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Abstract

An arc in a tournament T with n ≥ 3 vertices is called pancyclic if it
belongs to a cycle of length l for all 3 ≤ l ≤ n. We call a vertex u of T an
out-arc pancyclic vertex of T if each out-arc of u is pancyclic in T . Yao,
Guo and Zhang [Discrete Appl. Math. 99 (2000), 245–249] proved that
every strong tournament contains at least one out-arc pancyclic vertex,
and they gave an infinite class of strong tournaments, each of which
contains exactly one out-arc pancyclic vertex. In this paper we give the
structure of strong tournaments containing exactly one out-arc pancyclic
vertex.

1 Introduction

Let D be a digraph with the vertex set V (D) and the arc set A(D). We denote the
number of vertices in D by |V (D)|. A subdigraph induced by a subset A ⊆ V (D) is
denoted by D[A]. We also write D −A for D[V (D)− A].

A tournament is a digraph, where there is precisely one arc between every pair
of distinct vertices. An l-cycle is a cycle of length l. An arc in a digraph D is said
to be pancyclic, if it belongs to an l-cycle for all 3 ≤ l ≤ n. An arc leaving from a
vertex x in a digraph is called an out-arc of x. We call a vertex u of T an out-arc
pancyclic vertex of T , if each out-arc of u is pancyclic in T .

A digraph D is said to be strong, if for every pair of vertices x and y, D contains
a path from x to y and a path from y to x. A directed path from x to y in D is
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denoted by (x, y)-path. D is called k-strong if |V (D)| ≥ k + 1 and D −X is strong
for any set X ⊆ V (D) with |X| < k. If a digraph is strong, it is 1-strong. If a
digraph D is k-strong, but not (k+1)-strong, then κ(D) = k is defined as the strong
connectivity of D.

In [4], Thomassen confirmed that every strong tournament contains a vertex x
such that each out-arc of x is contained in a Hamilton cycle. In 2000, Yao et al.[5]
extended the result of Thomassen and proved that every strong tournament T has
an out-arc pancyclic vertex. In the same paper, they also found an infinite class of
strong tournaments, each of which contains exactly one out-arc pancyclic vertex (see
Figure 1). For a strong tournament T with minimum out-degree at least two, Guo et
al. [3] proved that T contains at least three out-arc pancyclic vertices. This implies
that a strong tournament containing exactly one out-arc pancyclic vertex can only
be 1-strong.

Example. (Yao [5]). Let n ≥ 5 be an integer and let Tn be a tournament with the
vertex set {v1, v2, . . . , vn} and the arc set

{vivj | 2 ≤ i < j ≤ n} ∪ {vn−1v1, vnv1} ∪ {v1vj | 2 ≤ j ≤ n− 2}.
Then Tn contains exactly one vertex vn whose out-arcs are pancyclic.
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Figure 1: A strong tournament T containing exactly one out-arc pancyclic vertex, where
vi → vj for all 2 ≤ i < j ≤ n.

In this paper, we obtain a sufficient and necessary condition for a strong tourna-
ment to contain exactly one out-arc pancyclic vertex.

2 Terminology and Preliminaries

We assume that the reader is familiar with the standard terminology on digraphs
and refer the reader to [1].

If uv is an arc of a digraph D, then we say that u dominates v or uv is an out-arc
of u, and we write u → v. For disjoint subsets X and Y of V (D), if every vertex of
X dominates every vertex of Y , we say X dominates Y and write X → Y . If there
is no arc from a vertex in Y to a vertex in X , we say X ⇒ Y . For a tournament,
X → Y if and only if X ⇒ Y .
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Let x ∈ V (D) and H be a subdigraph of D. The set of all vertices in H domi-
nating x (dominated by x, respectively) is denoted by N−

H (x) (N
+
H (x), respectively).

Furthermore, d−H(x) = |N−
H(x)| (d+H(x) = |N+

H (x)|, respectively) is called the in-
degree (out-degree, respectively) of x in H . We will omit the subscript if H = D. We
use δ+(D) = min{d+D(x) | x ∈ V (D)} to stand for the minimum out-degree of D.

