, respectively. The
conjugate of P induced by λ is denoted by P λ. When λ = (rc), we use standard
notation for the transpose of a matrix, P T . As with isotopisms, P can be completed
if and only if any conjugate of P can be completed.

In Section 2, we develop an operation that reduces elements of PLS(2, b;n) to elements
of PLS(2, b;n − 1) for b > 2. In Section 3, we describe an inductive technique for
completing partial Latin squares invented by Smetaniuk, as well as a generalization.
In Section 4, we prove necessary and sufficient conditions for when it is always possible
to complete the elements of PLS(2, 2;n). In Section 5, we find sufficient conditions
under which P ∈ PLS(2, b;n) can be completed for b > 3.

2 Reducing Elements of PLS(2, 2;n)

Let a, b, j, k ∈ [n] and let X ∈ PLS(a, b;n). We use Cj and Rk to denote column
j and row k as subarrays of X. Furthermore, we shall often treat column j of
X as the set of triples Cj = {(i, j, s) | i ∈ [n], (i, j, s) ∈ X} and row k of X as
Rk = {(k, i, s) | i ∈ [n], (k, i, s) ∈ X}.

Definition 2.1. Let X ∈ PLS(a, b;n), l ∈ [a], and m ∈ [b]. For columns Cj and Ck
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of X and rows Rj and Rk of X, define Cj ◦l Ck and Rj ◦m Rk as:

Cj ◦l Ck = (Cj\(l, j,X(l, j))) ∪ (l, j,X(l, k))

Rj ◦m Rk = (Rj\(j,m,X(j,m))) ∪ (j,m,X(k,m))

Example 2.2. Consider the following element of PLS(2, 2; 6):

1 2 3 4 5 6
2 3 1 5 6 4
6 5
3 4
4 1
5 6

Then C3 ◦1 C6 = [6 1 · · · ·]T and C6 ◦1 C3 = [3 4 · · · ·]T , where · denotes an
empty cell. Additionally, R3 ◦2 R4 = [6 4 · · · ·] and R4 ◦2 R3 = [3 5 · · · ·].

Lemma 2.3. Let j, k ∈ [n] and X ∈ PLS(a, b;n).

(i) Let l ∈ [a] and suppose that j, k > b. Then Cj ◦l Ck is Latin if and only if
X(l, k) 6= X(i, j) for each i ∈ [a].

(ii) Let l ∈ [b] and suppose that j, k > a. Then Rj ◦l Rk is Latin if and only if
X(k, l) 6= X(j, i) for each i ∈ [b].

Definition 2.4. Let X ∈ PLS(a, b;n). Let β ∈ [n] such that (i,mi, β) ∈ X and
mi > b for each i ∈ [a]. Let j ∈ [n]\[b]. If Cj is a column such that each column
of {Cm1 ◦1 Cj, . . . , Cma ◦a Cj} is Latin, then β is called a column-replaceable symbol,
and we say that Cj replaces β. If Cj = Cmi

for some i, we also say that Cj replaces
itself. We define a symbol γ to be row-replaceable if it is column-replaceable in XT .
We similarly define when Rj replaces itself for some j ∈ [n]\[a]. If a symbol is both
column-replaceable and row-replaceable, we simply say it is replaceable.

Let α ∈ [n] be a replaceable symbol in X and suppose that Cj and Rk replace α.
Furthermore, let (i,mi, α) ∈ X for each i ∈ [a] and (pi, i, α) ∈ X for each i ∈ [b]. Let
C = Cm1 ∪ . . . ∪ Cma , R = Rp1 ∪ . . . ∪Rpb , and D = C ∪R. Arrays

R(X;Rk, sα) = ((X\R) ∪ (Rp1 ◦1 Rk) ∪ . . . ∪ (Rpb ◦b Rk)) \Rk

R(X;Cj, sα) = ((X\C) ∪ (Cm1 ◦1 Cj) ∪ . . . ∪ (Cma ◦a Cj)) \Cj
R(X;Rk, Cj, sα) = ((X\D) ∪ (Cm1 ◦1 Cj) ∪ . . . ∪ (Cma ◦a Cj) ∪ (Rp1 ◦1 Rk) ∪ . . .

∪(Rpb ◦b Rk)) \(Cj ∪Rk)

are called a row-reduction, column-reduction, and reduction of X, respectively.

Lemma 2.5. Let X ∈ PLS(a, b;n). Suppose that α is replaceable in X by Cj and
Rk. Then the following hold:
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(i) R(X;Rk, sα) is an (n− 1)× n array over [n] in which each row and column is
Latin,

(ii) R(X;Cj, sα) is an n× (n− 1) array over [n] in which each row and column is
Latin, and

(iii) R(X;Rk, Cj, sα) is an (n− 1)× (n− 1) array over [n]\{α} in which each row
and column is Latin.

Henceforth, we consider R(X;Rk, Cj, sα) as an element of PLS(a, b;n−1). In Sections
4 and 5 we use reductions to complete elements of PLS(2, b;n) for b > 2.

