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Abstract

A partial t-spread in Fn
q is a collection of t-dimensional subspaces with

trivial intersection such that each non-zero vector is covered at most
once. How many t-dimensional subspaces can be packed into Fn

q , i.e.,
what is the maximum cardinality of a partial t-spread? An upper bound,
given by Drake and Freeman, survived more than forty years without
any improvement. At the end of 2015, the upper bounds started to
crumble. Here, we give self-contained elementary proofs of the current
(unpublished) state of the art—inviting the reader to pursue the newly
opened path to improved upper bounds for partial t-spreads.

1 Introduction

Let q > 1 be a prime power and n a positive integer. A vector space partition P of Fn
q

is a collection of subspaces with the property that every non-zero vector is contained
in a unique member of P. If P contains md subspaces of dimension d, then P is
of type kmk . . . 1m1 , where the dimensions are written in decreasing order. We may
leave out some of the cases with md = 0. Subspaces of dimension 1 are called holes.
If there is at least one non-hole, then P is called non-trivial.

A partial t-spread in Fn
q is a collection of t-dimensional subspaces such that the

non-zero vectors are covered at most once, i.e., a vector space partition of type
tmt1m1 . By Aq(n, 2t; t) we denote the maximum value of mt.

The more general notation Aq(n, 2t−2w; t) denotes the maximum cardinality of a
collection of t-dimensional subspaces, whose pairwise intersections have a dimension
of at most w. Those objects are called constant dimension codes, see e.g. [6]. For
known bounds, we refer to [10] containing also the generalization to subspace codes
of mixed dimension.

Writing n = kt + r, with k, r ∈ N0 and r ≤ t− 1, we can state that for r ≤ 1 or
n ≤ 2t the exact value of Aq(n, 2t; t) was known for more than forty years [1]. Via a
computer search the cases A2(3k+2, 6; 3) were settled in 2010 by El-Zanati et al. [5].
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In 2015 the case q = r = 2 was resolved by continuing the original approach of Beu-
telspacher [13], i.e., by considering the set of holes in (n− 2)-dimensional subspaces
and some averaging arguments. Very recently, Năstase and Sissokho found a very
clear generalized averaging method for the number of holes in (n − j)-dimensional
subspaces, where j ≤ t− 2, and general q, see [14]. Their Theorem 5 determines the
exact values of Aq(kt+ r, 2t; t) in all cases where t >

[
r
1

]
q
:= qr−1

q−1
. Here, we stream-

line and generalize their approach leading to improved upper bounds on Aq(n, 2t; t),
cf. [15]. All previously known upper bounds are condensed in Theorems 2.9 and 2.10
at the end of the paper. The very few cases, known to us, where the corresponding
upper bound can be further lowered, are listed in the Appendix.

2 Subspaces with the minimum number of holes

Definition 2.1 A vector space partition P of Fn
q has hole-type (t, s,m1), if it is of

type tmt . . . sms1m1 , for some integers n > t ≥ s ≥ 2, mi ∈ N0 for 1 ≤ i ≤ t, mi = 0
for 2 ≤ i ≤ s− 1, and P is non-trivial.

Lemma 2.2 (Cf. [14, Proof of Lemma 9].) Let P be a non-trivial vector space
partition of Fn

q of type tmt . . . sms1m1 and l, x ∈ N0 with
∑t

i=s mi = lqs + x. PH =

{U ∩ H : U ∈ P} is a vector space partition of type tm
′
t . . . (s − 1)m

′
s−11m

′
1, for

a hyperplane H containing m̂1 holes of P. We have Z � m1+x−1
q

≡ m̂1 ≡ m1

(mod qs−1). If s > 2, then PH is non-trivial and m′
1 = m̂1.

Proof. If U ∈ P, then dim(U)− dim(U ∩H) ∈ {0, 1} for an arbitrary hyperplane
H . Since P is non-trivial, we have n ≥ s.