A path (cycle) containing every vertex of D is called a Hamilton path (Hamilton
cycle) of D. For two vertices u, v on a path P , we let uPv denote the unique (u, v)-
path on P .

A set X ⊆ V (D) is called a separating set if D − X is not strong. A vertex
u ∈ V (D) is also called a cut vertex of D if D − {u} is not strong. A strong
component of a digraph D is a maximal induced subdigraph of D which is strong.
If D is not strong, then we can partition the vertices in D into strong components
T1, T2, . . . , Tr (r ≥ 2), such that Ti ⇒ Tj if and only if i < j.

In the proofs of our main results, the following results are very useful.

Lemma 2.1 (Camion [2]). A non-trivial tournament is strong if and only if it has
a Hamilton cycle.

Lemma 2.2 (Yao [5]). Let Tn be a strong tournament on n vertices and assume that
the vertices of Tn are labeled u1, u2, . . . , un such that d+(u1) ≤ d+(u2) ≤ . . . ≤ d+(un).
If d+(u1) = 1, then all out-arcs of u1 are pancyclic.

Lemma 2.3 (Guo [3]). Every strong tournament T with minimum out-degree at
least two contains at least three out-arc pancyclic vertices.

Lemma 2.4 (Yeo [6]). Let D be a k-strong digraph, with k ≥ 1, and let S be a
separating set in D, such that T = D−S is a tournament. Let T1, T2, . . . , Tr (r ≥ 2)
be the strong components of T , such that T1 ⇒ T2 ⇒ · · · ⇒ Tr. Then, for every
1 ≤ l ≤ |V (T )| − 1, u ∈ T1 and v ∈ Tr, there exists a (u, v)-path of length l in T .

3 Main results

Theorem 3.1. Let T be a strong tournament with strong connectivity κ(T ) = 1.
Let v be a cut vertex of T and let T1, T2, . . . , Tr (r ≥ 2) be the strong components of
T − v, such that Ti ⇒ Tj if and only if i < j. Let x ∈ V (Tr−1). Then the following
hold:

(1) If V (Tr−1) = {x}, then x is an out-arc pancyclic vertex of T if and only if
V (Tr) → v → x.

(2) If |V (Tr−1)| > 1, then x is an out-arc pancyclic vertex of T if and only if
V (Tr) → v → x and for each y ∈ N+

Tr−1
(x), there exists a Hamilton path

containing xy in Tr−1 and there exists a 3-cycle containing xy in D[V (Tr−1) ∪
{v}].



Q. GUO AND G. XU/AUSTRALAS. J. COMBIN. 68 (1) (2017), 147–152 150

Proof. Since T is strong, there is a vertex u in T1 such that v → u.

(1) (Sufficiency.) Suppose V (Tr−1) = {x} and V (Tr) → v → x. Let x1 ∈ N+(x)
be arbitrary. Then x1 ∈ V (Tr) and x1 → v. It is clear that xx1vx is a 3-cycle
containing xx1. Using Lemma 2.1 on each component, it is easy to prove that there
exists a (u, x)-path Pl of length l in T for every 1 ≤ l ≤ |V (T )| − |V (Tr) ∪ {v}| −
1. Thus xx1vuPlx is a cycle of length l + 3 containing xx1 for every 1 ≤ l ≤
|V (T )|− |V (Tr)|−2. Suppose that x1x2 . . . x|V (Tr)|x1 is a Hamilton cycle of Tr. Then
xx1x2 . . . xivuP|V (T )|−|V (Tr)|−2x is a cycle of length |V (T )| − |V (Tr)| + i containing
xx1 for every 2 ≤ i ≤ |V (Tr)|. Therefore, xx1 is contained in an m-cycle for every
m ∈ {3, 4, . . . , |V (T )|}, we note that xx1 is pancyclic and x is an out-arc pancyclic
vertex of T .