Example 2.6. Let X ∈ PLS(2, 2; 6) from Example 2.2. The arrays immediately
below are X,R(X;R3, C3, s4), and R(X;R5, C4, s4) respectively:

1 2 3 4 5 6
2 3 1 5 6 4
6 5
3 4
4 1
5 6

1 2 5 6 3
2 3 6 1 5
5 6
3 5
6 1

1 2 3 5 6
2 3 1 6 5
6 5
5 6
3 1

Observe that in the third array of Example 2.6, R5 and C4 replace themselves. Also
observe that both arrays are elements of PLS(2, 2; 5) over {1, 2, 3, 5, 6}.
Let X ∈ PLS(2, b;n). By Lemma 2.3, a column of X replaces itself if and only if it is
not a column of an intercalate. Reducing X with columns that replace themselves
plays a crucial role in proving the main results of this paper.

The next lemma gives a sufficient condition for when we are guaranteed to find a row
that replaces a symbol.

Lemma 2.7. Let b > 2 and n > b2 − b + 3. For every X ∈ PLS(2, b;n) and any
symbol α not occurring in cells [2]× [b] of X, there exists a row that replaces α.

Proof. Let X ∈ PLS(2, b;n) and n > b2 − b + 3. Suppose that symbol α does not
occur in cells [2]× [b] of X. Without loss of generality, assume that symbol α occurs
in the last b rows of X. There are at most b − 1 rows that cannot replace α in
Rn since there are exactly b − 1 values of i for which X(i, 1) = X(n, β) for some
β ∈ ([b]\{1}). Similarly, there are at most b− 1 rows that cannot replace α in Rk,
where n − b + 1 6 k 6 n. Therefore, there are at most b(b − 1) rows that cannot
replace α. Since n > b(b− 1) + 2, there exists a row replacing α.
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3 A Variation on Smetaniuk’s Method

Reducing an element of PLS(2, 2;n) is one of the two main ideas in Section 4. The
second is Smetaniuk’s inductive argument confirming the famous Evans Conjecture
[9]. We briefly outline his argument, and then describe a simple generalization.

For a k×k array, let D be the set of back diagonal cells; that is, D = {(1, k), (2, k−1),
. . . , (k, 1)}. We say that cell (i, j) is above D if (i,m) ∈ D for some m > j and below
D if (i,m) ∈ D for some m < j.

Let X ∈ LS(n). The array T (X) ∈ PLS(n + 1) is formed from X in the following
way:

(i) T (X)(i, j) = X(i, j) if cell (i, j) is above D of T (X),

(ii) T (X)(i, j) = n+ 1 if cell (i, j) ∈ D, and

(iii) the cells of T (X) below D are empty.

Smetaniuk’s main result in [9] says that T (X) can be completed.

Theorem 3.1. For each X ∈ LS(n), T (X) ∈ PLS(n+ 1) is completable.

Example 3.2. Let X ∈ LS(5). The arrays below are X, T (X) ∈ PLS(6), and a
completion of T (X) respectively. The completion was found in accordance with the
proof of Theorem 3.1, which we describe below.

1 2 3 4 5
3 4 1 5 2
5 3 2 1 4
2 5 4 3 1
4 1 5 2 3

1 2 3 4 5 6
3 4 1 5 6
5 3 2 6
2 5 6
4 6
6

1 2 3 4 5 6
3 4 1 5 6 2
5 3 2 6 4 1
2 5 6 3 1 4
4 6 5 1 2 3
6 1 4 2 3 5

The argument used to complete T (X) in Theorem 3.1 is inductive. We describe the
inductive step and call the entire inductive procedure the Smetaniuk Method. See
either [9] or [2] for a full proof. Induction is performed on the parameter k, where
0 6 k 6 n− 1.

• To fill the empty cells of Rn−k, set T (X)(n−k, j) = X(n−k, j) for k+ 3 6 j 6 n
and T (X)(n− k, n+ 1) = X(n− k, k + 2).

• Every row and column of T (X) is Latin, except possibly Cn+1.

• Suppose that T (X)(n−k, n+ 1) = T (X)(m1, n+ 1) for some n−k+ 1 6 m1 6 n.

• In this case, switch symbols in cells (m1, k + 2) and (m1, n+ 1).

• If all rows and columns are Latin, fill Rn−(k+1) next.
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• Otherwise, there exists an n − k + 1 6 m2 6 n such that T (X)(m1, n + 1) =
T (X)(m2, n+ 1).

• Switch symbols in cells (m2, k + 2) and (m2, n+ 1).

• The process of switching symbols in cells (mi, k + 2) and (mi, n+ 1) terminates
in a finite number of steps with every row and column of T (X) being Latin.

• Rn+1 is guaranteed to have a unique completion.

Whenever we complete T (X) using the Smetaniuk Method, we call the result the
Smetaniuk completion. The following observation will be important.

Observation 3.3. Let X ∈ LS(n) and L be the Smetaniuk completion of T (X).

(i) L(i, j) = X(i, j) if cell (i, j) is above D of T (X).

(ii) L(i, j) = n+ 1 if cell (i, j) ∈ D of T (X).

(iii) If there is a k ∈ [n− 1] such that {X(n, 2), X(n− 1, 3), . . . , X(n− k+ 1, k+ 1)}
are k distinct symbols, then X(n− i+ 1, i+ 1) = L(n+ 1, i+ 1) for each i ∈ [k].
Furthermore, X(i, j) = L(i, j) for all cells (i, j) lying below the back diagonal of
L and such that i 6 n and 2 6 j 6 k + 1.