For s > 2, counting the 1-dimensional subspaces of Fn
q and H , via P and PH ,

yields (lqs + x) ·[s
1

]
q
+aqs+m1 =

[
n
1

]
q
and (lqs + x) ·[s−1

1

]
q
+a′qs−1+m̂1 =

[
n−1
1

]
q
for

some a, a′ ∈ N0. By subtracting we obtain (lqs + x) ·qs−1+aqs−a′qs−1+m1−m̂1 =
qn−1, so that m1 ≡ m̂1 (mod qs−1). Since 1 + q · [n−1

1

]
q
− [

n
1

]
q
= 0 we conclude

1 + qm̂1 −m1 − x ≡ 0 (mod qs). Thus, Z � m1+x−1
q

≡ m̂1 (mod qs−1). Since P is

non-trivial there exists an element U ∈ P with dim(U) ≥ 3, so that U ∩ H ∈ PH

with dim(U ∩H) ≥ 2, i.e., PH is non-trivial. Since every U ∈ P satisfies dim(U) = 1
or dim(U) ≥ 3, we have dim(U ∩ H) = 1 if and only if dim(U) = 1 and U ⊆ H .
Thus, we have m′

1 = m̂1.

For s = 2 we have (lq2 + x) ·(q+1)+aq2+m1 =
[
n
1

]
q
and (lq2 + x) ·1+a′q+m̂1 =[

n−1
1

]
q
leading to the same conclusion Z � m1+x−1

q
≡ m̂1 ≡ m1 (mod qs−1). �

Lemma 2.3 (Cf. [14, Proof of Lemma 9].) Let P be a vector space partition of Fn
q

of hole-type (t, s,m1), l ∈ N0, x ∈ N≥1 with
∑t

i=smi = lqs + x, and b, c ∈ Z with
m1 = bqs + c ≥ 1, where we do not require x < qs, c < qs, or b, c ≥ 0. Then, there
exists a hyperplane Ĥ with m̂1 = b̂qs−1 + ĉ holes, where ĉ := c+x−1

q
∈ Z, b > b̂ ∈ Z,

and m̂1 ≡ ĉ ≡ c ≡ m1 (mod qs−1).
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Proof. The average number of holes per hyperplane is given by m1 ·
[
n−1
1

]
q
/
[
n
1

]
q
,

which is strictly smaller than m1

q
. Let Ĥ be a hyperplane with the minimum number

of holes, whose quantity is denoted by m̂1, hence m̂1 < m1

q
. Apply Lemma 2.2

and observe m1 ≡ c (mod qs). Assuming b̂ ≥ b yields qm̂1 ≥ q · (bqs−1 + ĉ) =
bqs + c+ x− 1 ≥ m1, which is a contradiction. �

Corollary 2.4 Using the notation from Lemma 2.3, let P be a non-trivial vector
space partition with x ≥ 1 and f be the largest integer such that qf divides c. For each
0 ≤ j ≤ s−max{1, f} there exists an (n− j)-dimensional subspace U containing m̂1

holes with m̂1 ≡ ĉ (mod qs−j) and m̂1 ≤ (b− j) · qs−j + ĉ, where ĉ =
c+[j1]q·(x−1)

qj
∈ Z.

Proof. Observe m̂1 ≡ c 	≡ 0 (mod qs−j), i.e., m̂1 ≥ 1, for all j < s− f . �

So far, we can guarantee that some subspace contains not too many holes. Next,
we adjust to the situation of partial spreads before we come up with some non-
existence results for vector space partitions with few holes.

Lemma 2.5 Let P be a non-trivial vector space partition of type tmt1m1 of Fn
q with

mt = lqt+x, where l = qn−t−qr

qt−1
, x ≥ 2, t =

[
r
1

]
q
+1− z+u > r, qf |x−1, qf+1 �x−1,

and f, u, z, r, x ∈ N0. For max{1, f} ≤ y ≤ t there exists an (n− t+ y)-dimensional
subspace U with L ≤ (z+ y−1−u)qy +w holes, where w = −(x−1)

[
y
1

]
q
and L ≡ w

(mod qy).