(Necessity.) Now, let V (Tr−1) = {x} and x is an out-arc pancyclic vertex of T .
We will prove V (Tr) → v → x. Let z ∈ V (Tr) be arbitrary. Then z ∈ N+(x) and xz
is pancyclic in T . So xz is in a 3-cycle. Note that Ti ⇒ Tj if and only if i < j. This
implies that z → v → x. That is, we have that V (Tr) → v → x.

(2) (Sufficiency.) Suppose that |V (Tr−1)| > 1, V (Tr) → v → x and for each
y ∈ N+

Tr−1
(x), there exists a Hamilton path containing xy in Tr−1 and there exists

a 3-cycle containing xy in D[V (Tr−1) ∪ {v}]. We will prove that x is an out-arc
pancyclic vertex of T . Let w ∈ N+(x) be arbitrary. Then w ∈ V (Tr−1)∪ V (Tr). We
only need to prove that xw is pancyclic in T .

If w ∈ V (Tr−1), by assumption, there exists a Hamilton path containing xw in
Tr−1 and there exists a 3-cycle containing xw in D[V (Tr−1)∪{v}]. Using Lemma 2.1
on each component except Tr−1 and using the Hamilton path containing xw in Tr−1,
it is easy to prove that, for each z ∈ V (Tr), there exists a (u, z)-path Pl of length l in
T containing xw for every 3 ≤ l ≤ |V (T )| − 2. Thus uPlzvu is a cycle of length l+2
containing xw for every 3 ≤ l ≤ |V (T )| − 2. Note that xwzvx is a 4-cycle containing
xw for any z ∈ V (Tr) and there exists a 3-cycle containing xw in D[V (Tr−1) ∪ {v}].
Therefore, xw is contained in an m-cycle for every m ∈ {3, 4, . . . , |V (T )|}, we note
that xw is pancyclic.

If w ∈ V (Tr), then w → v. It is clear that xwvx is a 3-cycle containing xw.
Using Lemma 2.1 on each component except Tr, it is easy to prove that there exists
a (u, x)-path Pl of length l in T for every 1 ≤ l ≤ |V (T )| − |V (Tr) ∪ {v}| − 1. Thus
xwvuPlx is a cycle of length l+3 containing xw for every 1 ≤ l ≤ |V (T )|− |V (Tr)|−
2. Suppose that x1x2 . . . x|V (Tr)| is a Hamilton cycle of Tr with x1 = w. Then
xx1x2 . . . xivuP|V (T )|−|V (Tr)|−2x is a cycle of length |V (T )| − |V (Tr)| + i containing
xw for every 2 ≤ i ≤ |V (Tr)|. Therefore xw is contained in an m-cycle for every
m ∈ {3, 4, . . . , |V (T )|}, and we note that xw is pancyclic.

(Necessity.) Let x ∈ V (Tr−1) be an out-arc pancyclic vertex of T . We first prove
V (Tr) → v → x. Let z ∈ V (Tr) be arbitrary. Then z ∈ N+(x) and xz is pancyclic
in T . So xz is in a 3-cycle which implies that z → v → x. That is, we have that
V (Tr) → v → x.

For each y ∈ N+
Tr−1

(x), we have that xy is pancyclic in T , and so xy is contained
in an m-cycle for every m ∈ {3, 4, . . . , |V (T )|}. Let C = vx1x2 . . . x|V (T )|−1v be a
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Hamilton cycle containing xy with some xk = x and xk+1 = y. Suppose that starting
from v, xi is the first vertex and xj is the last one appearing in V (Tr−1) on C. Then
i ≤ k < j and xixi+1 . . . xj is a Hamilton path containing xy of Tr−1. Since xy is in a
3-cycle, it is clear that such a 3-cycle can only be contained in the D[V (Tr−1)∪{v}].

�

Theorem 3.2. Let T be a strong tournament with n vertices and strong connectivity
κ(T ). Then T contains exactly one out-arc pancyclic vertex if and only if all of the
following hold.