(iv) L(2, n+ 1) = X(2, n).

We now describe a completion technique that generalizes the Smetaniuk Method. Let
X ∈ LS(n). If n+2 = 2k+1, then D2 is the 2×2 back diagonal of [n−1]×([n+2]\[3])
along with (([n+2]\ [n])× [1])∪ ({n}×{2, 3}) (see cells containing boldfaced symbols
in Example 3.4(b)). If n+ 2 = 2k for some positive integer k, then D2 is the set of
cells constituting the 2 × 2 back diagonal of [n + 2] × [n + 2] (see cells containing
boldfaced symbols in Example 3.4(e)). The PLS T 2(X) of order n+ 2 is formed from
X in the following way:

(i) T 2(X)(i, j) = X(i, j) if cell (i, j) is above D2 of T 2(X),

(ii) T 2(X)(i, j) ∈ {n+ 1, n+ 2} if cell (i, j) ∈ D2, and

(iii) the cells of T 2(X) below D2 are empty.

Example 3.4. Let X ∈ LS(3) and Y ∈ LS(4). The arrays below are X, T 2(X) ∈
PLS(5), a completion of T 2(X), Y , T 2(Y ) ∈ PLS(6), and a completion of T 2(Y )
respectively. The completions were found in accordance with the generalization of
the proof of Theorem 3.1 described below.

2 3 1
3 1 2
1 2 3

2 3 1 4 5
3 1 2 5 4
1 4 5
4
5

2 3 1 4 5
3 1 2 5 4
1 4 5 2 3
4 5 3 1 2
5 2 4 3 1
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1 2 4 3
3 4 1 2
2 1 3 4
4 3 2 1

1 2 4 3 5 6
3 4 1 2 6 5
2 1 5 6
4 3 6 5
5 6
6 6

1 2 4 3 5 6
3 4 1 2 6 5
2 1 5 6 3 4
4 3 6 5 2 1
5 6 3 1 4 2
6 6 2 4 1 3

Below is the inductive procedure for the Smetaniuk completion of T 2(X) ∈ PLS(n+2)
when n is odd, where the induction is performed on the parameter k for 0 6 k 6 n−1.

• To fill the empty cells of Rn−k when k is even, set T 2(X)(n−k, j) = X(n−k, j) for
k+4 6 j 6 n and T 2(X)(n−k, n+1) = X(n−k, k+2) and T 2(X)(n−k, n+2) =
X(n−k, k+3); to fill the empty cells of Rn−k when k is odd, set T 2(X)(n−k, j) =
X(n − k, j) for k + 5 6 j 6 n and T 2(X)(n − k, n + 1) = X(n − k, k + 3) and
T 2(X)(n− k, n+ 2) = X(n− k, k + 4).

• Every row and column of T 2(X) is Latin, except possibly Cn+1 and Cn+2.

• Suppose that T 2(X)(n−k, n+1) = T 2(X)(m1, n+1) for some n−k+1 6 m1 6 n,
or T 2(X)(n− k, n+ 2) = T 2(X)(l1, n+ 2) for some n− k + 1 6 l1 6 n (or both).

• When k is even, switch symbols in cells (m1, k + 2) and (m1, n + 1), or switch
symbols in cells (l1, k+ 3) and (l1, n+ 2) (or both); when k is odd, switch symbols
in cells (m1, k + 3) and (m1, n + 1), or switch symbols in cells (l1, k + 4) and
(l1, n+ 2) (or both).

• If all rows and columns of T 2(X) are Latin, fill Rn−(k+1) next.

• Otherwise, there exists an n− k + 1 6 m2, l2 6 n such that T 2(X)(m1, n+ 1) =
T 2(X)(m2, n+ 1), or T 2(X)(l1, n+ 2) = T 2(X)(l2, n+ 2) (or both).

• When k is even, switch symbols in cells (m2, k + 2) and (m2, n + 1), or switch
symbols in cells (l2, k+ 3) and (l2, n+ 2) (or both); when k is odd, switch symbols
in cells (m2, k + 3) and (m2, n + 1), or switch symbols in cells (l2, k + 4) and
(l2, n+ 2) (or both).

• The process of switching symbols in these cells terminates in a finite number of
steps with every row and column of T 2(X) being Latin.

• Rn+1 and Rn+2 are guaranteed to have a completion by Hall’s Theorem [6].

If n is even, the inductive procedure is the same, except that the parity of k changes.
This accounts for the fact that the procedure (which starts on Rn) begins with a
2× 2 block instead of a 1× 2 block on the back diagonal.

Theorem 3.5. For each X ∈ LS(n), T 2(X) ∈ PLS(n+ 2) is completable.

The following variation of Observation 3.3 will be important.
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Observation 3.6. Let X ∈ LS(n) and L be the Smetaniuk completion of T 2(X).

(i) L(i, j) = X(i, j) if cell (i, j) is above D2 of T 2(X).

(ii) L(i, j) ∈ {n+ 1, n+ 2} if cell (i, j) ∈ D2 of T 2(X).

(iii) For odd n, if the symbols in cells (n, 2), (n, 3) of X are distinct from the symbols
in cells (n− 1, 4), (n− 1, 5), (n− 2, 4), (n− 2, 5) of X, then L(n, 4) = X(n, 4)
and L(n, 5) = X(n, 5).