Proof. Due to

m1 =

[
n

1

]
q

−mt ·
[
t

1

]
q

=

[
r

1

]
q

qt −
[
t

1

]
q

(x− 1),

we have m1 = bqt + c for b =
[
r
1

]
q
and c = −[

t
1

]
q
(x− 1), where qf

′ |x− 1 if and only

if qf
′ |c for f ′ ∈ N0. Setting s = t and j = t− y, we observe 0 ≤ j ≤ s−max{1, f},

since max{1, f} ≤ y ≤ t. With this, we apply Corollary 2.4 and obtain an (n−t+y)-
dimensional subspace U with

L = m̂1 ≤ (b− j) · qs−j +
c+

[
j
1

]
q
· (x− 1)

qj

= (z + y − 1− u) · qy − (x− 1) ·
[
t
1

]
q
− [

t−y
1

]
q

qt−y

= (z + y − 1− u)qy − (x− 1)

[
y

1

]
q

= (z + y − 1− u)qy + w

holes, so that L ≤ (z + y − 1− u)qy + w and L ≡ w (mod qy). �
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Lemma 2.6 Let P be a vector space partition of Fn
q with c ≥ 1 holes and let ai denote

the number of hyperplanes containing i holes. Then,
∑c

i=0 ai =
[
n
1

]
q
,
∑c

i=0 iai =

c · [n−1
1

]
q
and

∑c
i=0 i(i− 1)ai = c(c− 1) · [n−2

1

]
q
.

Proof. Double-count the incidences of the tuples (H), (B1, H), and (B1, B2, H),
where H is a hyperplane and B1 	= B2 are points contained in H . �

Lemma 2.7 Let m ∈ Z, and P be a vector space partition of Fn
q of hole-type (t, s, c).

Then, τq(c, q
s−1, m) · qn−2s − m(m − 1) ≥ 0, where τq(c, q

s−1, m) = m(m − 1)q2s −
c(2m− 1)(q − 1)qs + c(q − 1)

(
c(q − 1) + 1

)
.

Proof. As an abbreviation we set Δ = qs−1. Consider the three equations from

Lemma 2.6. (c−mΔ)
(
c− (m− 1)Δ

)
times the first minus

(
2c− (2m− 1)Δ− 1

)
times the second plus the third equation gives

c∑
i=0

(mΔ− c+ i) · (mΔ− c+ i+Δ)ai =
1

q − 1
·
(
m(m− 1)Δ2qn

−c(2m− 1)(q − 1)Δqn−1 + c(q − 1)
(
c(q − 1) + 1

)
qn−2 −m(m− 1)Δ2

)
.

Due to Lemma 2.2 we can have ai > 0 only if i ≡ c (mod Δ). So, substituting
i = c− hΔ and dividing the equation by Δ2/(q − 1), yields

(q − 1) ·
�c/Δ�∑
h=0

(m− h)(m− h− 1)ac−hΔ = τq(c,Δ, m) · q
n−2

Δ2
−m(m− 1).

We observe ai ≥ 0 for all 0 ≤ i ≤ c and (m− h)(m− h− 1) ≥ 0 for all m, h ∈ Z. �

Lemma 2.8 For integers n > t ≥ s ≥ 2 and i ≤ s− 1, there exists no vector space
partition P of Fn

q of hole-type (t, s, c), where c = i · qs − [
s
1

]
q
+ s− 1.

Proof. Since we have c < 0 for i ≤ 0, we can assume i ≥ 1 in the following.
Let, to the contrary, P be such a vector space partition and apply Lemma 2.7 with
m = i(q − 1) onto P. We compute τq(c, q

s−1, m) = (m− 1− a) qs + a(a + 1) using
c(q − 1) = qs(m − 1) + a, where a := 1 + (s − 1)(q − 1). Setting y = s − 1 − i, we
have 0 ≤ y ≤ s−2 and τq(c, q

s−1, m) = −qs(y(q−1)+2)+ (s−1)2q2− q(s−1)(2s−
5) + (s− 2)(s− 3).

If q = 2, then y ≥ 0 and s ≥ 2 yields

τ2(c, 2
s−1, m) = −2s(y + 2) + s2 + s ≤ (

s2 − s− 2s
)
+ (2s− 2s) < 0.