(1) n ≥ 5.

(2) κ(T ) = 1 and there exists a cut vertex v of T and strong components T1, T2, . . . ,
Tr (r ≥ 3) of T − v such that Ti ⇒ Tj if and only if i < j and |V (Tr)| = 1.

(3) There exists a vertex z ∈ V (T2) ∪ · · · ∪ V (Tr−1) such that v → z.

(4) If V (Tr−1) = {u1}, then u1 → v. If |V (Tr−1)| > 1, then, for any x ∈ V (Tr−1),
we have x → v or there exists a vertex y ∈ N+

Tr−1
(x) such that there is no

Hamilton path containing xy in Tr−1 or there exists a vertex z ∈ N+
Tr−1

(x) such
that there is no 3-cycle containing xz in D[V (Tr−1) ∪ {v}].

Proof. (Sufficiency.) Let T be a strong tournament with n vertices and strong
connectivity κ(T ) and T satisfies (1)–(4). By (2), assume that v is a cut vertex of
T and T1, T2, . . . , Tr (r ≥ 3) are strong components of T − v such that Ti ⇒ Tj

if and only if i < j and |V (Tr)| = 1. Let V (Tr) = {u}. Then d+(u) = 1 and
Lemma 2.2 implies that u is an out-arc pancyclic vertex of T . We will prove that
any vertex except u in T is not an out-arc pancyclic vertex of T . By (3), there exists
a vertex z ∈ V (T2) ∪ · · · ∪ V (Tr−1) such that v → z. Then vz can not be contained
in any Hamilton cycle of T and so v is not an out-arc pancyclic vertex of T . Let
x ∈ V (T1)∪· · ·∪V (Tr−2) be arbitrary. It is easy to see that xu can not be contained
in any Hamilton cycle of T and so x is also not an out-arc pancyclic vertex of T .
We consider the vertices of Tr−1. By (4) and Theorem 3.1, we have that any vertex
Tr−1 is not an out-arc pancyclic vertex of T . Thus, u is an unique out-arc pancyclic
vertex of T .

(Necessity.) Let T be a strong tournament with n vertices and strong connectivity
κ(T ) which contains exactly one out-arc pancyclic vertex. By lemma 2.3, T is a
strong tournament with minimum out-degree 1. Let M be the set of vertices with
out-degree 1 in T . By Lemma 2.2, all vertices in M are out-arc pancyclic vertices
of T . So we have |M | = 1. If n ≤ 4, then it is clear that |M | ≥ 2, a contradiction.
Therefore, we have n ≥ 5 and (1) is proved.

Let M = {u} and N+(u) = {v}. Then v is a cut vertex of T and κ(T ) = 1. Let
T1, T2, . . . , Tr (r ≥ 2) be the strong components of T − v, such that Ti ⇒ Tj if and
only if i < j. Obviously, V (Tr) = {u} and u is an out-arc pancyclic vertex of T . If
r = 2, it is easy to see that v is also an out-arc pancyclic vertex of T , a contradiction.
So we have r ≥ 3. (2) is proved.
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If V (T2) ∪ · · · ∪ V (Tr−1) ⇒ {v}, then N+(v) ⊆ V (T1). Let v1 ∈ N+(v) be
arbitrary. By Lemma 2.4, there exists a (v1, u)-path Pl of length l in T for every
1 ≤ l ≤ |V (T )| − 2. So vv1Pluv is an (l + 2)-cycle containing vv1 for every 1 ≤ l ≤
|V (T )| − 2, which implies that v is an out-arc pancyclic vertex of T , a contradiction.
Therefore, there exists a vertex z ∈ V (T2) ∪ · · · ∪ V (Tr−1) such that v → z and (3)
is proved.

Since u is the unique out-arc pancyclic vertex of T , we have that no vertex in
Tr−1 is an out-arc pancyclic vertex of T . Then (4) is obvious by using Theorem 3.1.

�
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