When constructing T 2(X), there is more than one way to fill the cells of D2. However,
any appropriate filling of D2 results in a completed PLS by the Smetaniuk method.
Regardless of whether we are completing T (X) or T 2(X), we refer to the completed
array as the Smetaniuk completion of X.

4 Completing Arrays in PLS(2, 2;n)

It is clear that the following two arrays, denoted Y and Z respectively, cannot be
completed:

1 2 3 4
3 4 2 1
2 3
4 1

1 2 3 4 5
3 1 2 5 4
2 3
4 5
5 4

Let Γ denote the set of all isotopisms of Y and Z.

Theorem 4.1. Let n > 1 and A ∈ PLS(2, 2;n+ 1). The partial Latin square A can
be completed if and only if A /∈ Γ.

Proof. Before we prove the theorem by induction on the order n+ 1 of A, we state
four completion methods for reducing and then completing A. We assume that the
reduction of A is not an element of Γ, the reduction of A is completable, and the order
of A is at least 5. The first three completion methods use the classical Smetaniuk’s
method, as well as the reductions defined in Section 2. The fourth completion method
uses the variation of Smetaniuk’s method for T 2(A) and a reduction of A that simply
removes two rows and two columns.

Completion Method 1: A contains a replaceable symbol, and a row and a column
that replaces that symbol and themselves.

Without loss of generality, assume that the row and column replacing themselves are
Cn+1 and Rn+1, n+ 1 is the replaceable symbol, and n+ 1 is located in cells (1, n+ 1),
(2, n), (n, 2), and (n + 1, 1). Let (2, n + 1, α), (n + 1, 2, β) ∈ A for some α, β ∈ [n].
By Lemma 2.5, A can be reduced to R(A;Rn+1, Cn+1, n+ 1) ∈ PLS(2, 2;n). Let C
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be the completion of R(A;Rn+1, Cn+1, n+ 1). The Smetaniuk completion of T (C) is
a completion of A by Observation 3.3; (i) guarantees that every symbol above the
back diagonal of A remains in their cells, (ii) guarantees that n+ 1 returns to cells
(1, n+ 1), (2, n), (n, 2), and (n+ 1, 1), (iii) guarantees that β returns to cell (n+ 1, 2),
and (iv) guarantees that α returns to cell (2, n+ 1).

Completion Method 2: A or AT , but not both, contains a column that replaces itself.

Without loss of generality, assume that A contains a column that replaces itself, the
column replacing itself is Cn+1, n+ 1 is the replaceable symbol, and n+ 1 is located
in cells (1, n+ 1) and (2, n). Let (2, n+ 1, α) ∈ A for some α ∈ [n]. By Lemma 2.7,
there is a row replacing n+ 1 and we assume that it is Rn+1 (by assumption Rn+1

does not replace itself). This means that symbol n+ 1 appears in an intercalate and
we may assume (n, 1, n+ 1), (n− 1, 2, n+ 1) ∈ A. Reduce A to R(A;Rn+1, Cn+1, n+
1) ∈ PLS(2, 2;n), and let C be the completion of R(A;Rn+1, Cn+1, n + 1). Let
θ = ((1), (1 2 3), (1)) ∈ Sn × Sn × Sn and set C ′ = θ(C) (i.e., in C, move C1 to C2,
C2 to C3, C3 to C1, and leave the rows and symbols unchanged). As in Completion
Method 1, the Smetaniuk completion of T (C ′) guarantees a completion of θ(A) by
Observation 3.3, which guarantees a completion of A.

Completion Method 3: Neither A nor AT has a column that replaces itself and there
is at least one intercalate in R1 and R2 of A that does not occur in C1 and C2 of A.

Let S be the set of symbols appearing in cells [2]× [2] of A. Symbols from [n+ 1]\S
must occur as intercalates in A. Without loss of generality, assume that intercalate
In,n+1 occurs in cells [2] × {n, n + 1}, but does not occur in C1 and C2. For some
α ∈ [n−1]\S, assume that intercalate Iα,n+1 occurs in cells {n, n+1}× [2], specifically
with α in cells (n, 1) and (n + 1, 2). Let (1, j, α) ∈ A, where 3 6 j 6 n − 1.
Reduce A to R(A;Rn−1, Cj, n + 1) ∈ PLS(2, 2;n), and let C be the completion of
R(A;Rn−1, Cj, n+ 1).

Note that there exists k such that (k, n−1, α) ∈ C. Since α occurs in cells (n−1, 1) and
(n, 2) of C, it must be that k 6 n− 2. Let θ = ((1 2 ... k), (1 2 3), (1)) ∈ Sn×Sn×Sn.
Permute rows and columns of θ(C), keeping rows and columns 2, 3, n − 1, and
n stationary, until α appears in cells (n, 3), (n − 1, 2), (n − 2, 1), (2, n), (1, n − 1),
and cells of the form (i, j) where i + j = n + 1 (note that α is already in cells
(n, 3), (n− 1, 2), (2, n), (1, n− 1) by θ). Call this new LS (isotopic to θ(C)) C ′.