If s = 2, then we have y = 0 and τq(c, q
s−1, m) = −q2+q < 0. If q, s ≥ 3, then we have

q(2s−5) ≥ s−3, so that τq(c, q
s−1, m) ≤ −2qs+(s−1)2q2 ≤ −2 · 3s−2q2+(s−1)2q2

due to y ≥ 0 and q ≥ 3. Since 2 · 3s−2 > (s−1)2 for s ≥ 3, we have τq(c, q
s−1, m) < 0

in all cases.

Thus, Lemma 2.7 yields a contradiction, since qn−2s > 0 and m(m − 1) ≥ 0 for
every integer m. �



S. KURZ/AUSTRALAS. J. COMBIN. 68 (1) (2017), 122–130 126

For more general non-existence results of vector space partitions see e.g. [9, The-
orem 1] and the related literature.

After these preparations we are ready to prove two upper bounds on the maximum
cardinality Aq(n, 2t; t). Suppose Aq(n, 2t; t) = mt for some integer mt; then there
exists a vector space partition of Fn

q of type tmt1m1 , where m1 =
[
n
1

]
q
−mt ·

[
t
1

]
q
.

Theorem 2.9 (Cf. [14, Lemma 10], which covers the case z = 1.) For integers
r ≥ 1, k ≥ 2, u ≥ 0, and 0 ≤ z ≤ [

r
1

]
q
/2 with t =

[
r
1

]
q
+ 1 − z + u > r we have

Aq(n, 2t; t) ≤ lqt + 1 + z(q − 1), where l = qn−t−qr

qt−1
and n = kt + r.

Proof. Apply Lemma 2.5 with x = 2+z(q−1) ≥ 2 in order to deduce the existence
of an (n − t + y)-dimensional subspace U with L ≤ (z + y − 1 − u)qy − (x− 1)

[
y
1

]
q

holes, where L ≡ −(x − 1)
[
y
1

]
q
(mod qy). Now, we set y = z + 1. Observe that

qf |x− 1 = 1 + z(q − 1) ≥ 1, for f ∈ N0, implies qf ≤ 1 + z(q − 1), so that y > z ≥
(qf −1)/(q−1) ≥ 2f −1 ≥ f . Additionally, we have 1 ≤ y = z+1 ≤ [

r
1

]
q
+1−z ≤ t.

If z = 0, then y = 1, x = 2, and L ≤ −uq − 1 < 0. For z ≥ 1, we apply Lemma 2.8
onto U with s = y, c = L =

(z + y − 1− u)qy − (x− 1)

[
y

1

]
q

− jqy = (y − 1− j − u)qy −
[
y

1

]
q

+ y − 1

for some j ∈ N0, and i = y − 1− j − u ∈ Z. Thus, Aq(n, 2t; t) ≤ lqt + x− 1. �

The known constructions for partial t-spreads give Aq(kt+ r, 2t; t) ≥ lqt + 1; see
e.g. [1] (or [13] for an interpretation using the more general multilevel construction
for subspace codes). Thus Theorem 2.9 is tight for t ≥ [

r
1

]
q
+ 1, cf. [14, Theorem 5].

Theorem 2.10 For integers r ≥ 1, k ≥ 2, y ≥ max{r, 2}, z ≥ 0 with λ = qy, y ≤ t,

t =
[
r
1

]
q
+ 1− z > r, n = kt+ r, and l = qn−t−qr

qt−1
, we have

Aq(n, 2t; t) ≤ lqt +

⌈
λ− 1

2
− 1

2

√
1 + 4λ (λ− (z + y − 1)(q − 1)− 1)

⌉
.

Proof. From Lemma 2.5 we conclude L ≤ (z+y−1)qy−(x−1)
[
y
1

]
q
and L ≡ −(x−

1)
[
y
1

]
q
(mod qy) for the number of holes of a certain (n−t+y)-dimensional subspace U

of Fn
q . PU := {P∩U | P ∈ P} is of hole-type (t, y, L) if y ≥ 2. Next, we will show that

τq(c, q
y−1, m) ≤ 0, see Lemma 2.7, where c = iqy − (x−1)

[
y
1

]
q
with 1 ≤ i ≤ z+y−1,

for suitable integers x and m. Note that, in order to apply Lemma 2.5, we have to
satisfy x ≥ 2 and y ≥ f for all integers f with qf |x− 1. Applying Lemma 2.7 then
gives the desired contradiction, so that Aq(n, 2t; t) ≤ lqt + x− 1.

We choose m = i(q − 1)− (x− 1) + 1, so that τq(c, q
y−1, m) = x2 − (2λ+ 1)x+

λ(i(q − 1) + 2). Solving τq(c, q
y−1, m) = 0 for x gives x0 = λ + 1

2
± 1

2
θ(i), where
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θ(i) =
√

1− 4iλ(q − 1) + 4λ(λ− 1). We have τq(c, q
y−1, m) ≤ 0 for |2x− 2λ− 1| ≤

θ(i). We need to find an integer x ≥ 2 such that this inequality is satisfied for
all 1 ≤ i ≤ z + y − 1. The strongest restriction is attained for i = z + y − 1.
Since z + y − 1 ≤ [

r
1

]
q
and λ = qy ≥ qr, we have θ(i) ≥ θ(z + y − 1) ≥ 1, so that

τq(c, q
y−1, m) ≤ 0 for x =

⌈
λ+ 1

2
− 1

2
θ(z + y − 1)

⌉
. (Observe x ≤ λ+ 1

2
+ 1

2
θ(z+y−1)

due to θ(z + y − 1) ≥ 1.) Since x ≤ λ + 1, we have x − 1 ≤ λ = qy, so that
qf |x − 1 implies f ≤ y provided x ≥ 2. The latter is true due to θ(z + y − 1) ≤√

1− 4λ(q − 1) + 4λ(λ− 1) ≤ √
1 + 4λ(λ− 2) < 2(λ−1), which implies x ≥ ⌈

3
2

⌉
=

2.

So far we have constructed a suitable m ∈ Z such that τq(c, q
y−1, m) ≤ 0 for

x =
⌈
λ+ 1

2
− 1

2
θ(z + y − 1)

⌉
. If τq(c, q

y−1, m) < 0, then Lemma 2.7 gives a con-
tradiction, so that we assume τq(c, q

y−1, m) = 0 in the following. If i < z + y − 1
we have τq(c, q

y−1, m) < 0 due to θ(i) > θ(z + y − 1), so that we assume i =
z + y − 1. Thus, θ(z + y − 1) ∈ N0. However, we can write θ(z + y − 1)2 =
1+ 4λ (λ− (z + y − 1)(q − 1)− 1) = (2w− 1)2 = 1+ 4w(w− 1) for some integer w.
If w /∈ {0, 1}, then gcd(w,w − 1) = 1, so that either λ = qy | w or λ = qy | w − 1.
Thus, in any case, w ≥ qy, which is impossible since (z + y − 1)(q − 1) ≥ 1. Finally,
w ∈ {0, 1} implies w(w − 1) = 0, so that λ − (z + y − 1)(q − 1) − 1 = 0. Thus,
z + y − 1 =

[
y
1

]
q
≥ [

r
1

]
q
since y ≥ r. The assumptions y ≤ t and t =

[
r
1

]
q
+ 1 − z

imply z + y − 1 =
[
r
1

]
q
and y = r. This gives t = r, which is excluded. �

We remark that our specific choice of m can be motivated as follows. Solving
∂τq(c,qy−1,m)

∂m
= 0, i.e., minimizing τq(c, q

y−1, m), yields m = i(q−1)−(x−1)+ 1
2
+ x−1

qy
.

For y ≥ r we can assume x−1 < qy due the known constructions for partial spreads,
so that up-rounding yields the optimum integer choice. For y < r the interval[
λ+ 1

2
− 1

2
θ(i), λ+ 1

2
+ 1

2
θ(i)

]
may contain no integer.

The special case of y = t in Theorem 2.10 is equivalent to [4, Corollary 8] – the
mentioned upper bound of Drake and Freeman, which is based on [3, Theorem 1B].
And indeed, our analysis is very similar to the technique used in [3]. Actually,
their analysis grounds on [16] and is strongly related to the classical second-order
Bonferroni Inequality [2, 7, 8] in Probability Theory, see e.g. [11, Section 2.5] for
another application to subspace codes. Compared to [3, 4], the new ingredients
essentially are lemmas 2.2 and 2.3, see also [14, Proof of Lemma 9]. A weaker version
of Theorem 2.10 was obtained independently and very recently in [15, Theorem 6,7].