Let L be the Smetaniuk completion of T (C ′). Since the symbols in cells (n, 2) and
(n− 1, 3) of C ′ are distinct, α appears in cells (n, 3) and (n− 1, 2) in both arrays C ′

and L. Furthermore, by Observation 3.3 (iii), L(n + 1, 2) = C ′(n, 2) = A(n − 1, 1)
and L(n+ 1, 3) = C ′(n− 1, 3) = A(n− 1, 2). By Observation 3.3 (iv), L(2, n+ 1) =
C ′(2, n) = A(1, j). Since each occurrence of α is above the back diagonal of T (C ′),
except in cells (n, 3) and (2, n), L(3, n + 1) = C ′(3, n − 1) = A(2, j). Thus, the
Smetaniuk completion of T (C ′) guarantees a completion of A.

Completion Method 4: Neither A nor AT has a column that replaces itself and the
intercalates in R1 and R2 of A are the same as the intercalates in C1 and C2 of A.

Assume that In,n+1 occurs in cells [2]× {n, n+ 1} and in cells {n, n+ 1} × [2]. Let
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A′ ∈ PLS(2, 2;n− 1) be the PLS formed from A by removing rows and columns n
and n+ 1. Let C be the completion of A′.

If n− 1 is even, a Smetaniuk completion of T 2(C) guarantees a completion of A by
Observation 3.6 (i) and (ii). Suppose that n− 1 is odd. Let θ = ((1), (1 4)(2 5), (1)).
In θ(C), we may assume that intercalate Iγ,δ occurs in cells {n− 3, n− 2} × {4, 5}
for some γ, δ ∈ [n − 1]. Furthermore, n + 1 > 9, since otherwise A ∈ Γ or A′ ∈ Γ.
We may assume that θ(C)(n− 1, 2), θ(C)(n− 1, 3) /∈ {γ, δ}. Let L be the Smetaniuk
completion of T 2(θ(C)). By Observation 3.6 (ii) L contains intercalate In,n+1 on the
2×2 back diagonal. Furthermore, L contains intercalate Iγ,δ in cells {n, n+1}×{4, 5}.
By Observation 3.6 (iii), L(n− 1, 4) = θ(C)(n− 1, 4) = A(n− 1, 1) and L(n− 1, 5) =
θ(C)(n− 1, 5) = A(n− 1, 2). Thus, a Smetaniuk completion of T 2(θ(C)) guarantees
a completion of θ(A), which guarantees a completion of A.

We are now ready to begin the induction proof, starting with small cases for n =
2, 3, 4, 5, and 6. The result clearly holds for n ∈ {2, 3} (for n = 3 there is only one
empty cell and a completion follows using Hall’s Theorem). Additionally, all elements
of PLS(2, 2; 4)\Γ are isotopic to one of the PLSs in Figure 1 (in bold face) and each
has a completion.

Suppose that A ∈ PLS(2, 2; 5). If A has a row or column (or both) that replaces
itself, say R5 or C5 (or both), then for R(A;R5, C5, 5) /∈ Γ, use either Completion
Method 1 or 2 to complete A. Otherwise, R(A;R5, C5, 5) is isotopic to Y . In this
case, reduce A to R(A;R3, C5, 5) or R(A;R4, C5, 5), since at least one of these arrays
does not belong to Γ, and then use either Completion Method 1 or 2. For example,
in Figure 2, the first array is A ∈ PLS(2, 2; 5), the second array is R(A;R5, C5, 5)
(which is isotopic to Y ), the third array is R(A;R4, C5, 5), and the fourth array is the
completion of a PLS isotopic to A found in accordance with Completion Method 2.
If A does not have a row or column that can replace itself, then A must be isotopic
to Z.

Suppose that A ∈ PLS(2, 2; 6). If A has a row or column (or both) that replaces
itself, say R6 or C6 (or both), then for R(A;R6, C6, 6) /∈ Γ, use either Completion
Method 1 or 2 to complete A. Otherwise, R(A;R6, C6, 6) is isotopic to Z. In this
case, reduce A to R(A;R3, C6, 6), R(A;R4, C6, 6), or R(A;R5, C6, 6), since at least
two of these arrays do not belong to Γ, and then use either Completion Method 1
or 2. For example, in Figure 3, the first array is A ∈ PLS(2, 2; 6), the second array
is R(A;R6, C6, 6) (which is isotopic to Z), the third array is R(A;R3, C6, 6), and
the fourth array is the completion of a PLS isotopic to A found in accordance with
Completion Method 2.

If A does not have a row or column that replaces itself and the intercalates in the first
two rows are not identical to the intercalates of the first two columns, use Completion
Method 3 to complete A. Otherwise, assume that I5,6 occurs in cells [2] × {5, 6}
and cells {5, 6} × [2]. Let A′ ∈ PLS(2, 2; 4) be the PLS formed from A by removing
R5, R6, C5, and C6. If A′ is not isotopic to Y , use Completion Method 4. Otherwise,
A′ is isotopic to the first PLS (in bold face) in Figure 4, which has a completion.

Now we begin the inductive step. Let n > 6. Suppose that all elements of
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PLS(2, 2;n)\Γ can be completed and let A ∈ PLS(2, 2;n+ 1).