Postponing the details and proofs to a more extensive and technical paper [12],
we state some further results in the appendix. The rough idea is to show that the
set of holes of a partial t-spread in Fn

q is equivalent to a projective linear code over
Fn
q whose weights of the codewords are divisible by qt−1. So, instead of Lemma 2.6

we can utilize the more general MacWilliams identities. Via the so-called linear
programming method the mentioned upper bounds on Aq(n, 2t; t) can be obtained
by excluding the existence of certain linear codes. See also the web-page mentioned in
footnote 1 for more numerical values and comparisons of the different upper bounds.
So, stay tuned and perhaps join the journey to improved upper bounds for partial
t-spreads.
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Appendix: Further improved upper bounds

Using the aforementioned linear programming method, the upper bounds of Theo-
remis 2.9 and 2.10 can be lowered by 1 in the following cases. For k ≥ 2 we have

• 24l + 1 ≤ A2(4k + 3, 8; 4) ≤ 24l + 4, where l = 24k−1−23

24−1
;

• 26l + 1 ≤ A2(6k + 4, 12; 6) ≤ 26l + 8, where l = 26k−2−24

26−1
;

• 26l + 1 ≤ A2(6k + 5, 12; 6) ≤ 26l + 18, where l = 26k−1−25

26−1
;

• 34l + 1 ≤ A3(4k + 3, 8; 4) ≤ 34l + 14, where l = 34k−1−33

34−1
;

• 35l + 1 ≤ A3(5k + 3, 10; 5) ≤ 35l + 13, where l = 35k−2−35

33−1
;

• 35l + 1 ≤ A3(5k + 4, 10; 5) ≤ 35l + 44, where l = 35k−1−34

35−1
;

• 36l + 1 ≤ A3(6k + 4, 12; 6) ≤ 36l + 41, where l = 36k−2−34

36−1
;

• 36l + 1 ≤ A3(6k + 5, 12; 6) ≤ 36l + 133, where l = 36k−1−35

36−1
;

• 37l + 1 ≤ A3(7k + 4, 14; 7) ≤ 37l + 40, where l = 37k−3−34

37−1
;

• 45l + 1 ≤ A4(5k + 3, 10; 5) ≤ 45l + 32, where l = 45k−2−43

45−1
;

• 46l + 1 ≤ A4(6k + 3, 12; 6) ≤ 46l + 30, where l = 46k−3−43

46−1
;

• 46l + 1 ≤ A4(6k + 5, 12; 6) ≤ 46l + 548, where l = 46k−1−45

46−1
;

• 47l + 1 ≤ A4(7k + 4, 14; 7) ≤ 47l + 128, where l = 47k−3−44

47−1
;

• 55l + 1 ≤ A5(5k + 2, 10; 5) ≤ 55l + 7, where l = 55k−3−52

55−1
;

• 55l + 1 ≤ A5(5k + 4, 10; 5) ≤ 55l + 329, where l = 55k−1−54

55−1
;

• 75l + 1 ≤ A7(5k + 4, 10; 5) ≤ 75l + 1246, where l = 75k−1−72

75−1
;
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• 84l + 1 ≤ A8(4k + 3, 8; 4) ≤ 84l + 264, where l = 84k−1−83

84−1
;

• 85l + 1 ≤ A8(5k + 2, 10; 5) ≤ 85l + 25, where l = 85k−3−82

85−1
;

• 86l + 1 ≤ A8(6k + 2, 12; 6) ≤ 86l + 21, where l = 86k−4−82

86−1
;

• 93l + 1 ≤ A9(3k + 2, 6; 3) ≤ 93l + 41, where l = 93k−1−92

93−1
;

• 95l + 1 ≤ A9(5k + 3, 10; 5) ≤ 95l + 365, where l = 95k−2−93

95−1
.
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