If A has a row or column (or both) that replaces itself, say Rn+1 or Cn+1 (or both),
then R(A;Rn+1, Cn+1, n+1) /∈ Γ, and use either Completion Method 1 or 2. If A does
not have a row or column that replaces itself and the intercalates in the first two rows
are not identical to the intercalates of the first two columns, use Completion Method 3.
Otherwise, assume that In,n+1 is in cells [2] × {n, n + 1} and cells {n, n + 1} × [2].
Let A′ ∈ PLS(2, 2;n− 1) be the array formed from A by removing Rn, Rn+1, Cn, and
Cn+1. If A′ is not isotopic to Z, use Completion Method 4. Otherwise, A is isotopic
to the second PLS in Figure 4, which has a completion.

1 2 3 4

2 1 4 3

3 4 2 1

4 3 1 2

1 2 3 4

3 1 4 2

4 3 2 1

2 4 1 3

1 2 3 4

3 4 1 2

2 1 4 3

4 3 2 1

1 2 3 4

3 4 1 2

2 3 4 1

4 1 2 3

1 2 3 4

3 4 2 1

2 1 4 3

4 3 1 2

Figure 1: Completions for all elements of PLS(2, 2; 4)\Γ, up to isotopisms.

1 2 3 4 5
3 4 5 1 2
2 5
4 1
5 3

1 2 4 3
3 4 1 2
4 1
2 3

1 2 4 3
3 4 1 2
2 1
4 3

1 2 3 4 5
3 4 5 1 2
2 5 4 3 1
5 3 1 2 4
4 1 2 5 3

Figure 2: Completing A ∈ PLS(2, 2; 5) when R(A;R5, C5, 5) is isotopic to Y .

1 2 3 4 5 6

3 1 6 5 4 2

2 3

4 6

5 4

6 5

1 2 4 5 3

3 1 5 4 2

2 3

5 4

4 5

1 2 4 5 3

3 1 5 4 2

5 4

4 3

2 5

1 2 3 4 5 6

3 1 6 5 4 2

5 4 1 2 6 3

4 6 2 1 3 5

6 5 4 3 2 1

2 3 5 6 1 4

Figure 3: Completing A ∈ PLS(2, 2; 6) when R(A;R6, C6, 6) is isotopic to Z.

5 Completing Arrays in PLS(2, b;n) for b > 3

First, we define arrays in PLS(2, b;n) that are incompletable, and conjecture that
these characterize all incompletable arrays of PLS(2, b;n) for b > 2. Then we
provide sufficient conditions under which arrays in PLS(2, b;n) for b > 3 are always
completable.

Definition 5.1. Let A ∈ PLS(2, b;n), where b + 2 6 n 6 2b + 1. Let i and j be
positive integers such that n = b+ 1 + j and j 6 i 6 b. We say that A is a bad array
if A satisfies the following:
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1 2 3 4 5 6
3 4 2 1 6 5
4 1 5 6 3 2
2 3 6 5 1 4
5 6 1 2 4 3
6 5 4 3 2 1

1 2 3 4 5 6 7
3 1 2 5 4 7 6
2 3 1 6 7 5 4
4 5 7 1 6 2 3
5 4 6 7 1 3 2
6 7 4 2 3 1 5
7 6 5 3 2 4 1

Figure 4: Completions of elements of PLS(2, 2; 6) and PLS(2, 2; 7).

(i) there exists a subset T ⊂ [n] of i symbols such that each of the bottom k rows
of X (with b+ j − i 6 k 6 b) contains T , and

(ii) the last column of X contains 2 symbols from [n]\T .

Let Γb be the set of isotopisms of bad arrays in PLS(2, b;n).

Observe that the arrays in Γb can not be completed. To see this, let A ∈ Γb. In order
to complete A, cells (n − k + 1, n), . . . , (n, n) must contain symbols outside of T .
Therefore, i+ k + 2 > b+ j + 2 symbols are needed to complete A. Hence, A can not
be completed.

Example 5.2. The following is an example of a bad array in PLS(2, 3; 5) and (an
isotopism of) a bad array in PLS(2, 4; 9), respectively:

1 2 3 4 5
4 1 5 2 3
3 5 2
5 3 4
2 4 1

1 2 3 4 5 6 7 8 9
3 1 5 2 4 9 6 7 8
2 5 4 1
4 3 2 5
5 4 1 3
9 8 7 6
6 9 8 7
7 6 9 8
8 7 6 9

Conjecture 5.3. Let A ∈ PLS(2, b;n). Then A cannot be completed if and only if
A ∈ Γb.

Note that Conjecture 5.3 implies that A ∈ PLS(2, b;n) is completable when n > 2b+2.
In Section 4, Conjecture 5.3 was confirmed for b = 2. When b = 2, there exists (up to
isotopisms) exactly two bad arrays, one of order 4 and one of order 5.

Let b > 3 be a positive integer and A ∈ PLS(2, b;n). By Lemma 2.3, Ck of X for
k > b replaces itself if and only if it is not a column of an intercalate. As in the b = 2
case, finding a column that replaces itself means that A can be reduced, allowing the
use of Smetaniuk’s Method.
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Proposition 5.4. Let A ∈ PLS(2, b;n) for b > 3. Assume that n is a replaceable
symbol, Rn and Cn replace n, and Cn replaces itself. If R(A;Rn, Cn, n) can be
completed, then A can be completed.

Proof. By assumption, R(A;Rn, Cn, n) can be completed, and we denote the com-
pletion C. Since Cn replaces itself, Completion Method 1 or 2 (from the proof of
Theorem 4.1) guarantees a completion of A.

The obvious set back to using Proposition 5.4 to complete elements of PLS(2, b;n) is
verifying the completability of R(A;Rn, Cn, n), especially if there exists elements of
PLS(2, b;n− 1) that cannot be completed. Furthermore, if no column replaces itself,
we can no longer work with AT since there is more than one nonempty cell below the
back diagonal of AT . Additionally, if we reduce A twice by removing an intercalate
in the first two rows, Hall’s Theorem will not fix symbols in cells of the last two
rows. Given these set backs, in what follows, we instead reduce the conjugate A(rs).
The main advantage in reducing A(rs) is that the reduction of A(rs) has a guaranteed
completion by Hall’s Theorem (this is explained in the proof of Theorem 5.11).

Example 5.5. The PLS below is A ∈ PLS(2, 3; 10), followed by A(rs):

1 2 3 4 5 6 7 8 9 10
3 1 2 5 4 7 8 6 10 9
2 4 1
4 5 6
5 6 7
6 7 9
7 9 5
8 3 10
9 10 8
10 8 4

1 2 3
3 1 2
2 8 1
4 3 10 1 2
5 4 7 2 1
6 5 4 1 2
7 6 5 2 1
8 10 9 2 1
9 7 6 1 2
10 9 8 2 1

Let A ∈ PLS(2, b;n). Note that A(rs) has the property that symbols 1 and 2 occur in
every row and column, while each of the symbols in {3, ..., n} occur in exactly b rows
and b columns. Additionally, the first b columns in A(rs) are filled. If cells [2]× [b]
consist only of symbols from [b], then all occurrences of symbols 1 and 2 in the first b
columns are in rows 1, . . . , b in A(rs).

With R1 and R2 of A ∈ PLS(2, b;n), define the permutation σA : [n]→ [n] such that
σA(i) = j if and only if (2, i, j) ∈ A. For example, A ∈ PLS(2, 3; 10) from Example
5.5 has permutation σA = (1 3 2)(4 5)(6 7 8)(9 10). Let I ⊆ [n]. We use σA(I) to
denote the restriction of the domain of σA to I.

Suppose that σA consists of t cycles of lengths l1, . . . , lt. Let ki = l1 + · · · + li for
1 6 i 6 t. The rows and columns of A(rs) can be permuted so that symbol 1 occurs
on the back diagonal, symbol 2 either occurs immediately above the back diagonal
or in cells (n, k1), (n− k1, k2), (n− k2, k3) . . . , (n− kt−1, kt), and the completely filled
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columns are still the first b columns. Such an isotopism of A(rs) is called a standard
cycle-form.

Example 5.6. Let A(rs) be as in Example 5.5. The following arrays are A(rs) and a
standard cycle-form of A(rs):

1 2 3
3 1 2
2 8 1
4 3 10 1 2
5 4 7 2 1
6 5 4 1 2
7 6 5 2 1
8 10 9 2 1
9 7 6 1 2
10 9 8 2 1

9 10 8 2 1
5 6 7 2 1
4 5 6 1 2
8 9 10 2 1
6 7 9 1 2
7 4 5 2 1
10 3 4 1 2
3 2 1
2 1 3
1 8 2

The following lemmas and definition are used to prove the next main result (see [7]
for a proof of the first lemma).

Lemma 5.7. Let G be a balanced bipartite graph on 2n vertices with δ(G) = k. Let
S ⊆ E(G) be a set of s independent edges (s > 1), and let T ⊆ E(G) \ S be a set of

t edges. If k − s > (n−1)
2

and t 6 k − s− 1, then G contains a 1-factor F in which
S ⊆ F and F ∩ T = ∅.

We use the following definition to prove our main result.

Definition 5.8. Let A ∈ PLS(2, b;n) and θ ∈ Sn × Sn × Sn. Let α ∈ [n] such that
(mi, i, α) ∈ θ(A(rs)) for each i ∈ [b]. Let j ∈ [n]. If Rj is a row in θ(A(rs)) such that
each row of {Rm1 ◦1 Rj, . . . , Rmb

◦b Rj} is Latin, then Rj replaces α in θ(A(rs)). Let
R = Rm1 ∪ ... ∪Rmb

. The array formed from replacing α with Rj in θ(A(rs)) is

((θ(A(rs))\R) ∪ (Rm1 ◦1 Rj) ∪ ... ∪ (Rmb
◦b Rj))\Rj.

Lemma 5.9. Let b > 2, A ∈ PLS(2, b;n), and B = A(rs) in standard cycle-form. Pick
any α not occurring in cells [2]× [b] of B. Furthermore, let C be a k× n subrectangle
of B. If k > b2 − b+ 3, then there is a row of C replacing symbol α in B.

Proof. Let A ∈ PLS(2, b;n), B = A(rs) in standard cycle-form, and C be a k × n
subrectangle of B. Pick any α not occurring in cells [2] × [b] of B. Similar to the
proof of Lemma 2.7, if Rj of B contains α then there are at most b − 1 rows of B
that cannot replace α in Rj of B. Therefore, there are at most b(b− 1) rows of B
that cannot replace α in B. Since k > b2 − b+ 3, there must be a row of C replacing
α in B.

Lemma 5.10. Let A ∈ PLS(2, b;n) and k ∈ Z. Suppose that Rn replaces symbol 1
in A(rs) and b + k 6 n−3

2
. Then there exists an array B ∈ PLS(n) containing A(rs)

such that the first b+ k columns of B are filled and Rn of B replaces symbol 1.
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Proof. Let k ∈ Z and suppose that b+k 6 n−3
2

. Suppose inductively that there exists
an array B′ containing A(rs) such that the first b+ k′ − 1 columns of B′ are filled for
some k′ ∈ [k] and Rn of B′ replaces symbol 1. Build a bipartite graph G = (V1, V2;E)
in which V1 = {R1, . . . , Rn}, V2 = {s1, . . . , sn}, and for j > 2, Risj ∈ E if and only if
symbol j does not occur in Ri of B′. If j ∈ {1, 2}, then sj is adjacent to each vertex
of V1. It follows that d(Ri) > n− b− k′+ 1 for each i ∈ [n] and d(sj) > n− b− k′+ 1
for each j ∈ [n].

Consider Cb+k′ of B′. Suppose that (j1, b + k′, 1), (j2, b + k′, 2) ∈ B′, and suppose
that symbol α ∈ [n] does not occur in Rj1 and Rn of B′. Such a symbol exists since
2(b + k − 1) < n. Consider independent edges Rj1s1, Rj2s2, and Rnsα in G. By
Lemma 5.7, these three edges can be extended to a 1-factor of G if n−b−k′−2 > n−1

2
,

or b+ k′ 6 n−3
2

. This holds since b+ k 6 n−3
2

.

Let F be a 1-factor of G which includes Rj1s1, Rj2s2, and Rnsα. Place symbol β in
cell (i, b+ k′) of B′ if and only if Riβ ∈ F . Since α occurs in cell (n, b+ k′) and does
not occur in Rj1 , Rn replaces symbol 1 in this new array. This process continues until
the first b + k columns are completed, resulting in the desired array B containing
A(rs) such that Rn replaces symbol 1 in B.

Theorem 5.11. Let A ∈ PLS(2, b;n). Suppose that cells [2] × [b] consist only of
symbols from [b]. If n > 2b2 − 2b + 5 and σA([n]\[b]) contains a cycle of length at
least n+5

2
, then A is completable.

Proof. Let A ∈ PLS(2, b;n) and suppose that cells [2]× [b] consist only of symbols
from [b]. Suppose that n > 2b2−2b+5 and σ′A = σA([n]\[b]) contains a cycle of length
l > n+5

2
. Without loss of generality, assume that A(rs) is in a standard cycle-form

in which the first b columns are filled and the longest cycle of σ′A occurs in cells
[l]× ([n]\[n− l]).
Since n > 2b2 − 2b + 5 and l > n+5

2
, by Lemma 5.9 there is a row among the first

l rows of A(rs) that replaces symbol 1. We may assume that Rl replaces symbol 1.
Set θ = (( n n − 1 . . . l), (1 2 . . . n − l + 1), (1)) ∈ Sn × Sn × Sn. Observe that
in θ(A(rs)), Rn replaces symbol 1. Since A(rs) is in a standard cycle-form, symbol 1
appears on the back diagonal cells (i.e., cells (n, 1), (n − 1, 2), ..., (1, n)) of θ(A(rs)).
By Lemma 5.10, since b+ (n− l+ 1− b) 6 n−3

2
, C1, Cb+2, Cb+3, . . . , Cn−l+1 of θ(A(rs))

can be completed. Let B ∈ PLS(n) denote the array containing θ(A(rs)) with the
first n− l + 1 columns completed. Furthermore, from Lemma 5.10, we may assume
that Rn replaces symbol 1 in B. Observe that symbol 2 only appears below symbol 1
once in the last l columns of B, specifically in cell (n, n).

In the first n − l + 1 columns of B, replace symbol 1 with Rn, remove symbol 1
in the last l − 1 columns, and remove Rn and Cn. Call the reduced array B′ and
observe that B′ is the (rs)-conjugate of an element of PLS(1, n− l + 1;n− 1). Since
each array in PLS(1, n− l + 1;n− 1) can be completed using Hall’s Theorem, let C
be a completion of B′. Furthermore, let L be the Smetaniuk completion of T (C).
Since the symbols in cells (n− 1, 2), (n− 2, 3), . . . , (l, n− l + 1) of C are all distinct,
by Observation 3.3 (iii), L(i, j) = C(i, j) if (i, j) is below the back diagonal cells of
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L and such that i 6 n − 1 and 2 6 j 6 n − l + 1. Also, by Observation 3.3 (iii),
L(n, i+ 1) = C(n− i, i+ 1) = B(n, i+ 1) for i ∈ [n− 1]. Furthermore, since symbol 2
is above symbol 1 in columns n− l + 2, ..., n− 1, it follows that (n, n, 2) ∈ L. Thus,
the Smetaniuk completion of T (C) guarantees a completion of B. Since B contains
θ(A(rs)), a completion of A exists.
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